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ETUDE ELEMENTAIRE

DES

COURBES PLAN]

AU MOYEN DES

COORDONNEES TANGENTIELLES

PAR LE

()
N

Dr H. AMSTEIN

professeur a 'Académie de Lausanne.

(M. %4, 2)

—0— RO e

Les coordonnées tangentielles ont été introduites dans
Panalyse par Pliicker. M. Fiedler, dans un mémoire intitulé :
« Ueber die projektivischen Coordinaten (Vierteljahrsschrift
der zlircherischen naturforschenden Gesellschaft, XV Jahr-
gang, pages 152-182), » fait remarquer que ces coordonnées
ne sont, comme les coordonnées cartésiennes, qu’'un cas par-
ticulier des coordonnées projectives. Plusieurs géométres,
entre autres MM. G. Salmon, Cayley, Hesse, etc., en ont fait
une fréquente application a I'étude des courbes et des sur-
faces. Mais c’est surtout depuis I'apparition des excellents
ouvrages sur la géométrie analytique de M. G. Salmon ', que
leur emploi est devenu a peu pres général. Dans les ouvrages
francais, on les rencontre surtout dans I'excellent traité trop
peu connu de Painvin : Principes de la géométrie analytique

1 Comp. les éditions originales, la traduction francaise du Traité de géo-
métrie analytique (sections coniques), par H. Resal et V. Vaucheret, Paris,
Gauthier-Villars, 1870, et les éditions allemandes des différents ouvrages de
Salmon, par M. W. Fiedler.
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394 BULL. H. AMSTEIN SEP. 2

(Paris, Gauthier-Villars, 1872), et dans le complément de géo-
métrie analytique de Briot et Bouguet (Paris, Dunod, 1864).

‘Le role scientifique des coordonnées tangentielles dans
I'analyse, s'il est permis de s’exprimer ainsi, consiste a
mettre en relief la réciprocité ou la dualité qui régne dans
toute la géométrie. En effet, les coordonnées tangentielles
sont aux coordonnées ponctuelles comme la droite est au
point, comme l'enveloppe est au lieu géométrique; elles for-
ment le complément nécessaire et naturel des coordonnées
cartésiennes.

Puisque chaque probléme particulier nécessite en quelque
sorte un systéme de coordonnées spéciales, il est clair que les
coordonnées tangentielles s’appliqueront de préférence a un
certain genre de problemes, par exemple a l'étude des
courbes d'une classe élevée, a la recherche des tangentes
multiples, des asymptotes, etc. Cependant il n’est peut-étre
pas inutile de soumettre les courbes planes a une étude gé-
nérale dans ce systéme de coordonnées, étude qui, a la con-
naissance de I'auteur de ce mémoire, n’a pas été faite jusqu’a
présent d’'une maniére compléte.

Les pages suivantes n'ont pas la prétention de combler
cette lacune; elles ont uniquement pour but de faire voir
comment on pourrait introduire ces coordonnées dans une
premiére étude générale des courbes planes telle qu’elle se
pratique en coordonnées ponctuelles, par exemple dans les
cours élémentaires de calcul différentiel.

Dans la premiére partie de ce mémoire, il est question des
coordonnées tangentielles rectilignes, et dans la seconde des
coordonnées que nous proposons d’appeler coordonnées tan-
gentielles polaires. Les formules générales de la premiére
partie ne sont pour ainsi dire que la traduction des formules
analogues en coordonnées cartésiennes, de sorte que pour
traiter le sujet un peu complétement, il a fallu s'occuper de
certaines questions qui n’ont pas pour le savant l'attrait de la
nouveauté.

Le but de ce travail justifie suffisamment ’absence des
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coordonnées homogénes ou trimétriques. Cependant, pour
satisfaire autant que possible aux lois de symétrie, il est,
dans les formules suivantes, largement tenu compte de cette
sorte de symétrie qui résulte de ce que les coordonnées d’'un
point ou d'une droite sont exprimées en fonction d’'une troi-
sieme variable indépendante.

A. Coordonnées tangentielles rectilignes.

1. On suppose pour plus de simplicité des coordonnées
reétangulaires. L’équation d’une droite dé-
terminée par ses segments a et b sur les
axes, est

i o
a+b_“1'

Si 'on pose

1 1
Fig. 1. a ‘b—

cette équation devient
ur + vy +1=0.

Les quantités a et b, par conséquent aussi % et v, déter-
minent complétement la droite, et c’est pour cela qu'on a
appelé u et v les coordonnées linéaires ou, pour une raison
qui trouve son explication dans la théorie des courbes, les
coordonnées tangentielles de la droite. Les coordonnées tan-
gentielles d’'une droite sont donc les valeurs réciproques
prises avec le signe contraire des segments faits par la
droite sur les axes. |

L’angle = que fait la droite avec I'axe des X est donné par

U
tg T.._..———';)—.
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Exemples de droites particulieres. — 1) La droite w = a,
v = a fait 'angle — 45° avec 'axe des X et ses segments

1
sur les deux axes sont — =

2) La droite v = a, v = — a fait 'angle 4 45° avec I'axe
des X et ses segments sur les axes sont — —;- et + é— :

3) La droite v =0, v —= a est parallele a I'axe des X & la

distance — % de cet axe.

4) La droite ¥ =0, ¥ == oo se confond avec I'axe des X.
5) La droite w —= b, v = 0 est parallele & l'axe des Y

a la distance — —;— de celui-ci.

6) La droite ¥ = oo, v =0 est identique avec I'axe des Y.

7) u=0, v = O signifie la droite a l'infini.

8) La droite u : >0, ¥ — oo passe par l'origine, et sa
direction est donnée par tg z — lim (—-— %) pour lim ¥ —= >0

et lim v = =o.

2. L’équation
ur +vy+1=0

permet une double interprétation. Interprétée en coordon-
nées ponctuelles, elle représente la droite dont les coor-
données tangentielles sont « el v. Si, au contraire, on y
regarde = et ¥y comme constants, w et v comme variables,
elle fournit une infinité de droites, et comme les valeurs
constantes de z et y satisfont pour chaque couple de valeurs
de u et v a I'équation (envisagée de nouveau comme équa-
tion d'une droite) toutes ces droites passent par le point
dont les coordonnées ponctuelles sont z et .
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L’équation uz 4+ vy + 1 =0, interprétée en coordonnées
tangentielles, représente par conséquent le point (z, y) et
I'on voit sans difficulté qu'en général une équation du pre-
mier degré en u et v, telle que

Au+Bv +C=0 |
représente le point dont les coordonnées ponctuelles sont
A B

—

Y=

La forme particuliere uz 4+ vy + 1 = 0 de 'équation du
premier degré a été appelée par Hesse la forme normale de
I’équation du point (z, y).

L’angle « (fig. 1) que fait le rayon vecteur du point (z,¥)
avec 'axe des X, est donné par

& =

-
tg e = ol
Exemples de points particuliers. — 1) Le point v = a se

; . . 1 -
trouve sur I'axe des X a la distance — P de P'origine.

2) Le point v = b est le point sur 'axe des Y dont I'or-

donnée est — -;— ;

3) L’équation Awu + By =0 signifie le point qui se trouve
B

a U'infini dans la direction déterminée par tg « = e

4) v = 0 est le point a l'infini dans la direction de I'axe
des Y.

5) Le point ¥ — 0 se trouve a l'infini dans la direction de
'axe des X.

6) L’équation C = 0, ou C z 0, qui parait absurde, si-

gnifie I'origine. En effet, si dans I’équation Au 4+ Bv + G =0,
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C Z 0, A et B tendent vers zéro, les coordonnées du point

; o _B ;
représenté x — T Y=c tendent vers zéro.

3. Pownt d’inlersection de deux droiles données (u, v,) et
(uy, v,). L’équation du point demandé sera de la forme

ux + vy + 1=0;

elle doit étre satisfaite par les coordonnées des droites don-
nées, en sorte que

w2+ vy +1=0,
Uz + v,y + 1 = 0.

En éliminant de ces trois équations les inconnues « et ¥, on
obtient I'équation cherchée

ui_'utg
U —Uj — ————=—0;).
1 ‘Ui'_"UQ( 1)

Les coordonnées ponctuelles de ce point sont

Vg — V)

y_ ug'—“iéi
Uy Vg — Ug ¥y’

T U Uy — Uy Y,

r —=—

et 'angle « que fait son rayon vecteur avec 'axe des X est
déterminé par

U, — U
Uy — Uy

&. Droite qus joint deux points donnés (x,,v,) et (2,,y,). Les
coordonnées u, v de la droite cherchée satisfont aux équations
de condition

uz, + vy, + 1 =0,
ur, + vy, + 1 = 0.

En résolvant ces équations par rapport & # et v, on trouve
pour la droite demandée

T Yy Y ,
LyYs — Ta Y,

.1’1 - xa
ZyYa — X Y,

—
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5. Angle de deux droites données (u,,v,) et (uq,v,). L'angle
cherché y est égal & + (v, — 7,); donc

Uy Vg — U V
b il R 2 %4

tgy = =g (r—w) = Ty Uy + v vy

Condition de parallélisme des deux droites (u,, v,) et
(Ugy V) :
Uy Vg — U ¥y = 0.
Condition de perpendicularité des deux droites (u,, v,)

et (uy,v,):
Uy Uy + v, v, = O.

6. Distance d du point (5,v) @ la droite (u,v). L’équation
en coordonnées ponctuelles de la droite (u,v) étant

ur +vy +1=0,
il s’ensuit qu’'on trouve la distance demandée d’apres la régle
connue de la géométrie analytique. Cette distance
us + vy + 1
Jd — e
Vud + o®
est considérée comme positive ou comme négative, suivant
que le point donné (&, 1) et l'origine se trouvent du méme
coté de la droite donnée ou de cotés différents.
La distance J de 'origine & la droite (u, v) est
1
T Yur 4

Observation. On voit sans difficulté que, si le systéme de
coordonnées adopté avait été oblique (avec I'angle des coor-
données w), il suffirait de remplacer dans les formules pré-

cédentes tg v par — LB , tgy par

sin (o —7)’ e i =

sin (0 —«)

sin y

. . Les équations des points et des droites ne se-
sin (0 —y)
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raient pas changées, mais il faudrait substituer a la formule
pour d, la suivante :

5 — us + vy +1
Vw4 v* —2uvcosw

sin .

7. Transformation de coordonnées.— 1) Passage d’un sys-
teme de coordonnées a un systeme paralléle.

Soit » l'angle des coordonnées, m et n les coordon-
nées ponctuelles et par conséquent
um + vn + 1 =0 'équation de la nou-
velle origine 0'. Siu et v sont les coor-
données tangentielles d’une droite
quelconque par rapport au systéme de
coordonnées X, Y, u' et v’ les coor-
données de la méme droite par rap-

Fig. 2. port au nouveau systéme X’, Y' on a,
1 1, 1, 1
en posant 4 — — - v:-~—--—5- , U :—? N ., 7

(fig. 2) les relations

/

a _a a—m __ a
b b b'4n T b

!

De ces deux relations, il suit

’

— U o U
%= ; ; w' =
—mu —nv' 4+ 1 ¢ mu+nv+1
e
_ v’ o — v
T —mu —nv 1 T mudnv+1°

2) Passage d’un systéme & un aulre de méme origine.

Soit w I'angle des coordonnées du systéme donné X, Y,
et soient « et B les angles que font les nouveaux axes
X', Y' avec 'axe des X, en sorte que § — « — w’ est le
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nouvel angle des coordonnées. Si,
pour plus de briéveté, on introduit
encore l'angle auxiliaire y, c’est-a-
dire I'angle supplémentaire de celui
que fait une droite (u, v) quelcon-
_ que avec l'axe des X, la figure 3
Fig. . donne

@ sin{(e+y) __ sine+coseatgy

a siny tgy

b __sin(8+y)_ sinf+cosptgy
b’ sin (w4 y) sinw-4coswtgy

’

Mais comme de

b siny _ tg y
¢ sin(w-4y) " sine+coswtgy’

I’on déduit

bsinw
a—bcosw’

tgy =

on a aussi

¢ __asinae+bsin(w—ea) b _ asinf+ bsin(w—p)

T b sin w LI a sin @

De ces deux équations on tire immédiatement

i — :
sSin w

Y — vsin B 4+ u sin (w — R) 5

, __ vsina 4 usin (0 —«) )

sin

et en résolvant par rapport a u et v :
w'sin 8 —v'sine
sin(f—ea) '’
v — V' sin (0 — &) —u'sin (w0 — B)

o sin (3 — «)

{1 p—
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Remarque. S'il s’agissait de passer d'un systéme de coor-
données & un autre systéme d’origine et de directions d’axes
différentes, il faudrait combiner les deux transformations qui
viennent d’étre indiquées.

ETUDE DES COURBES PLANES

8. Lorsqu’il existe entre # et v une relation telle que
F,v)=0 ou u=rf(v),

chaque couple de valeurs de » et de v détermine une droite
uz + vy + 1 =0 et I'’ensemble de ces droites enveloppe évi-
demment une courbe de sorte que F(u,v) =0 ou v =f(v)
peut étre considérée comme l'équation de cette courbe en
coordonnées tangentielles. Trouver 'équation de cette courbe
en coordonnées ponctuelles, revient a trouver l'enveloppe
des droites ux + vy + 1 =0 sous la condition F (u,v) =0.
Si, au contraire, les coordonnées z et 4 sont liées entre elles
par une équation telle que

®(z,y)) =0 ou y—=og(r)

chaque couple de valeurs de z et de y détermine un point
wx + vy + 1 =0, et I'ensemble de ces points forme un lieu
géométrique dont I'équation est évidemment @ (z, y) =0
ou y = ¢ (r). Trouver I'équation de ce lieu géométrique en
coordonnées tangentielles, c’est trouver le lieu géométrique
des points uz + vy + 1 =0 sous la condition @(z,y)=0.

L'équation ux + vy + 1 =0, comme on vient de voir, re-
présente indifféremment un point ou une tangente de la
courbe, suivant que son équation est donnée en coordon-
nées ponctuelles ou en coordonnées tangentielles.
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9. Probléme de la tangente el de la transformation des
coordonnées ponctuelles en coordonnées tangentielles.

Supposons qu’on donne la courbe sous la forme symé-
trique

z=¢@), y=v (@,
ou ¢ signifie une troisiéme variable indépendante, et dési-
gnons par
,__dx ,_dy
r=m =9 W Y=o-=9(0
les dérivées de = et de y par rapport & la variable ¢. La tan-
gente en un point (z,y) d’'une courbe, étant la droite qui

joint ce point au point infiniment voisin, ses coordonnées
(uw,v) satisfont aux deux équations

ur + vy +1=0,

uxr' + vy’ =0,
d’ou l"on tire
R
— &
= A—uF"

En introduisant ces valeurs dans I'équation

us+ v+ 1=0,

ou & et y désignent les coordonnées courantes, on obtient
I'équation connue de la tangente

e T (B
N—y=-rE—a)
La direction de la tangente est donnée par

v_ Yy _dy ¢ ()

tg't:".——-?_ o __dx__.‘g-),—“(t—)'
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Les formules (1) qu'on modifiera facilement, si la courbe
est donnée sous une autre forme, résolvent le probléme de
la transformation des coordonnées ponctuelles en coordon-
nées tangentielles. En effet, elles expriment # et v en fonc-
tion de ¢ et dans la plupart des cas c’est sous cette forme que
I’étude d’une courbe se fait le plus facilement. Si I’élimination
de la variable ¢ est possible, on obtient I’équation de la courbe
sous une des formes ordinaires F (u,v) =0 ou v = f (v).

10. Probléme du point de contact et de la transformation
des coordonnées tangentielles en coordonnées ponctuelles.

Soit u=y (), v=g(),

la courbe donnée et u’ et v’ les dérivées de u et de v par
rapport a ¢.

Le point de contact d’une tangente donnée n’est autre
chose que le point d'intersection de cette tangente avec la
tangente infiniment voisine; par conséquent ses coordonnées
x,1y doivent satisfaire aux deux équations

ur +vy +1=0,

! ! s
w4 vy =0,
qui donnent
! ,v!
v —w’
(2)
. w
=W —=w"

En substituant ces valeurs dans I’équation
Uz +Vy +1=0,

ou U et V signifient les coordonnées courantes, on obtient
pour I'équation du point de contact

U—u= -:-)"-,-(V—-v).
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Le point de contact se construit avec la méme facilité que la
tangente en coordonnées cartésiennes, car on a

du ()
dv T

’
u

fpg— 3 — %

g 7

¥

Cette construction n’est en défaut que lorsque la tangente
passe par l'origine, c’est-a-dire dans le cas ol % — oo
et v = oo,

Les équations (2) permettent de passer de I'équation d’une
courbe en coordonnées tangentielles a son équation en coor-
données ponctuelles. Il suffit d’en éliminer la variable ¢ pour
arriver a une des formes F (z,4) = 0 ou y = f(z). (Cf. Sal-
mon : Treatise on the higher plane curves.)

11. Asymploles. Si T'on considére les asymptotes d'une
courbe comme des tangentes dont le point de contact se
trouve a l'infini, elles sont comprises dans les tangentes
données par les formules (1). En effet, si

r=g{l), y=y()

est la courbe donnée, on cherchera les valeurs de ¢, pour
lesquelles z ou 4 ou les deux deviennent infinis, et on ob-
tiendra les segments que déterminent les tangentes corres-
pondantes sur les axes, en introduisant tour-a-tour les valeurs
trouvées dans les équations

1 _oy—yd 1 ay—yr

f 1 -

U Y V x

On aura une asymptote paralléle a un axe coordonné ou une
asymptote oblique, suivant que par ces substitutions 'une

i 1 1
des expressions ” et — ou les deux prendront des valeurs

finies.
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Exemple. — Le foltum de Descarles. L’équation de cette
courbe

L4+ yYy—ary—=0
est identiquement satisfaite, si I'on pose

o _, L
x—al_l_ts! y"‘" 1+t5‘

Comme z et y deviennent infiniment grands pour { = —1
et que la substitution de cette valeur dans
L e i o s o e ff s
T w e Ty T T YT —ep .
1 a S a
donne vl S Ml 5 la tangente
a
x4+ y+ T = 0

est une asymptote de la courbe.

Lorsque la courbe est donnée en coordonnées tangen-
tielles

v=9 (), u=1y (),

les formules (2) montrent imméd.iatement que pour les
asymptotes on doit avoir

Cette condition est nécessaire, mais non suffisante, car elle
exprime seulement que la tangente et le rayon vecteur de
son point de contact sont paralleles. Si cette condition ne
peut étre satisfaite que par w = v = 0, la tangente corres-
pondante se trouve tout entiére a I'infini et par suite elle
n’est pas une asymptote proprement dite. Si, au contraire,
une valeur de ¢, tirée de cette équation de condition, rend
=220 et ¥ = o0, on a une tangente passant par I'origine.
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~ Dans ce cas, il s’agit de vérifier si le point de contact, donné

par z el y, se trouve ou ne se trouve pas a l'infini. Dans tous

les autres cas, une valeur /, de ¢, qui satisfait & I’équation

!

u w .

> =7 fournit une asymptote v = ¢ (t,), ¥ = ¥ ({).
Exemple. Choisissons encore le folium de Descarles, qui

cette fois sera donné par

12—¢ 1 1—28
U _— — — —/ @ B .

'v e
a {i 7 a ?

!

, .U u : )
Del’equatlon—v— = on tire { = — 1. Par conséquent
3 2
= V= — est une asymptote de la courbe.

12. Equation du point de la langenle (u , v), dont le rayon
vecleur fail un angle droit avec le rayon vecleur du point de
contacl. Courbe correspondanie & la développée. Le point en
question joue par rapport au point de contact d’'une tan-
gente le méme role qu’en coordonnées ponctuelles la nor-
male par rapport 4 la tangente. Son équation est, en dési-
gnant par U et V les coordonnées courantes,

v.’
U—u=—— (V—1).

De méme qu’on traite en coordonnées cartésiennes la
question de la développée, on peut, en coordonnées tan-
gentielles, se poser le probléme : Trouver le lieu géomé-
trique des points situés sur les tangentes d’'une courbe don-
née, tels que leurs rayons vecteurs fassent avec les rayons
vecteurs des points de contact un angle droit. En d’autres
termes : Une courbe étant donnée, on demande une autre
courbe telle que si un observateur se place a l'origine et
regarde simultanément le point de contact d’une tangente
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de la courbe donnée et sur cette tangente le point corres-
pondant de la courbe cherchée, I'angle des deux rayons vi-
suels soit toujours un angle droit. Ou encore : Un triangle
rectangle & cotés variables dont le sommet de I'angle droit
est placé a l'origine se mouvant de maniére que le second
sommet demeure sur une courbe donnée et qu'en ce point
I'hypoténuse soit tangente a la courbe, on demande le lieu
géométrique du troisieme sommet.
Soit
v=g¢(), u =y ()

la courbe donnée. Le point de la courbe cherchée qui cor-
respond au point de contact de la tangente (u,v) de la
courbe donnée, a pour équation

U—u= 7 (V—o).

Les coordonnées U,V de la tangente en ce point doivent
satisfaire a cette équation et a celle qu'on obtient en la dif-
férentiant par rapport & ¢. On a donc pour déterminer U et V
les deux équations

W U—u)y4+ v (V—v)=0
w (U—u) + v (V—ov) =u? 47,

d’out
,wrﬁ__l_ ,Ufﬂ
V_“v: ! fag?” ”
Uv—vU
2 2
w4 v
U_u:_ , " ’ " L] vr L]

uv—uvu

En éliminant la variable ¢ de ces deux équations on obtient
I'équation de la courbe cherchée sous la forme F (u,2)=0.
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Exemple 1. La parabole. L’équation en coordonnées tan-
gentielles de la parabole * = 2px est

9

P =y
P

Elle est identiquement satisfaite, si I'on pose

_ P p
?).—-t,’uz_-—c)—t.

and

En appliquant les formules ci-dessus, on trouve pour les
coordonnées U,V d’'une tangente quelconque de la courbe
cherchée |

V= —p*P,

13
U_..—I—)-—ngl,,

d’ol, en éliminant ¢,
1\ 27 V2
(- 5) —F 5
Telle est I'équation de la courbe cherchée. En passant aux
coordonnées ponctuelles, il vient
xy* + % 2 + py* = 0.
(Courbe en affinité avec la cissoide.) (PI. 24, fig. 1.)

Observation. 11 est clair qu'il aurait suffi de changer dans
I'équation de la développée de la parabole z en U, y en V

1 . : .
et p en T pour arriver a 'équation demandée.

2 2

Exemple 2. L’ellipse. L’ellipse %2— + -g—g — 1 a pour équa-
tion en coordonnées tangentielles

a®*u? 4 b? —=1.
27
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Une tangente quelconque de cette ellipse est donnée par

__sint _ cost

— e S—

= VT
La tangente correspondante de 1a courbe demandée se trouve
par les équations
a? — b?
. Tath
(1) a? — b2

— LOWI
U_'—"Wsln t,

cosd¢

d’ou, par l'élimination du parametre ¢, il résulte comme
équation de la courbe cherchée

-

@ (@) + (bU) T = (‘iﬁf)

Traduites en coordonnées cartésiennes, les équations (1) et
(2) deviennent

. ab? 1
- Y= @9 sint
(1% . atb 1
Y= "0 "1 cost
o o s (=R
et (2)a:v+by.__( ab)my.

(Pl. 24, fig. 2.)

13. Normale et développée. Soient u et v les coordonnées
d’une tangente quelconque de la courbe donnée, U et V
celles de la normale correspondante. On a pour déterminer
U et V les deux équations
Uu+Vo=0 ou u(U—u)+ v(V—ov)=—4 %,

V(U—u)—uw (V—2v) =0
exprimant que la normale est perpendiculaire a la tangente
et qu'elle passe par le point de contact. |
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De la

f !
uY — VU
U = #— 7 )
ww -+ vv
I !
wuy — vu
V:——-u.——,-—-—-—,—.
w4+ v

Or, si u et v sont exprimés en fonction d’une troisieme va-
riable ¢, U et V le seront aussi. Par conséquent ces équa-
tions résolvent le probléeme de la développée. 1l suffit d’en
éliminer ¢ pour avoir I'équation de la développée sous la
forme F(u,v) = 0.

Exemple. L’ellipse. L'ellipse étant donnée comme précé-
demment par

__sint __ cosl

D —— o ——

U — a b - b b)
on trouve en appliquant les formules ci-dessus

a 1 b 1
Uu_ag—bﬂ'sint’ V—aﬂ——bg'cost’

d’ou il résulte pour I'équation de la développée

(@ — B U V* = @2 V* + B2 U=

14. Classe d’une courbe algébrique. Lorsqu’on combine
avec 'équation d’'un point v — av + 8, ’'équation en coor-
données tangentielles d’une courbe F (w,v) =0, ou F si-
gnifie une fonction entiere de u et v du degré n, on obtient
n couples de valeurs (réelles ou imaginaires) qui satisfont
aux deux équations. Cela revient a dire que la courbe admet
n tangentes (réelles ou imaginaires) émanant d'un point quel-
conque. Par conséquent, la classe d'une courbe est iden-
tique avec le degré de son équation en coordonnées tan-
gentielles.

On peut encore remarquer qu'il sera toujours possible de
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disposer de 'une des constantes arbitraires « et g en sorte
que la résolvante des équations F (v,v) =0 et u —av 4 8
posséde une racine double. Dans ce cas, le point « —av 4 8
est le point de contact de la tangente (u,v) correspondante.
Le probleme : Etant donné «, déterminer 8 de la maniére
indiquée, revient & trouver tous les points de la courbe qui
sont situés sur une droite passant par l'origine. En déter-
minant les deux constantes « et # de maniére a ce que la
résolvante admette deux couples de racines égales, ce qui
en général est toujours possible, le point ainsi obtenu sera
un point double ou un point de rebroussement. On en con-
clut que les courbes de la classe n possédent en général
des points doubles et des points de rebroussement, tandis
que les courbes de 'ordre n admettent des tangentes dou-
bles et des tangentes stationnaires comme singularités ha-
bituelles. (Cf. Salmon : Higher pl. curves.)

Exemple. Cherchons les points doubles de la courbe
(v 4 v*)* —u* + v* = 0.
En éliminant de cette équation et de
e+ pv+1=0

la variable v, on obtient

i be . 64?4282 —pB" | 2a(2 4+ £7)
u+a2+ﬁ2u + (aﬂ_i_ﬁe)? W + (ae_l_ﬁe)a u+
146
HGET e

Comme la courbe est symétrique par rapport aux axes coor-
donnés, il est évident que ses points doubles seront symé-
triques par rapport aux axes. Par conséquent, si les points
doubles existent, il doit étre possible de donner & «, g, p
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des valeurs telles que le premier membre de cette équation
devienne identique avec

(u2 '_' pg)g —0 ’
ce qui donne les quatre conditions

de —0 6o® + o 82 + 26— g* g

ae_l_ ‘82 =l (ae + ﬁS)i - p !
2&(2‘]"48&)_0 _l_iﬁi__pu
(ae +18!)2 - (0&2 + ﬁa)e - ?

d’ou l'on tire
ea—0, = i]/g, p:i]/é.
Les deux points doubles de la courbe possédent donc les

coordonnées « — 0, § — == }/8; les tangentes principales
en ces points sont données par |

- 1
u:i]/g,v.._—_—_l:; ]78:

(PL. 24, fig. 3.)

15. Angle de contingence. L’angle de contingence dz en
un point donné d’une courbe est 'angle que fait la tan-
gente (4,7) en ce point avec la tangente consécutive. Comme

(Cf. n° 9)

ter — uoufc" arct“
gr — B = gv’

I'angle de contingence est donné par

vdu — udy

u!_l__,vi

it = —

416. Interprétation de la dérivée seconde. Soit

u=f()
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I'équation d'une courbe. On sait que (Cf. n° 10)

tga — __fr(v),
ou e désigne l'angle que fait le rayon vecteur du point de

contact de la tangente (u,v) avec 'axe des X. De cette équa-
tion on tire

o = — arctg /' (v)
et par différentiation

de ')

dv —  14+[O)]
Par conséquent ’angle « croit ou décroit, suivant que f*(v)
est négatif ou positif.

17. Concavilé et convexilé d’une courbe. Soit v la variable
indépendante a laquelle on convient de donner des accrois-
sements positifs dv. Vue de l'origine, la courbe v = f(v) sera
convexe ou concave en un point dont la tangente posséde
les coordonnées u et v, suivant que pour ces valeurs u. et v
les quantités dv et f”(v) sont de méme signe ou de signes
contraires.

Cette regle est en défaut : 1° lorsque la tangente au point
considéré passe par l'origine ou qu’elle est une asymptote,
c’est-a-dire dans les cas ou dz s'annule; 2° lorsque f"(v) =0.
Dans les deux cas, savoir de =0 et f”(v) =0, le point con-
sidéré est un point singulier qui demande une étude spéciale.

18. Contact des courbes. Lorsque deux courbes

u=s() et u,=¢([v)

ont en commun une tangente (u,v) et son point de contact,
on dit qu'elles possédent en ce point un certain contact.
Ce contact est évidemment d’autant plus intime que les tan-
gentes des deux courbes qui suivent immédiatement la tan-
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gente commune, s’écartent moins 'une de 'autre. En effet,
si trois courbes sont en contact et que la seconde courbe
passe entre la premiére et la troisiéme, il est clair que le
contact de cette courbe avec une des deux autres courbes
sera plus intime que celui des deux autres courbes entre
elles. Afin d’obtenir une définition plus précise du contact
de deux courbes, il faut calculer leurs angles de contingence
au point considéré.

Si par un accroissement positif & de la Varlable indépen-
dante v la fonction » passe en w4+ 4u =f(v + k), 4, en

U, + 4u, — ¢ (v + h), les angles de contingence Az et A7,
deviennent (Cf. n° 15)

At — — %{iﬁ,} v oy = —vi?*_l:;?h )
et leur différence est
| Jri—df:—v.%g,
d’ou l'on tire
= é—’f—‘—;c:—d—r = du, — Au,

expression dans laquelle la projection sur I'axe des Y de la
perpendiculaire,, abaissée de !'origine sur la tangente consi-
dérée, est représentée par

v

u? + 'v’

Or, le développement de (#u,— 4u) suivant des puissances
ascendantes de & commencera en général par un terme d'un
ordre supérieur au premier. Divisant encore par A et posant

=%k

Af’l?‘—— J’l«' _ dul —Ju
he h

o

— Ah™ 4 Bhm+n 4 ...

_le plus petit des exposants, savoir m, sera appelé Pordre du
contact des deux courbes.
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Cette définition est en défaut lorsque le point de contact
de la tangente considérée se trouve sur 'axe des Y. Dans ce
cas, il suffit de regarder » comme variable indépendante et

Av, —

de chercher le développement de el

3 correspondant

a un accroissement & de .

En général, on aura soin de choisir la variable indépen-
dante de fagon que le développement de (44, — 4u), ou de
(4v,— 4v) commence par une puissance supérieure a la
premiere. Alors la définition ne subit aucune exception.

Exemple 1. Les deux courbes

wihe

u—1=@—1)3,

Uy—1=(@w—1)*
ont en commun la tangente u —=u, =1, v=1 et son point
de contact z—=—1, y = 0. Pour trouver l'ordre de leur
contact, posons v =1+ h, d’ou il suit

Au = h® 4+ ...

Juixh%—l- .....
Ay —Au % 5

— = h* —h3 ...

L’ordre de contact est par conséquent — TIL "

Ezemple 2. Les courbes
3
v —1=@w—1)=%,

ont en commun la tangente ¥ —u, =1, vy =1 et son point
de contact. Ce point de contact =0, y—=—1 étant situé
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sur 'axe des Y, il convient de regarder # comme variable
indépendante. Il va sans dire qu’on trouvera encore par la

l'ordre de contact — -&

Ezemple 3. Les courbes

4 5

w—=v’, y,—ov*
se touchent a l'origine. Dans ce cas on a

Auy — Ay
h

Par conséquent 'ordre du contact des deux courbes a l'ori-

ol

i
4

— h* —h°>,

- 1
gine est encore — i

Lorsque les deux fonctions
u=s(v) et u, =g ()

permettent dans le voisinage des valeurs communes v —v,,
u — u, — %, le développement suivant le théoréme de Taylor,
en sorte que

hn fn-l-l ’ hn-l-l +
TR AR O v e S

+17(00).

h h?
U, + AU, = @ (v,) + ¢ (v,). el + ¢"(v,) . 15 + e

+9700- g + 9" 00 75 +
)T Y 1o (mr1)

la définition indiquée ci-dessus peut s’énoncer comme il suit :
Les deux courbes = f(v) et 4, = ¢ (v) possédent en une
tangente commune (u,,v,), qui n’est pas une tangente sin-
guliere pour chacune d’elles, un contact de I'ordre n, lors-
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que pour v —uv, les fonctions f(v) et ¢ (v), ainsi que leurs n
premiéres dérivées, affectent les mémes valeurs, tandis que
les dérivées (n 4 1)®me fo+l(v) et ¢"¥! (v) prennent des
valeurs différentes. En un tel endroit, les courbes ont (n 4 1)
tangentes consécutives communes et le contact se faitl avec
ou sans intersection suivant que n est un nombre pair ou
impair.

Toutefois cette définition exige que le point de contact
commun ne soit pas situé sur 'axe des Y.

Ezemple. De quel ordre est le contact de la parabole

14 4u 4+ 3u*—+* ou u:—%———;—m + 3¢

et de la circonférence

2u? + 2u, —+* ou ui_—-—-;-—-—lfl_—}:-@?
au point z =1, y = 0, c’est-a-dire au point de contact de
la tangente commune ¥ = —1,v=07?
Pour v =0, il vient u = —1,
du d’u d'uy
(dv ) o )o~0 (W)—g’

. du, A TAN d®u, d'u,\
“*‘"“1’(dv) =0, (dw)—_]’(dvs)“‘o(d )0"6'
Les trois premidres dérivées des fonctions u et w, étant
égales, les dérivées quatriemes différentes pour » = 0, il
s’ensuit que l'ordre du contact des deux courbes — 3.

19. Cercle osculateur, différentielle de Uarc, rayon de
courbure. Le cercle osculateur en une tangente donnée (u,v)
d'une courbe a trois tangentes consécutives communes avec
la courbe. Par 1a ce cercle est défini uniformément; car trois
tangentes consécutives étant données, le sens de courbure
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I'est en méme temps. Si donc « et B sont les coordonnées
cartésiennes de son centre, ¢ son rayon, I'équation du cercle
osculateur aura la forme

(eU 4 BV 4 1)* = 0*(U* + V¥),

et les constantes «, B et ¢ seront déterminées par les trois
conditions

(et + Bo + 1) = ¢*(u + %),
(w4 o+ 1) (e 2% 4 ) = P (u "t 4y,

(cu+prv+4+1) e

=t + (o) + v o]

qui indiquent que la circonférence admet la tangente (u,v)
et les deux tangentes qui la suivent immédiatement. Au lieu
de résoudre ces équations, ce qui n'offre aucune difficulté,
on se borne a chercher I'expression du rayon de courbure
par la voie suivante :

Supposons la courbe donnée sous la forme

v=o(), u=1v().
Alors on tire des formules

f

_ v
o —w
!
y = — v (Cf. n° 10.)
VU — U
par différentiation
dr . W' —o' '
dt C(vu' — w')?
dy W' —uv

= (ve’ — wr')?
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d’ou pour la différentielle de l'arc :

W' — v u
iy == o (vu ,wvr)e ]/u -+ ’U .

Le signe du radical sera toujours choisi en sorte que ds soit
positif.

ds . .
Or, comme ¢ = T il vient

wv' — vu
(ve' —uv')?

0= V(W + o).

D’apres ce qui vient d’étre établi relativement au signe de ds,
il est clair que ¢ aura toujours le signe de dv. En d’autres
termes : Un observateur placé au point considéré de ma-
niere a avoir le point infiniment voisin (correspondant a un
accroissement positif de la variable indépendante) devant
lui, verra le centre de courbure & sa gauche ou a sa droite,
suivant que ¢ sera positif ou négatif.

20. Tangentes multiples. Soit f(U,V) =0 I'équation de la
courbe. D’aprés le théoréme de Maclaurin on peut écrire

FOY)= 8, + A, (V—0) + A,(U—u) +
g [Au (V= 0 + 28,3 (V—0) (U—1) + A,y (U — 0] +

g [ (V—0) + 34,45 (T— o)t (U—1) +
+ 3A455 (V—2) (U — ) + Ageg (U—u)] + vy
ou

d d
Ay =f(uw), A, = (% g Sy ('d“{]‘ y

By = (dV*) 7 B = dg’cJ;U » An = (Z%fi |l
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Or, si A, =0, la droite V=12, U= u est une tangente
de la courbe et son point de contact est donné par I'équation

A, (V—v) + A, (U—w) = 0.

Si on a simultanément A, —0 et A, = A,=0, la droite
V=v, U=wu est une tangente double de la courbe. Ses
deux points de contact s'obtiennent par I'équation

Ay(V—0) "+ 28,(V—2) (U—u) + Ap(U—u)* =0.

Pour que la courbe posséde une tangente multiple, il faut,
comme on vient de le voir, que f(U,V) salisfasse aux con-
ditions

A=A, =A== 0;

\

la tangente est double, si les dérivées secondes de f(U,V),
savoir A,,, A,s, Ay, ne sont pas toutes égales a zéro, et ses
points de contact sont réels ou imaginaires, suivant que

Afz—— AM A22> 0;

2

ils sont réels et ils coincident, lorsque A, — A,, A,,. Dans
ce dernier cas, la tangente considérée est une tangente sin-
guliere de la courbe. Pour reconnaitre la singularité qui a
lieu, il faudrait tenir compte des premiers termes d’'un ordre
supérieur au second, qui ne s’annulent pas. Comme cette
étude est en général assez pénible, elle ne sera pas poussée
plus loin, attendu que I'on va déterminer les singularités
d'une courbe par un autre procédé qui, le plus souvent, pré-
sente moins de longueur.

On voit facilement quelles sont les conditions qui amenent
une tangente triple, quadruple, etc.

Exemple 1. Pour la courbe
(u* + v*) — (u*—20*) =0

la droite & l'infini (v —=w« = 0) est une tangente double. Ses
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points de contact u = = se trouvent dans les directions
— =+ 45°. (Pl. 24, fig.3.)

Exemple 2. La courbe
v—1)"+ w—1)"—2a(w—1P+2b(u—1)2(v—1)=0

possede une tangente triple w—=1, v=1. Les trois points
de contact sont déterminés par les équations

u—1__ \/—
.1 1 — -+

21. Eléments singuliers. Soit w—= u,, v —uv, une tangente
singuliere, (z,,9,) son point de contact. Pour trouver la
forme qu’affecte la courbe en ce point, on prend ce point
pour origine, la tangente considérée pour axe des abscisses et
la normale correspondante pour axe des ordonnées d'un nou-
veau systeme de coordonnées, et on développe u et v sui-
vant les puissances ascendantes d’une troisiéme variable (.
Ces développements permettent de reconnaitre 'ordre dont
# et v deviennent infiniment grands a la nouvelle origine.
On aura par exemple

w—al—m™ 4 q, t—mbm 4

p = bl—=" £ b=t
ou a,a,, b,b,... sont des constantes différentes de zéro,
m et n des nombres entiers, et puisque 'axe des abscisses
est une tangente de la courbe évidemment n > m. Alors
quatre cas peuvent se présenter :

1. Si m est un nombre impair et n un nombre pair, 1'élé-
ment de courbe se trouve des deux cotés
de la normale et en entier du méme coté
de la tangente. La singularité en question
tient & ce que le contact de la tangente
avec la courbe est d’un ordre différent du
premier.
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2. Soient m et n des nombres impatrs.
Alors I'élément de courbe possede des
points des deux cotés de la normale et
en méme temps des deux cotés de la
tangente. Le point considéré est un point
d’inflexion. |

3. Lorsque m est un nombre pair,
% un nombre impair, 'élément de courbe
se trouve des deux cotés de la tangente
et en entier du méme coté de la normale
et le point singulier est un point de re-
broussement de la premiére espeéce.

4. Si enfin m et n sont des nombres
pairs, I'élément reste en entier non-seu-
lement du méme coté de la tangente,
mais aussi du méme coté de la normale.
Le point critique est alors un point de
rebroussement de la seconde espéce.

Fig. 7.

Ezemples. L origine est un point singulicr pour les quatre
courbes

. u:t‘—‘ 2 (Rl e
ey il . s B
1) wu=vw ougv:t_;,, 2) u=v Ougv:t_sa
, 3 j =2 2 y=1r"
3)’0:%”-{-%-‘ ou :::l'—t‘—l—t 534‘),“:,04 Oug?):t_ﬂ.’

savoir un point d’inflexion pour la premiére, un point de
rebroussement de la premiére espéce pour la seconde et un
point de rebroussement de la seconde espéce pour la troi-
sieme. La singularité de la quatriéme courbe consiste en ce

- 1
qu’a lorigine la courbe forme un contact de 'ordre g avec

I’axe des X. (Pl 24, fig. 4-7.)
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Ezemple 5. On propose de chercher les singularités de la
courbe
(w+1P=—(@+1)"
En posant
(u=— {1+
v—— 148

cette équation est identiquement satisfaite. On reconnait fa-
cilement que l'origine est un point de rebroussement de la
premiére espéce et que la tangente u—=—1, v—=—1 avec
le point de contact =0, y =1 est une tangente singuliére.
Pour trouver la forme qu’affecte la courbe en ce dernier
point, on transporte d’abord I'origine du systéme de coor-
données au point =0, y =1, ce qui donne (Cf. n° 7, 1.)
14+ _ — 14
3

l
[ 1 Uy 5

{

Uy — —
‘et Ton tourne ensuite les axes coordonnés d’un angle de
— 45°. (Cf. n° 7, 2.). Alors il vient
_ L 23

V2 Ve

Comme dans ce cas m—=1, n =3, le point considéré est un
point d’inflexion. (Pl. 24, fig. 8.)

(= 4 1); vo= —= (— U—3—(—* 4 1),

Uy =

| 22. Polarres réciproques. L’équation de la polaire du point
- (&,m) par rapport a la circonférence z* + y* —1 est

x4+ ny—=1.
Si I'on pose §—=—wu. y —=—w, on obtient I'équation
ur+oy +1=0

qui a servi de point de départ an présent mémoire. Suivant
qu'on l'interpréte en coordonnées ponctuelles ou en coor-
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données tangentielles, elle représente soit la polaire du point
(¢,m), soit le pole de la droite &z 4 ny —1. La polaire d’'un
point figure ainsi comme lieu géométrique des poles de toutes
les droites passant par ce point, et le pdle d'une droite est
I'enveloppe de toutes les polaires des points de cette droite.
Lorsque le point (¥,7) décrit une courbe f(§,7) =0, la
droite (u,v), polaire du point (&,7), enveloppe une seconde
courbe f(— u,—v) = 0. Deux courbes, liées entre elles de
la maniere indiquée, ont été appelées des polaires réciproques
par rapport a la circonférence z* 4 y* — 1. Les substitutions
E——u, n—=—w
dans I'équation f(5,7) =0 et
bW—=——E&E,v=—1

dans I'équation f(u,v) =0 résolvent par conséquent le pro-

tangentielles |

bléme de trouver en coordonnées: ; la polaire
| ponctuelles

s , .. .ponctuelles |
réciproque d'une courbe donnée en coordonnées p ; ‘

tangentielles
En méme temps ces considérations permettent de reconnaitre
la nature intime des coordonnées tangentielles.

Les relations § = —u, = — v entrainent les autres qui

suivent :
dp dv n o

e— e = -—--—;f 2
dc“"dTa Z:"—?_b's ]‘; +712.___]’M2+’U ’

d’ou il résulte que la tangente au point (&,7) de la courbe
f(&,5)=0 est perpendiculaire au rayon
vecteur du point de contact de la tangente
. (— u, —v) de la courbe f(—u, —v) =0
g Ly @ ct réciproquement, et que le rayon vec-
Bl teur du point (£,7) est la valeur réci-
proque de la distance de l'origine a la
tangente (—u,—v). (Cf. n° 6.)

28
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Le principe de la dualité que ’on rencontre ici, regne dans
toute la géométrie. Aussi les géometres se sont-ils servis de
ce puissant instrument pour doubler en quelque sorte les
résultats de leurs recherches. Il serait inutile d’insister plus
longuement sur ce principe qu'on trouve développé dans
tous les bons ouvrages sur la géométrie analytique, notam-
ment dans les excellents ouvrages de M. Salmon. Qu’il suf-
fise d’avoir montré le rapport qui existe entre les coordon-
nées ponctuelles et les coordonnées tangentielles.

23. Podaire d'une courbe par rapport a lorigine. Si d’'un
point donné A on abaisse des perpendiculaires sur toutes les
tangentes d’'une courbe donnée, le lieu géométrique des pieds
de ces perpendiculaires est une courbe qu’on appelle la po-
datre de la courbe donnée par rapport au point A. On va
chercher les relations qui existent entre les coordonnées tan-
gentielles (u,v) d’'une tangente quelconque d’une courbe et
les coordonnées ponctuelles (z,y) du point correspondant de
sa podaire par rapport a l'origine. Soit

ur +vy+1=0
la tangente considérée,
uy —ve =0
la perpendiculaire abaissée de l'origine sur cette tangente.
De ces deux équations on tire

/

u

PP
! u® 4 o’

(1) -
|

et réciproquement :

(2)
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Ces formules résolvent le probléme de la podaire et le pro-
bléme réciproque. En effet, sif (v,v) =0 est la courbe don-

daire, et si ¢ (z,y) = 0 est l’equation de la courbe donnée,

)__ 0 est I’équation de sa po-

q)(H@T_—I—v“ R —|—v’

la proposée est la podaire.

) =0 sera celle de la courbe dont

Ezemple 4. Si T'on fait les substitutions (2) dans 'équation
de l'ellipse

atu* + b*v* =1,
il vient pour la podaire par rapport a l'origine
a*x® + b*y = (2* + y*)>
Exemple 2. Pour la parabole
| p (W + v?) = 2u,
rapportée a son foyer, on obtient la podaire

gy . 2P ou r——

RN ity

(Xl

Ezemple 3. La lemniscate
(@ + ) — @@ —y) =0
est la podaire de I'hyperbole équilatéere

a® (u* —v*) = 1.

24. Courbes équidisiantes. Lorsqu’on porte des deux cotés
des points d’une courbe donnée sur les normales une lon-
gueur constante /&, 'ensemble des points ainsi obtenus forme
une nouvelle courbe (qui dans certains cas peut dégénérer
en deux courbes différentes) qu’on appelle courbe équidis-
tante de la courbe proposée. Elle peut aussi éire considérée
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comme l'enveloppe d'un cercle de rayon k£ dont le centre
se meut le long de la courbe donnée. De ces définitions il
suit immédiatement que les tangentes en des points corres-
pondants des deux courbes sont paralléles. C’est cette pro-
priété qui servira a établir I'équation de la courbe équidis-
tante en coordonnées tangentielles.

1

]/u‘ + v?
distance de l'origine & une tangente quelconque (u,v) de
cette courbe

est la

Soit f(u,v) = 0 la courbe donnée. Sig =

(1) exk = 2 + i = S

IR R e
sera la distance de l'origine a la tangente correspondante
(U,V) de la courbe équidistante. Comme ces tangentes sont
paralléles, on a de plus

(2) v =5

En résolvant les équations (1) et (2) par rapport & % et v on
trouve

U

R =
"T

1F kYU v

{ )

En conséquence, pour obtenir 'équation de la courbe équi-
distante, il suffit de remplacer dans I’équation donnée u et v
par les valeurs trouvées.

Ezemple 1. Si V'on fait les substitutions indiquées dans
I'équation de la circonférence de rayon r et du centre («,p),

(eu + pv 4 1)* == r* (v*+2?),

il vient
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(U 4+ BV + 1 ¢ k YU Vo) = r2 (U2 4-V¥)
ou '
(eU + BV + 1)t = (r == k)* (U* 4+ V¥),

ce qui représente deux circonférences concentriques des
rayons (r =+ k).

Ezemple 2. Pour T'ellipse a*u* 4+ b*v* = 1 ou

coS sin
¥ 4 s B g .
a b

on trouve

U __cosg V __sing
LFEkyUe+v: ¢ "1FhkyTfv" & °

d’ol1, en éliminant 'angle ¢
U+ V= (1 Fk YU F VI

Remarque. Afin de faire un travail un peu complet, tout
en conservant le cadre limité de ce mémoire, il a fallu abor-
der le probleme des courbes équidistantes, bien que cette
partie du mémoire, comme du reste plusieurs autres qui ont
été ajoutées dans le méme but, n’offre absolument rien de
nouveau. Pour plus de détails, on renvoie le lecteur & I'ou-
vrage, cité déja plusieurs fois : Salmon, Higher pl. curves.

25. Probléme analogue a celui des trajectoires. La tra-
duction du probléme des trajectoires isogonales en coor-
données tangentielles donne lieu au probléme suivant qui
ne manque pas d’'intérét : Etant donné un systéme de
courbes f(u,v;a) = 0, ol a signifie un parameétre variable,
trouver un autre systéme F (w,v;,C) =0 tel que chaque
courbe de l'un des systémes ait au moins une tangente
(réelle ou imaginaire) commune a chaque courbe de l'autre
systeme et que les rayons vecteurs des points de contact
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(ou le prolongement de I'un d’eux) fassent entre eux un
angle constant 2, en sorte que pour un observateur & l'ori-
gine qui regarderait simultanément les deux points de con-

tact des tangentes communes, I’angle des rayons visuels soit
toujours le méme.
Soit F(u,v, ‘é—";) —0

I'équation différentielle du systéeme de cour-
bes donné. On en tire

Or, pour les courbes cherchées on doit
avoir

du tge +1tgp _ —o(u,v)+tgp
1 —tgetgd ™ 14+ ¢ (u,v).tg8"

L’équation différentielle du systéme de courbes cherché est
par conséquent

du ¢ (u,v) —tgh
dv 14+ ¢(u,w).tgs”

L'intégrale générale de cette équation résout le probléme
proposé.

Dans le cas particulier 8 — 90°, I'équation différentielle
des courbes cherchées prend la forme simple

du 1

— —

dv @ (ue)’

Exemple. On demande de résoudre le probléme énoncé
pour les paraboles confocales avec l'origine comme foyer
commun
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Qu
2 & . <l
1) @ 4+ "= p
et 8 = 90°.
L’équation différentielle du systéme donné étant
U __
dv = v*—u?’

celle des courbes cherchées devient

du 2 — y?

dv — Qur

L'intégrale générale de cette derniére est

" e __2v
2) w4v= T
On reconnait aisément que ces courbes sont identiques, a
I'inversion des axes pres, avec les courbes données.
Comme les équations (1) et (2) sont satisfaites pour
u — v — 0, la droite a 'infini est une tangente commune a
toutes les courbes. Deux courbes quelconques des deux sys-

témes possédent en outre la tangente commune

2a 2CG

RN LRy o

sa direction est donnée par

tgr—— 2= 2
A N v

Lorsque a — C, il vient w = v, c'est-a-dire la tangente
commune a deux courbes correspondant & la méme valeur
des paramétres a et C, fait I'angle v — — 45° avec l'axe
des X. On peut observer encore que ses points de contact
se trouvent sur les axes coordonnés. (Pl. 25, fig. 9.)
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B. Coordonnées tangentielles polaires.

26. La longueur ¢ de la perpendiculaire abaissée de 1'ori-

/-
7=
perpendiculaire avec 'axe des X, déter-
minent complétement la droite. En raison
de ’analogie qui existe entre cette maniére
de fixer la position d’une droite et celle qui
consiste & déterminer un point par ses
coordonnées polaires, il parait convenable
d’appeler g et ¢ les coordonnées tangentielles

gine sur une droite g -+ 1 et l’angle ¢ que fait cette

Fig. 10. polaires de la droite - + % — 1, savoir ¢

son rayon vecleur et ¢ sa déviation.

La transformation des coordonnées tangentielles rectili-
gnes en coordonnées tangentielles polaires est donnée par
les formules

0 1
0= = — =,
cos ¢ u
b= — s :
sin @ v
d’ou
__ cosg
- 0
(1) sin
v — — @
0
et la transformation inverse par
® |
= OSg:—-—u—— sing—— —— Y gy — 2
V'uﬂ_i_?ﬂ ]/u2_|_,v2’ Vu2+ 2’



41 sgp. ETUDE DES COURBES PLANES BULL. 433

L’équation ¢ — const. représente une circonférence du
rayon ¢ comme l'enveloppe de toutes ses tangentes. L’équa-
tion ¢ — const. signifie un point & l'infini dans la direction
perpendiculaire & ¢. On peut envisager ce point comme I'en-
veloppe de toutes les droites perpendiculaires & la direction ¢.
Les deux équations ensemble déterminent par conséquent
(le signe de ¢ étant donné) une tangente particuliére de la
circonférence.

En faisant les substitutions (1) dans 1'équation

ur + vy +1 =0,
il vient
(3) xecosyg + ysing — o
et si I'on pose encore
X =rcosy, y =rsny,

ou r et y sont les coordonnées ponctuelles polaires du
point (z,y) :

4) rcos (Y — ¢) = p.

Les équations (3) et (4) représentent indifféremment soit
en coordonnées tangentielles un point (z,%) ou (r,y), soit
en coordonnées ponctuelles une droite (o,¢), suivant qu’on
y regarde xz. et y, r et ¥ ou ¢ et ¢ comme constants.

Lorsqu’il existe entre ¢ et ¢ une équation f(o,¢) =0, les
équations (3) et (4) représentent pour chaque couple de va-
leurs de ¢ et ¢ une droite; I’ensemble de ces droites enve-
loppe une courbe F (z,y) =0 ou @(r,y’) =0 dont I'équation
en coordonnées tangentielles est précisément f (o,¢) = 0.

Si, au contraire, on envisage z et ¥, r et ¥ comme para-
metres variables, liés entre eux par les équations F (z,y) =0
ou @(r,y) — 0, les équations (3) et (4) donnent pour chaque
couple de valeurs de x et ¥ ou de r et v, un point, et I'en-

semble de ces points forme un lieu géométrique, savoir
F(z,y) =0 ou @(r,y) =0.
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27. Transformation des coordonnées ponctuelles en coor-
données tangentielles polaires el vice-versa. Soit

f(o,9) =0

I'équation d'une courbe. Une tangente quelconque de cette
courbe est donnée en coordonnées ponctuelles par

(1) xcosy + ysing — .

En différentiant cette derniére équation par rapport & ¢, on
obtient pour la {angente infiniment voisine

2 —zsing +ycosgp — —.
() P+ yLEg = o
De (1) et (2) on tire les formules de transformation
do .
F=reoiy = gcosgp———@smgo,
de

y:rsinzp:gsingp—l—d—ggcosq:,

o sin ¢ +3—;cosgp
—=lpw= do g
Qcosgo-—@ sing

do\?
2 2 hat ol
T*_Q +(d(p)'

Dans ces formules ¢ est considéré comme fonction de ¢; en
conséquence, il suffit d’éliminer des deux premiéres équa-
tions le parameétre ¢ pour obtenir I'équation de la courbe
sous une des formes F(z,y) = 0 et @(r,y) = 0.

Lorsque la courbe est donnée en coordonnées ponctuelles
rectilignes

SRR

F(z,y) =0
I’'équation

(1) ﬁxcosgo+ysinqa:g,
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interprétée en coordonnées tangentielles, représente un point
de la courbe. Le point infiniment voisin satisfait a I'équation

. dy
3) cos ¢ + smgp-gz—c—._o.

De ces deux équations il suit

[ g — d_y

< \/1 dy)
__dy

\ cotggo_—d—x.

En éliminant z (y étant considéré comme fonction de z) de
ces derniéres équations, on arrive a I'équation f(o,¢) =0
de la courbe en coordonnées tangentielles polaires.

Enfin, si I'on veut passer des coordonnées ponctuelles
polaires aux coordonnées tangentielles polaires, on partira
des équations

reos (Y —¢) = o,

dlpcos(w—tp)u—rsm(w—q/)_o

desquelles on tire
f r

Pour les applications qui vont suivre, il sera utile d’établir
les équations en coordonnées tangentielles polaires de quel-
ques courbes bien connues.
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Coord. ponect. ; ) Coord. tg. pol.
1) Le point.
T=a,y=2~=b, ou

au +bv+1=0 . . . . . o=acosg+ bsing.
2) La ctrconférence.
(—a)P+ (y—p)P=a*>. . . . o=a-+acosg+ Bsing.
3) La parabole.
y’:%p(g——x) €« ® % & W gcosgp:-ép.
4) Lellipse.
—=+55=1. . . . . . . ¢=Va*cos’p+ b*sin’y.
5) L’hyperbole équilatére.
2 —y* = a? . v v . . e=aVcos2¢.

6) La: spirale logarithmique.
r=ekt . . . . . . . . . p—cosIded+tIBI

ou % — arctg k.
7) La développante du cewle
| £ = a (Acosi — sin 4) .
z y—a(isind+cosd) * * * - ¢—49
8) La cycloide.
\ £ — a(cosi—1) .
;y:a(l—l—sinl) v v v . 0=2agsing.
9) L'épicycloide.

b

( Yy = acosl-—Hbcos% A

ou le rayon du cercle fixe — (a— b) et celui du cercle mo-

bile — b. Lorsque b est négatif, la courbe devient une hy-

" 3 1

pocycloide, par exemple pour a = 16 b—= — 1°
10) L’astroide.

‘w:——asinl—i—bsingl '
\- 0 =@ +)sin(2279),

gw:_—_ccosal —lcsin")
) y—=csin®1 ®=73 =9
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Observation. On reconnait immédiatement que sif(0,¢) =0
est 'équation d’une courbe en coordonnées tangentielles po-
laires, f(r,1) = O sera celle de sa podaire par rapport a I'ori-
gine. En d’autres termes : Le probléme de trouver I'équation
d’une courbe en coordonnées tangentielles polaires est iden-
tique avec celui de trouver en coordonnées ponctuelles po-
laires la podaire de cette courbe par rapport a l'origine.

Interprété a ce point de vue, le tableau précédent donne
les podaires des courbes dont il y est question.

28. Interprétation géométrique de la dérivée é% . Asymp-

totes. De I'équation

2
=er
il suit que la valeur absolue de % est un coté d'un triangle
rectangle dont I'hypoténuse est le rayon vecteur r du point

de contact et 'autre coté le rayon vecteur ¢ de la tangente

(0,9) (fig. 10). La dérivée (%i mesure par conséquent sur la

tangente la distance du pied de la perpendiculaire ¢ au point
de contact. Vu de l'origine, le point de contact se trouve a
gauche ou a droite de la perpendiculaire ¢, suivant que la
valeur absolue de ¢ augmente ou diminue avec les angles
croissants.

La tangente (o,¢) est une asymplote toutes les fois que g—;

devient infiniment grand, sans qu’'on ait en méme temps
0 — oo,

29. Les coordonnées tangentielles se prétent facilement a
la résolution de certains problémes élémentaires tels que les
suivants : 1) On demande une courbe pour laquelle la dis-
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tance du point de contact d’'une tangente quelconque au

pied de la perpendiculaire, abaissée de l'origine sur cette

tangente, soit une fonction donnée F (o,9) de o et ¢.
L’intégrale de I'équation différentielle

fournit la solution.

2) On cherche une courbe telle que le_rayon vecteur du
point de contact d’'une tangente (¢,9) fasse avec celui de la
tangente un angle qui soit une fonction donnée F (o,9)
de ¢ et ¢.

Comme tg(y— ¢) :%a‘%, ce probleme conduit a I'é-
quation différentielle
| 1 dg
= tg [F (o,
cdg — &L (el

3) On demande une courbe telle que le rayon vecteur du
point de contact d'une tangente (o,9) soit une fonction don-
née F(o,9) de ¢ et ¢. Ce probleme exige la résolution de
I'équation différentielle

Flog) =1/¢ +( sv)

Exemple 4. Trouver une courbe pour laquelle la distance
du point de contact d'une tangente quelconque au pied de
la perpendiculaire abaissée de l'origine sur cette tangente
soit constante — a.

On obtient immédiatement

Ete.

d’ou 'g = a¢g + C. (Développante du cercle.)
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Exemple 2. On veut que cette distance soit toujours = ne.

Alors il vient
do
dy
o — Cer¢. (Spirale logarithmique).

— nho,

Ezemple 8. On cherche une courbe pour laquelle ¥ = ng.
Dans ce cas on est conduit & I'équation différentielle

ldo
E dq) s tg (n“ l)fp’
dont l'intégrale est
_ C
¢ — 23

Veos(n—1) ¢
Pour n =1 celte équation représente la circonférence o =C,
pour # —2 une parabole, rapportée a son foyer.

Exemple 4. Quelle est la courbe qui satisfait & la relation
r—=mno? |

La réponse est donnée par l'intégrale de I'équation diffé-
rentielle |

savoir par

¢ Ynt—1

o = Ce . (Spirale logarithmique).

30. Différentielle de Uarc. Angle de conlingence. Rayon de
courbure. En différentiant les équations (Cf. n° 27)

X == 0 COS do sin
— @CosS ¢y dg ¢,
; do
y:gsm(p-}—dgocosgo,

par rapport & ¢, on obtient
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dr — )smwdtp,

dy = (g+d¢) cosg d g,

d’ou il suit pour la diﬁérentielle de Uarc

ds = V@ ¥ @F = e + 7%

Comme 7 = 90° + ¢ (fig. 10), lUangle de conlingence est
dv = dg.
Pour le rayon de courbure R, enfin, on trouve I'expres-
sion simple

ds d?o

B = T=e - L
Un observateur, placé au point de contact d'une tangente
(0,¢) de maniére a avoir le point infiniment voisin devant
lui, aura toujours le centre de courbure & sa gauche. En
d’autres termes : Le centre de courbure se trouve du méme
coté de la tangente que origine ou de I'autre coté, suivant

que ¢ et R sont du méme signe ou de signes différents.

Ezemple 1. On demande une courbe dont la longueur de
I'arc s, compté a partir de ¢ — 0, soit proportionnelle au

rayon vecteur ¢ avec la condition que pour ¢ =0 gi =l 1 )

= I® £
Comme s__f (Q+dgo’) dg, ona

f?(e + dag) dgp —no,

d’ou par différentiation

d*g__ do
9+d¢ ndq)
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Pour intégrer cette équation différentielle linéaire, nous
distinguons trois cas :

1) n> 2. Dans ce cas 'intégrale devient

0 = AeMv + Bels,

i 2, ____n+V'n’ 4 2 _n——]/n—m-df

: ’ 2
Les conditions initiales donnent pour la détermination des
constantes arbitraires A et B

A+B=0, {4,A + 1,B = a,

d

dou AIWB:H’

en sorte que 'équation de la courbe demandée est

3

s — (e*11— ghe¥),
e ( )

2) n << 2. L’intégrale générale de I’équation différentielle
est dans ce cas

=2 [Acos_]./io___qﬁ—l—Bsin@_@:’ﬁgp].

En introduisant les conditions initiales, il vient

A=0, B___._Q_“_._u

J & — nt

La courbe demandée a donc I'équation

e ’
—?—(—l———. e’ sm]’4
e ,2

q' .

3) n = 2. Dans ce cas la résolvante de I'équation diffé-
rentielle possede une racine double. Par conséquent I'inté-
grale est de la forme

¢ = ¢? (A + Bo);
29
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par suite des conditions initiales on a

A=0, B=u,

de sorte que |
0 = age’° .

Ezemple 2. On cherche une courbe pour laquelle s = %a’gp’,
avec les conditions initiales ¢ — 0, o = ':f% — 0,

Ce probleme conduit a 'équation différentielle

d*o -
dgj! + Q o a?’

dont l'intégrale générale est
0o =agp + Acosg 4+ Bsing.
Pour qu’elle satisfasse aux conditions initiales, on doit avoir
A=0,B=—a.
Par conséquent la courbe demandée a pour équation
o — a(p—sing). (Développante du cercle.)

Ezemple 3. Trouver une courbe dont le rayon de cour-

bure soit proportionnel au rayon vecteur ¢.(R = np).

Comme R = ¢ + g;{i , 1l s’agit de résoudre I’équation dif-

férentielle
de __

i — (n—1)e.

Suivant que 1) n >1, 2)n<<1, 3) n =1, l'intégrale devient
1) Q:Ae? Vn—1 +Be—?VhT—_l,
92) ¢ = Acos(¢})/1—n) + Bsin(¢}V1—n),

3) o—=A¢g + B.
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Dans le second cas la courbe est une épicycloide, par

8 . .
exemple pour n— g une cardioide, pour n» = — 3 une as-

troide, dans le troisitme une développante du cercle et pour
A — 0 une circonférence.

31. Relations enire une courbe et sa podaire. Si f(o,p) =0
est I'équation d’une courbe en coordonnées tangentielles
polaires, on sait que f(g,¢) =0 peut aussi étre envisagée
comme 'équation en coordonnées ponctuelles polaires de la
podaire par rapport & l'origine de la courbe considérée.
(Cf. n°27.) Or, la normale N et la sous-normale S, polaires
d’une courbe sont respectivement

d’ou il résulte le théoréme : La normale polaire en un point
quelconque P de la podaire d’une courbe
est égale au rayon vecteur r du point cor-
respondant P’ de cette courbe et la sous-
normale de la podaire au point P est

égale aad—; savoir égale a la distance

PP’ (Cf. n° 28).

En appelant o 'angle que fait la nor-
male au point P de la podaire avec le rayon vecteur ¢ de
ce point, il vient

Fig. 11,

| d
w:gu——q:,cotgw:cotg(tp———gp):g-ag.

Moyennant ces théoremes la normale et la tangente de la
podaire peuvent facilement étre construites.
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Le rayon de courbure R au point P’ de la courbe pro-
posée étant (Cf. n° 30)

d?o
R=0o+ i

et celui de la podaire au point correspondant P

BR'=

9[9’+(g—§;)2]—— ¢ (9+g:f,) - 2 —eR’

il existe entre les deux rayons de courbure la relation li-
néaire

1]

r

R_ o
r? o= '
2 ——R 2——R
¢ ¢

?12

- §y
bJ

r 0

9" — R

Rf

Par conséquent, R étant connu, R’ pourra étre construit
moyennant une quatriéme proportionnelle et réciproque-
ment. '

Observalion. On peut remarquer que R’ devient infiniment
2
grand, lorsque 2 -%- — R = 0. Une courbe qui satisferait en

tous ses points a cette derniére condition, aurait pour po-
‘daire une droite. Or, on sait que la parabole, rapportée a
son foyer, est une pareille courbe. Afin de savoir s’il n’existe

pas encore d’autres courbes jouissant de la méme propriété,
2

intégrons équation différentielle 2°— —R =0 ou

0
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dg\?
2 S—
¢ +(dgp) — a4 dto
0 o dg*
En la mettant sous la forme

2.

!/

d(%) - o

"_':.'1+(%,—)2,011Q T ey

on obtient d’abord l'intégrale premiére

¢ — ¢, = arcig (-‘;—) ou £ =tgly—g¢,),

et ensuite l'intégrale seconde

log % — — log cos (¢ — ¢,)
qui peut s’écrire
G
0o — .
cos (¢ — @)

On reconnait par 14 que la parabole est la seule courbe
qui jouisse de la propriété indiquée.

2
L’équation % = %— permel une construction trés simple

du rayon de courbure de la parabole. (Pl. 24, fig. 10).

32. Awe d’une courbe. En différentiant I’équation

cos(y — ¢) = % (Cf. n° 27),
il vient
—sin(y—¢) (o —dg) =d (£),

d’ou 'on tire
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_ r dg “do
W T Eme—y e A
dg - dg
dr do do d% d*e
dzp—gﬁd _0 dq>+dgo dgo’d_g(9+dgo’)d .
r _t_i_g_ = , do ¥ = r? ¢ =
dg do
= 08
=3 deg.

La différentielle de l'aire A d’une courbe en coordonnées

ponctuelles polaires étant dA — é— r*dy, on a

I 1/, d*o
dA=gr dtp.__;z;—nggo_é-(Q +9d—¢) dg.
Si I'on désigne par A, l'aire de la podaire de la courbe
considérée, en sorte que

1
dAi —_— :o): gg d@ ’
il suit
dA_R
dA, " o’
Lorsque ce rapport est constant = n (Cf. n° 30) et qu'on a

soin de prendre les intégrales entre les mémes limites, il est
évident que le rapport des aires des deux courbes est le

" . A
méme, savolr — — n.
Ay

C’est ainsi qu’'on trouve par exemple que l'aire de la dé-
veloppante du cercle ¢ = ag est égale a celle de la spirale
d’Archimeéde ¢ = ag, si toutefois on compte ces surfaces a
partir d’'une couple de points correspondants jusqu’a une
autre couple de points correspondants. (Pl. 25, fig. 11.)
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33. Polaires réciprogues. On a vu (Cf n° 22) que le pole
d’une droite (o, ) par rapport a la circonférence ¢ — 1 est

situé a la distance% de lorigine sur la perpendiculaire,

abaissée de l'origine sur cette droite. Par conséquent, si
f(e,9) =0 est I'équation d’'une courbe en coordonnées tan-

gentielles polaires, f (3—,(,0) — 0 sera l'équation en coordon-

nées ponctuelles polaires de la polaire réciproque de cette
courbe par rapport a la circonférence ¢ — 1.

EXEMPLES.
Courbe donnée Polaire réciproque
en coord. tg. pol. en coord. ponet. pol.

1) La circonférence.
 (— 1
e=a . . . . . ... 0= (Circontf. dulayona).

2) L’ellipse.
. 1
Q—*Va*cos"ga—i— b*sin*g

; r 1
(Ellipse aux axes " et 3) :

0= ]/a*cos”cp + b*sin®g

3) La parabole.
0COSQp — L p —gcos @. (Circ.du rayon 1
=3 Y =5 . . o
passant par l'origine.)

4) L’hyperbole équilatére.

0= — 1 ~ (Autre hyp.
a) cos2 ¢ équil.)

o—a ]/rcosﬂgp

5) La développante du cercle.

PEEAE. « 2 = = v » & gza—lg; (Spir. hyperbolique.)
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6) Courbe dont la podaire est une spirale hyperbolique.

—4 P s s a
p == G U M e m oo T (Spir. d’Archiméde.)
7) Spirale logarithmique.
PEEEY o v s o sox v PE Elx_ e—¢. (Autre spir. log.)

34. Courbes équidistantes. Soit f (o, p) = 0 I'équation d’une
courbe. De la définition des courbes équidistantes (Cf. n° 24)
il suit immédiatement que I'équation d’une courbe équidis-
tante s’obtient en remplacant dans f(¢,9) =0 le rayon vec-
teur o par g4k, en sorte que f (o =k, ¢) =0 sera 'équa-
tion cherchée. '

Si R est le rayon de courbure en un point quelconque de
la courbe f(0,9)=0, R=+F sera celui de la courbe équi-
distante au point correspondant. '

La longueur de la courbe f(0,4) =0 étant

$ :f?’Rdgo,
71

celle de l'arc correspondant de la courbe équidistante sera
' e .
¢ = [T RE Ry = s = kg — 9,

ce gui démontre une des propriétés principales des courbes
équidistantes.

35. Développée n*. Les normales d’une courbe donnée
o = f(¢) étant les tangentes de la déve-
loppée de cette courbe, on peut envisa-
ger la développée comme ’enveloppe de
toutes les normales de la courbe propo-
sée. Or, la normale en un point quel-
conque P de la courbe ¢ =f(¢) est pa-
rallele a la perpendiculaire, abaissée de
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'origine sur la tangente en ce point et la distance entre ces
deux paralléles est égale a a‘% (Cf. n° 28). De la il résulte

qu'en appelant ¢, et ¢, les coordonnées tangentielles po-
laires de la normale en question, savoir d’'une tangente de
la développée, on aura.
_do 1
94—@,%—@—1—-@-”-

Afin d’obtenir I'équation de la développée cherchée, il
suffit d’éliminer le parameétre ¢ de ces deux équations.

En répétant ce procédé on arrive aux équations suivantes
remarquables par leur simplicité

dro 7

Qn-_—-@;,%'——@-l-n-g,

ou ¢ et g, désignent les coordonnées de celle des tangentes
de la développée n**™ qui correspond a la tangente (o,¢) de
la courbe proposée. Par I’élimination de I'angle ¢ de ces deux
équations il vient pour I’équation de la développée ni®®¢ cor-
respondant a la courbe ¢ —=f(¢)

Qn:f”(q)ﬂ——n%).

Ezemple 1. Le fait que la développée n*=¢ de la courbe

e=a+a, 9+ a¢*+ ... +ayg"

est évidemment la circonférence ¢ — a, permet de recon-
naitre qu’en ce systéme de coordonnées toute courbe pour
laquelle ¢ est une fonction entiére de ¢ du degré n, repré-
sente une développante n**®¢ du cercle. Xt °

Exemple 2. Soit la spirale logarithmique
o = Ae?.
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La développée ni*™ de cette courbe, savoir

on = Aared(m—n3)
est identique avec la courbe donnée, mais placée différem-
ment. On peut obtenir la coincidence des deux courbes en
choisissant convenablement la constante a. En effet, si m
désigne un nombre entier, il suffit de tirer a de I'équation

Aea(?—-emn) — Aa® ea(q;—n-;f)
ou O:nloga+a(2m—~—g-)7r

on __ dp

de,  dg

¢» — ¢. Pourvu que m >0 et 4m > n cette équation admet
toujours une racine réelle. (P1. 25, fig. 12.)

qui exprime que g, — ¢ et en méme temps

pour

Exemple 3. Soit la cycloide
o = 2a[sing + (m —g)cosg].
La dérivée ni* de ¢ devient

j; = 2a[(1—n) sm(qa+n ) + (fr-——-go)cos(gp+n——)]

En remplacant ¢ par (¢, —n 2—) dans cette équation, il suit

pour la développée n*®™e
. n -+ 2
on =2a[(1 —n)sing, + (—2_1_— T — P ) COS Py ].

On reconnait sans difficulté que cette courbe ne differe de la
proposée que par la posilion.

Exemple 4. Soit I'épicycloide
. [a+b
0= (a + b)sin (aj_—b q>).
De cette équation on tire

dn il +b)(a+b) sn(a’+z¢+n )
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et en substituant pour ¢ sa valeur (¢, — n g-) , il vient
a4+ b a + b) ¢, — nb
Qn—-(a“l"b)( ax ) [( +a)1b n—]

Cette derniére équation montre que la développée ni*™ de
I’épicycloide est une courbe semblable & la proposée.

36. Développante n*. Par le procédé inverse de celui
qui a servi & déterminer la développée n®*™¢ d’une courbe
donnée ¢ —f(¢), on peut établir I'équation de la dévelop-
pante n®*=e de cette courbe. '

Soient, en effet, o, et ¢ les coordonnées tangentielles
polaires de celle des tangentes de la développante ni*® qui
correspond a la tangente (0,¢) de la proposée.

Alors on doit avoir

do_1 . 7
1_9’@—1'—*9} 9

d'ou l'on tire en observant que
d@—-i — dgp

odg + C,.

Fig. 15. el =

En continuant ce procédé on obtient pour la tangente
(0—n, ¢—n) de la développante n®®e correspondant a la
tangente (o,¢) de la courbe donnée

So_n:@——-?la)—.

=

L’élimination du paramétre variable ¢ de ces deux équations
conduit a I'équation cherchée.
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Ezemple 1. Cherchons la développante ni*® du point
o —acos¢ + bsing.
On trouve successivement :
Pour la développanté premiére

o—1=asing —bcosg + C,,

r
g1 =9¢— ik
d’ol o—1=acos¢_y + bsing_y + C,. (Circonfé-

rence du centre (a,b) et du rayon C,.)

Pour la développante seconde

o_e—asing_y—becosyp 1+ C,¢_1 + Gy,

w

Sp-—g—_—sa-—-‘l“_é- ]

d’ou 0—_3—acos¢_g+ bsing o+ C,¢_as+ C,. (Deve-
loppante du cercle.)

Enfin pour la développante nime

0_n=acos¢_n+ bsing_,+ C,go..n +02¢I;’+
+Cn—{ Sa—n + C‘n .

Exemple 2. La développante premiére de 'ellipse

0 =) a*cos*¢ + bsin*¢
est déterminée par

o— ,_f Y@ cos g F brsinr ¢ dg + C, =aE(h,¢) + G,

ou E (k,¢) signifie, d’aprés Legendre, l'intégrale elliptique

b . (& B
de la seconde espéce en question et k= LT_

)

T

¢—1:¢—§-
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De ces deux équations il suit :
e—1=aE(ky—i +3) + C.

Ezemple 3. Pour la développante premiere de la parabole

a
Q'_"‘.....—._—m-.

~ cos ¢
il vient

3 1 : "
01 —alogtg (In +- 5 ¢—1) + C,.

37. Podaire n®™< d'une courbe par rapport a Uorigine.
Bien que renoncant & 'emploi des coordonnées tangentielles
polaires pour la solution du probléme des podaires nitme  le
probleme lui-méme a paru assez important pour justifier son
insertion dans ce mémoire. La solution pourrait d’ailleurs
se donner avec la méme facilité en coordonnées tangen-
tielles.

Soient r,y les coordonnées polaires d'un point P quel-
. conque de la courbe proposée

P = F () By Wi T o Wagssssa Py Win

les coordonnées des points ho-

mologues P,, P,,...P, respective-
ment de la 1%, 2%, ... n'*™e podaire
de la courbe donnée et soit 9 I'an-
gle que fait la tangente au point
P avec le rayon vecteur r. Alors

on sait que d'une part

o ray
ted =g
et d’autre part (Cf. n° 31)
tgd = Fy iy

'}
dr,
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en sorte que

ilg — dlp
"o — " dr, ”
En continuant ce méme Iraisonnement, on obtient les égalités
dy _  dy, dwg_ _ radyy,
P =T . = Ty Ay ==

qui démontrent le théoréme : En des points homologues les
tangentes des podaires successives d'une courbe donnée font
avec les rayons vecteurs correspondants des angles égaux.
De ce théoréme on déduit immédiatement

r, = r sin 4,
ry — 7,8inJ = rsin*J,
Pp = Ta—tSind — rsin" $¢
T
et tp,,:zp-—-n(-g————éi).
Les deux équations

[ o=
< [\/1 rd(p

Y, —y—mnarctg (%;b)

\

résolvent le probleme proposé. Dans les cas ou I'élimination
du parameétre y est possible, on obtient I'équation de la po-
daire n*e sous la forme F (r,,yn) = O.

Ces équations restent encore applicables, lorsque 7 est
zéro ou un nombre entier négatif. Pour une valeur négative
de n la courbe donnée figure elle-méme comme podaire n'*™e
de la courbe cherchée. Dans le cas de »—0 on retombe
sur la courbe donnée.
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Ezemple. Appliquons les formules précédentes au cas

a
m b )

Y cos my

ou m signifie un nombre positif ou négatif, entier ou frac-
tionnaire. On obtient pour la podaire 7nit=e

T

a e
ry — - —a(cosmy)  m

V cos my [Vl + tg’mlp]
Y= ¢ — n.arctg (tgmy) = (1 —nm) y,
d’ou en éliminant I'angle ¢

m n——
= a [cos Wn m
1—am

Cet exemple donne lieu & de nombreux cas particuliers.
Considérons-en quelques-uns.

4* cas particulier. Soit m — 1; alors la courbe donnée

_a
T cosy

est une droite parallele & 'axe des Y. Sa podaire n®*=¢ a
I'équation

n—1

rn = @ [cos Yn ] .
1—n

Cette formule devenant inapplicable pour n =1, ce cas doit

se traiter directement. On trouve
La podaire premiere de la droite est par conséquent un point

sur 'axe des X.

: . 1
n =2, r,—=acosy,. (Circonférence du rayon > a passant

par le pdle.)

n =3, r; = =a(l+ cosy;). (Cardioide.)

O] =
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1 ”
n—4,r, = a(cos 3 ),

a 2a
n—=—1,r_,= . (Parabole.)
(COS 1 1)9 1 4+ cos_y

R= — 2, Py ——e (PL. 25, fig. 13.)

(cos 5 W)’

2% cas particulier. m — 2.

P = e . (Hyperbole équilatére.)
]/cos 2y Y
2, n—%
P 5 [cos ( 1 _"U%)] .
n=1,r, =a} cos 2y, (Lemniscate.)
. . .

n=2,1,=alcosz )",

&

n——1,r_1= 5 - (P1.25,fig. 14.)

cos % rp_1)é

On peut remarquer que deux hypothéses m —u et m —=»

amenent les mémes suites de courbes, lorsque n = i — -1-
v |0
: 1
est un nombre entier. Par exemple uw =1, » = 5
4
=3, v—= 3

Remarque. Les rayons vecteurs », »,, 7, ... 7, formant
une progression géométrique, et les angles correspondant

Y, Y — ( =) th— Q(““—‘) -?/J—n(g#{i) une
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progression arithmétique, il est évident que les points
P,P,,..P, d'une courbe donnée r—f(y) et de ses n po-
daires successives sont situés sur une spirale logarithmique
dont I'équation est

(v — DPlogsin g
5
R=r.e *

ou R et ¥ désignent les coordonnées courantes et ou

J — arclg ( (j;b)

38. On propose de trouver une courbe dont la podaire
n'*™ soit une courbe semblable par rapport a l'origine prise
pour centre de similitude.

Il y a trois cas a distinguer.

1 cas. La similitude est telle que les rayons vecteurs des
points homologues sont proportionnels, savoir r, — m».
Dans cette équation m doit évidemment étre un nombre
fractionnaire.

Soit » = f(y) I'équation de la courbe cherchée. La fonc-
tion f(y) doit alors satisfaire a l’équation différentielle

VAT

_._'-—\ n-—l dt’b

L’intégrale générale de cette équation est

d’ol1 I'on tire

- _¢\/m n—1.

ou

Vs
P mT n—A1

"
30
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En posant pour simplifier Vm n— 1 =tg w, I'équation de
la courbe cherchée devient

celle de sa podaire nitme

frn — C COS n e (&;ln -F-‘n.tu) \g m.

Ces deux courbes sont des spirales logarithmiques identi-
ques, mais placées différemment. En tournant la premiére

d’un angle

Y, = ncotgw [wigw 4 log cos w]

autour de l'origine dans le sens des angles décroissants, on
peut amener la coincidence.

Il est presque inutile d’ajouter que pour m — 1 on obtient
la circonférence r = C.

2% cas. On demande que la similitude soit directe avec cor-
respondance arbitraire des rayons vecteurs proportionnels.

Si dans ce cas r=f(y) est I'équation de la courbe cher-
chée, celle de sa podaire n®*m¢ aura la forme

rn = mf(l,vn + 1“)1

ou m et u sont des nombres réels quelconques. Pour la pre-
miére de ces courbes on a

i (w)
tgd =5
| )
et pour la seconde

’ff(n""*' Wn)’

Or, en des points homologues qui correspondent a

Y=, Y=y —n. arctgf((w)),

tg 9 =
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on doit avoir 4’ = & (Cf. n° 37), d'ou il suit I'équation

[ ()
/@) _f[”“” " ]
| 7@)
a laquelle on peut satisfaire par l’hypothése
S _
Pt

ou k désigne une constante. L’intégrale générale de cette
derniére équation différentielle étant

logf(l’b) = =+ ky ou r = f(y) = Ceik‘;‘,

on reconnait que la courbe cherchée sera encore une spirale
logarithmique. La constante & se détermine moyennant la
condition qu’en des points homologues on ait (Cf. n° 37)

CeTH
"V A
[\/1 -I- ] V{1 + £
edlp
ou
mceiki?-'i'k?"“narclg(ik)} 5 Ee_i}in,
V(+ )
d’ou il suit
meik ;—unarctg(-]-;) _“-E__R,
V({1 + k)

et en prenant les logarithmes

L

log m 4=k (1w =F narctg k) + log 14+ F)=0.

- - * f-*__‘gf - L]
Si 'on convient de prendre le radical } 14 A* positivement,
m devra aussi étre un nombre positif.
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Discussion des deux équations

(1) logm + k (u—n arctg k) + & log (1 + &) = 0,

@) logm — k (u + n arctg k) + g—log (1 + k) =o0.

Comme (2) s’obtient de (1) en changeant £ en — k&, il est
clair que si les deux équations possédent des racines posi-
tives, elles admettront aussi des racines négatives. Il suffira,
en conséquence, de constater dans les différents cas 1'exis-
tence ou I'absence de racines positives.

Considérons d’abord Y'équation (1)

F(k) =logm + k (u — n arctg k) + gilog 1+k) =0,

en n'admettant que des valeurs positives de n. Comme

J (k) = p — n arctgk
) g B
s'annule pour £ = tg - et que

n

F®=—1rp

la fonction (k) posséde un maximum pour k — g i—:
Soit maintenant 1) m > 1, ©« > 0. La valeur initiale

f(0) = log m étant positive, le maximum
log m + g- log (1 4 tg? %)

le sera aussi. Pour que la fonction puisse devenir négative,
T
‘5 .

—

w doit satisfaire a la condition u<<n Alors T'équation

possede une seule racine positive.
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2) m <1, > 0. La valeur initiale est négative. Pour
que le maximum soit positif, il faut que

g log (1 4 tg* %) > —log m, ou u > n arccos }/ m.

T
— en sorte que

Si on prend encore u < n 3

n
7T
G)—>%>arccos Vm ,
ce qui est toujours possible, I'équation posséde deux racines

n
positives qui dans le cas limite w = arccos }'m coincident.

3) m>1, u<<0. La valeur initiale est positive. La fonec-
tion décroit jusqu’'a — oo. Par conséquent il existe une seule
racine positive, sans que p soit soumis & une condition de
limite.

4) m<<1, n<C0. Ce cas difféere du précédent en ce que
la valeur initiale est négative, d’ou il suit que I’équation (1)
n'admet point de racine positive.

Si 'on applique le méme raisonnement a 1’équation

(2) f (k) =logm — k (u + narectg k) + g- log(1+4%*) =0,
on trouve

1) m > 1, > 0. Une racine positive; u sans condition.

2) m <1, u>0. Point de racine positive.

Iy m>1, u<<0, —u<<n ;—r— . Une racine positive.

T

4y m <<1, n<< 0,5->—-%>arccos]/n7. Deux raci-

n
nes positives qui coincident a la limite —u —=mnarccos } m.
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Remarque. Afin d’obtenir, pour la construction, des cour-
bes dont on connaisse la forme a I’avance, il est plus simple
de choisir & et de calculer u. C’est ainsi que pour

1
n..._l,m._-g-, k=—1

on a trouvé u = — 1,1319718... = — 64° 51" 26" et par la
suite

r—Go—t, 1, = %Cewm--——w, (PL 25, fig. 15.)

tandis que les hypothéses

1
n=2, m=4, k=—
- 6
donnaient
p = — 1,8522151...— — 106°7' 27",
K2 ¢—1,8522...

r—Ce'%, r,—4Ce Y* . (PL25,fig.16.)

3™ cas. On demande que la similitude soit inverse.

En suivant un raisonnement analogue a celui qui a été
employé dans le second cas, on trouvera que la circonférence
seule répond a toutes les conditions du probléme.

39. Comme derniére application des coordonnées tangen-
tielles polaires on pose le probleme : Trouver une courbe
dont la développée ni*™ soit une courbe semblable par rap-
port & l'origine prise pour centre de similitude. |

Ce probléme a beaucoup d’analogie avec un probléme
plus général concernant les développoides qui a été traité
récemment par M. Haton de la Goupilliére dans son mé-
moire : Recherche sur les développoides des divers ordres.
(Annales de la Soc. sc. de Bruxelles, 2¢ année, 1877.) Aussi
n’en donnons-nous ici la solution qu’a titre d’application in-
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téressante des coordonnées tangentielles polaires. La perte
de généralité provenant de ce qu’'on a disposé d’avance du
centre de similitude, trouve en quelque sorte une compen-
sation dans l'avantage que la solution proposée se préte a
la construction sans intégration préalable. Quant au mode
de solution, nous ne saurions mieux faire que de suivre I'a-
nalyse élégante de M. H. de la Goupilliére.

I convient de distinguer les cas de la similitude inverse
et de la similitude directe, tout en laissant arbitraire la cor-
respondance des rayons vecteurs proportionnels.

L Similitude snverse. Soit o =/ (¢) I'équation de la courbe
cherchée. Celle de sa développée ni*™ aura la forme

on = mf(u—¢n),

ou m et p signifient des nombres quelconques positifs ou
négatifs. Or, on sait (Cf. n° 35) qu'en des points correspon-
dants on doit avoir

do | v
Qn:W1 gﬁn:SDfl-n'Q--
Si donc on donne a ¢, la valeur ¢ + n ;j, il vient

(1) en=/"(¢) =mfla—ng—9),
et en différentiant cette équation encore n fois
T

2) ffrp)=éemfr(u—ng

ou ¢ est mis pour — 1. C’est une équation aux différences
mélées. Pour la ramener a une équation différentielle ordi-

'*—99)1

- Tr [ ]
naire, remplagons ¢ par p — 1 ;- — ¢, ce qui donne

fir(p—ng —¢)=e"mf"(¢)
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et moyennant (1)

firp—ng—g)=e m*f(u—nz —¢).

i

En remplacant de nouveau u — n g — ¢ par ¢, on obtient

I'équation différentielle linéaire de 1'ordre 2n

3) f*(9) = e*m*f(9),
dont I'intégration n’offre aucune difficulté.
En effet, la résolvante de (3) est

At — g — emim?, ot i =)/ —1.

On en tire
n

b = resd, r =} [m],
ou [m] désigne la valeur absolue de m et

2 (k—1
ak:n+ 253 )ﬂ'.

L’intégrale générale de I'équation (3) est par conséquent
2n

o =Jf(¢) = :’Akelk?.

En observant que Ay.— — 4., lorsque k" = n 4 k', on peut
écrire
(4) o= 2 (Axe™? 4 Bye—v),
1

Or, l'intégrale (4) devant satisfaire non-seulement & ’équa-
tion (3), mais aussi a I'équation différentielle (1) qui est de
Pordre m, il s’ensuit que n des constantes A, et B, ne sont
pas arbitraires. L’équation (1) servira a les déterminer. En
y remplac¢ant f(¢) par la valeur trouvée, il vient

Sy (A et + e Bye—w) =
1

n - .
— m I [AgeXlr—n5—¢ 4 Bye—M(r—nz—9],
1
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Dans ces deux sommes les termes d’indices différents ne per-
mettent plus de réduction entre eux, on peut donc se borner
a comparer les termes généraux, ce qui donne

Al (AgeMs 4+ enBye— ) =
— m[Ageixlr—n3) g—he | B,e——n3) ent],

ki

n

A, = mBye= * (r—nJ)
.n T
LBy — m Aye'x (r—nz),

De 'une ou de l'autre de ces derniéres équations il suit

n

A . =
B.—ZLenla—n)) A,.
k= m > k

A _ [m]
m  m

Comme AL U

on a maintenant

P %Ak [e*xe 4 gnak’i+1k(|»—-ﬂg—-?)],
1
ol I'on prendra le signe supérieur ou le signe inférieur, sui-
vant que m est positif ou négatif.
Afin de faire disparaitre 'imaginaire de l'intégrale ¢, il
faut distinguer les cas de n pair et de n impair.
a) Lorsque n est un nombre pair, chaque terme de la

n

somme = est accompagné d'un terme conjugué, sauf toute-
1

fois les deux qui correspondent a k£ — 1 et & k= :)-3- + 1.

Si 'on considere ces deux {ermes en premier lieu, on a

1 1zd .
= g 7, La—=rez™ —=1m

et a o= S —re™ = — 7.

n41 2n+i

)=
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Par conséquent, le premier terme de la somme devient
A, [ems = ebig—rvi] —
— 2A, [(cosrg + isinrg) = e¥ (cosrg — ¢ sinrg)] =
= 2A,[(1 = e¥) cosrg 4+ ¢ (1 = e?) sinre],

‘ 7w
ou f=ng+r(u—n ;—r).

Soit, pour simplifier
| 2A, (1 e¥) =C,

d’ou
G 1=ed
9 9 Py =
2A, = o 21A, (175 et) =1C. Toew
Clg 1
L, e~ M o ea¥ 8y #
—1C0.—— — = )
e” ¥ + o2¥ — Ccotg = 8

suivant qu'il s’agit des signes supérieurs ou des signes in-
férieurs.

En introduisant ces valeurs, le premier terme prend la
forme

| ——C— cos (r¢ — = ﬁ)
1 1
*2— COS -—ﬂ
C [cos 7'50

— cotg

sinre ] =
C . 1
B — —7—sin (W—Q B),

\ Slﬂé‘ﬁ

B
1
2

ou si I'on modifie encore la constante arbitraire

1
( cos (e — L)
=5 0,

; d
sin (r¢ — é—ﬁ) ;
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Le terme correspondant a l'indice (%n—l— 1) se présente

sans transformation préalable sous la forme réelle

Gy

-y [e—"? = g =T e=ng) e"?:l.
3

Quant aux autres (n—2) termes, il suffira pour amener
la forme réelle de faire la somme et la différence de deux
termes conjugués (abstraction faite des constantes arbi-
traires), tels que

eMe - gnakt (1&-"12—:—?) i

— eve(cosag $isin ay) —+ e Nagl ok 1 (cos ey + ising ) (y.—ng—qa)
. ™
ekt 4= et + iy k—nz—e) =
— e (cos«k—-isinak)ie—naki-]-r(cosuk—isin ak)(p.-—ng-—-—q)’

ou Ay = re— %t

signifie le nombre conjugué de 4;. En changeant encore con-
venablement les constantes, on aura remplacé les termes
complexes aux indices £ et n — (k—2) par l'expression
réelle

G]{ ge‘r‘? oS % COS ('rsa sin ak) i 67‘008 @y (p.-—‘ng—?).
T . ]
cos [ney + (4t —ng —¢)sin ]| +
. . -
+ Dk i er? cos o sin (Tsa Sin ak) i B‘r cos G‘.k (;}.—ntz_— ?) .

T

sin [ney + 1 (w—n 5 —¢) sin o]

Si 'on désigne, pour abréger, cette expression par F (¢,k),
la forme définitive de o devient
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5 1

©) cos(ro— 5 £) ]

0o=G, 1 +Czn+,[3“‘r‘?i e—r—n3) e'?] +
sin(rg— g f)

e

+3F (.-

Dans cette équation, ou les lettres r, a, et 8 ont la signi-
fication suivante

r=Yinl, a="2120D 0 o4 —na T

zn

on prend les signes supérieurs ou inférieurs, suivant que m
est positif ou négatif.
b) Lorsque n est un nombre ¢mpair, chaque terme de la

n

somme =X se trouve accompagné d'un terme conjugué et il
1

n’y a que le premier qui doive étre considéré séparément.
En procédant de la méme maniére que dans le cas @) et en
maintenant la signification des lettres r, oy et F(¢,k), on
obtient

’ 1

COS(T{D——gﬁ) %(n-i-l)

6) ¢=0C, ; T SF@h.
sin(ro—8)

Dans le cas le plus simple, n =1, r—=1, la courbe se

>

réduit a un point; pour n—=1, r =

1 elle devient une épi-
cycloide.

II. Semilitude direcle. Si dans ce cas ¢ = f(¢) est 'équa-
tion de la courbe cherchée, celle de la développée n*™ de
cette courbe sera

On — mf(-u = ?n)'
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Or, comme

dro

T
0n = gou POUr Qu= ¢ + 15,

-—

on est conduit & 'équation différentielle de 'ordre n
D f"@)=mf(n+ng + )
La résultante de (1) étant une équation transcendante
At — . erletng) ,
elle ne pourra en général étre résolue que par approxima-

tion. Cependant, cela n’arrive pas lorsque u— —n;—r, c’est-
a-dire lorsqu’on admet que les rayons vecteurs proportion-
nels o et ¢, appartiennent a des points homologues des deux
courbes. En effet, dans cette hypothese la résolvante prend
la forme “

| Ar— m,
et Pintégrale générale de (1) devient

n
(Q) D — = Ake}k?’
1
ou pour une valeur positive de m
2(k—1)

n
?4:1//-???/, ak:""’_“'———” n’ Ak__?"eak!

et pour une valeur négative de m

2k—1

n
A V[m], o — 5

Pour débarrasser 'intégrale (2) des imaginaires, il faudra
distinguer entre les valeurs paires et impaires de n. Moyen-
nant le procédé connu que nous venons d’appliquer sous I)
et en désignant, pour plus de brieveté, I'expression

Cye 2k cos (r¢ sin ey) + Dye™ 7k sin (r¢ sin ay)
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par F(¢,k), on trouvera

1) pour m >0 et n pair
e=Cem +C, e+ IF(pk);

2) pour m >0 et n impair

300+
e=Cem+ I F(ph);

3) pour m <0, n pair
0 :22’? F (¢,k);
1

4) pour m <0, n impair

3(n—1)

¢ = Capyy o=rr 4 Z F1g:k)-

Parmi les courbes représentées par ces quatre équations
se trouvent comme cas particuliers le point, la spirale loga-
rithmique, I'épicycloide, etc.

40. Si I'on demande une courbe dont la développée nitm
soit une courbe semblable, en faisant abstraction du centre
de similitude, quelques légéres modifications dans la mé-
thode employée au numeéro précédent, suffiront pour ré-
soudre ce probléme plus général.

Une premiere modification consiste a rapporter les deux
courbes, savoir la courbe cherchée et sa développée nitme,
deux systemes différents de coordonnées tangentielles po-
laires dont les axes sont paralléles.

Soit alors, par exemple, dans le cas de la similitude in-
verse ¢ = f(¢) I'équation de la courbe cherchée, rapportée
au premier systéme de coordonnées et

o*n = mf (u— ¢n)
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celle de sa développée ni*me rapportée au second systéme de
coordonnées. L’équation de la
courbe cherchée, transformée
dans le nouveau systeme, sera

o* = f(¢)—acos¢—bsin ¢,

ou a et b signifient les coordon-
nées rectangulaires de 'origine
du second systéme de coordon-
nées par rapport au premier. |

Or, comme les deux courbes sont maintenant rapportées
au méme systéme de coordonnées, en des points homolo-
gues on doit avoir (Cf n° 35)

Fig. 15.

n*

¢ = dw et pn=p+n 7

c’est-a-dire

(1) mj’(u_7’zg——go):f”(go)——acos(go-l—ng)—bsin (go+n-2’f).
En différentiant cette équation deux fois

(2) Mf"('t_?’t —@)=f"**(¢)+acos(y +n—) + bsin (90+n—)
et en ajoutant (1) et (2), il vient
(?)m[f('l“n——@-kf”(u ?%——90) *‘f“(go)Jrf"”(sO)
Si I'on différentie (3) encore n fois

m e [fr (u*ng—¢)+f"+*(,u—ng—¢)]:f“(<P)+f 42 (¢)

et que 'on remplace ¢ par (y,—ng—— ¢) on obtient moyen-

nant (1) et (2) 'équation différentielle linéaire de I'ordre

(2n + 2)
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(&) me [f(¢) +f (@] =7"*(¢) + 2 (¢).
La résolvante de cette équation étant
3) (A*+4+1) (A»—m?*) =0

on voit que l'intégration n’offre aucune difficulté. L'intégrale
générale contiendra (2n 4 2) constantes, dont (n 4-2) pew-
vent étre déterminées & 1'aide des équations (1) et (3).

Ezxemple. Dans le cas le plus simple
m—_—], =1y =10,

ou l'on exige que la développée premiere soit égale a la
courbe cherchée, les équations (1), (3), (4), (5) prennent la
forme

(19 f(—5—¢) =/(g) + asing—b cosg,
39 1" @)+ ) — f (—F—O—f(—5—9)=0,
4%) Y9 + 2" (9) + f(9) =0,

(5% (A*4 1) = 0.
La résolvante (59) posséde les racines doubles
A— 4+ 1 et A= —u.

Par conséquent 'intégrale générale de (4%) sera
o =J(¢) = (A+Bg¢) cos¢ + (C+ Dg)sing.

En substituant cette valeur de f(¢) dans I'équation (32) on
trouve B—=0 et (1%) donne encore

1 1
D:—(l-, C:—Q-(b——gaﬁ),

en sorte que 'équation de la courbe cherchée devient

o =Acos¢ + l%-(b—-a)l—(m)—arp] sin ¢

s
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et celle de sa développée premieére

1 1 ;
0¥ = A cos¢p, — [-2— (b— 3 ar) + agoi] sin @,.

La courbe demandée est donc une cycloide quels que
soient A, a et b. Or, comme le terme Acosg n’a pour effet
que de déplacer les deux courbes parallelement a elles-
mémes, on peut faire A —= 0. Alors, en choisissant par

exemple a =—2¢, b = — cm, il s’ensuit
o — 2¢y sing,
et of = 2cq, sing,

ou en coordonnées rectangulaires
= a*¥ = —c (1 —cosy)

y =y*=  c(y+ siny).

O— —0O

ERRATA. — Page 440 Bull. (sép. 48), ligne 5 en remontant , lisez
¢ =0, au lieu de p=0.

——— G F o —
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