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ÉTUDE ÉLÉMENTAIRE

DES

COURBES PLANES
AU MOYEN DES

COORDONNÉES TANGENTIELLES

PAR LE

D' H. AMSTEIN
professeur à r Académie de Lausanne.

(Pl. 24, 25.)

Les coordonnées tangentielles ont été introduites dans

l'analyse par Plûcker. M. Fiedler, dans un mémoire intitulé :

« Ueber die projektivischen Coordinaten (Vierteljahrsschrift
der zürcherischen naturforschenden Gesellschaft, XV
Jahrgang, pages 152-182), » fait remarquer que ces coordonnées
ne sont, comme les coordonnées cartésiennes, qu'un cas
particulier des coordonnées projectives. Plusieurs géomètres,
entre autres MM. G. Salmon, Cayley, Hesse, etc., en ont fait
une fréquente application à l'étude des courbes et des
surfaces. Mais c'est surtout depuis l'apparition des excellents

ouvrages sur la géométrie analytique de M. Cr. Salmon ', que
leur emploi est devenu à peu près général. Dans les ouvrages
français, on les rencontre surtout dans l'excellent traité trop
peu connu de Painvin : Principes de la géométrie analytique

1 Comp, les éditions originales, la traduction française du Traité de
géométrie analytique (sections coniques), par H. Resal et V. Vaucheret, Paris,
Gauthier-Villars, 1870, et les éditions allemandes des différents ouvrages de

Salmon, par M. W. Fiedler.
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(Paris, Gauthier-Villars, 1872), et dans le complément de
géométrie analytique de Briot et Bouquet (Paris, Dunod, 1864).

Le rôle scientifique des coordonnées tangentielles dans

l'analyse, s'il est permis de s'exprimer ainsi, consiste à

mettre en relief la réciprocité ou la dualité qui règne dans

toute la géométrie. En effet, les coordonnées tangentielles
sont aux coordonnées ponctuelles comme la droite est au
point, comme l'enveloppe est au lieu géométrique; elles
forment le complément nécessaire et naturel des coordonnées
cartésiennes.

Puisque chaque problème particulier nécessite en quelque
sorte un système de coordonnées spéciales, il est clair que les
coordonnées tangentielles s'appliqueront de préférence à un
certain genre de problèmes, par exemple à l'étude des

courbes d'une classe élevée, à la recherche des tangentes
multiples, des asymptotes, etc. Cependant il n'est peut-être
pas inutile de soumettre les courbes planes à une étude
générale dans ce système de coordonnées, étude qui, à la
connaissance de l'auteur de ce mémoire, n'a pas été faite jusqu'à
présent d'une manière complète.

Les pages suivantes n'ont pas la prétention de combler
cette lacune; elles ont uniquement pour but de faire voir
comment on pourrait introduire ces coordonnées dans une
première étude générale des courbes planes telle qu'elle se

pratique en coordonnées ponctuelles, par exemple dans les

cours élémentaires de calcul différentiel.
Dans la première partie de ce mémoire, il est question des

coordonnées tangentielles rectilignes, et dans la seconde des

coordonnées que nous proposons d'appeler coordonnées

tangentielles polaires. Les formules générales de la première
partie ne sont pour ainsi dire que la traduction des formules
analogues en coordonnées cartésiennes, de sorte que pour
traiter le sujet un peu complètement, il a fallu s'occuper de

certaines questions qui n'ont pas pour le savant l'attrait de la
nouveauté.

Le but de ce travail justifie suffisamment l'absence des
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coordonnées homogènes ou trimétriques. Cependant, pour
satisfaire autant que possible aux lois de symétrie, il est,
dans les formules suivantes, largement tenu compte de cette
sorte de symétrie qui résulte de ce que les coordonnées d'un
point ou d'une droite sont exprimées en fonction d'une
troisième variable indépendante.

A. Coordonnées tangentielles rectilignes.

1. On suppose pour plus de simplicité des coordonnées

rectangulaires. L'équation d'une droite
déterminée par ses segments a et b sur les

axes, est

a b

Si l'on pose

_ .1— _ J_ —
Fig. i. a ~~ ' b ~ Vi

cette équation devient

ux -f- vy -\- 1 rr 0.

Les quantités a et b, par conséquent aussi m et v,
déterminent complètement la droite, et c'est pour cela qu'on a

appelé u et v les coordonnées linéaires ou, pour une raison

qui trouve son explication dans la théorie des courbes, les
coordonnées tangentielles de la droite. Les coordonnées

tangentielles d'une droite sont donc les valeurs réciproques
prises avec le signe contraire des segments faits par la
droite sur les axes.

L'angle r que fait la droite avec l'axe des X est donné par

u
tg t rr

v
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Exemples de droites particulières. — 1 La droite u — a,
v — a fait l'angle — 45° avec l'axe des X et ses segments

sur les deux axes sont
a

2) La droite u =z a, v=z — a fait l'angle + 45° avec l'axe
1 1

des X et ses segments sur les axes sont et -|0 a a

3) La droite u zz 0, v zz a est parallèle à l'axe des X à la
1

distance de cet axe.
a

4) La droite u zz 0, v zz oo se confond avec l'axe des X.

5) La droite u zz b, v zz 0 est parallèle à l'axe des Y
1

à la distance r- de celui-ci.
b

6) La droite u — oo, v zz 0 est identique avec l'ase des Y.

7) u — 0, v zz 0 signifie la droite à l'infini.

8) La droite u zz oo, v zz oo passe par l'origine, et sa

direction est donnée par tg t zz lim 1 pour lim m zz oo

et lim v oo.

2. L'équation
ux + vy + 1 zz 0

permet une double interprétation. Interprétée en coordonnées

ponctuelles, elle représente la droite dont les

coordonnées tangentielles sont u et v. Si, au contraire, on y
regarde x et y comme constants, u et v comme variables,
elle fournit une infinité de droites, et comme les valeurs

constantes de x et y satisfont pour chaque couple de valeurs

de m et t' à l'équation (envisagée de nouveau comme équation

d'une droite) toutes ces droites passent par le point
dont les coordonnées ponctuelles sont x et y.
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L'équation ux -f- vy + 1 zz 0, interprétée en coordonnées

tangentielles, représente par conséquent le point (x, y) et

l'on voit sans difficulté qu'en général une équation du
premier degré en u et v, telle que

Am + Bv + C zz 0

représente le point dont les coordonnées ponctuelles sont

_ A _ _B
x - c ' y - C '

La forme particulière ux -f- vy + 1 zz 0 de l'équation du

premier degré a été appelée par Hesse la forme normale de

l'équation du point (x, y).
L'angle a (fig. 1) que fait le rayon vecteur du point (x,y)

avec l'axe des X, est donné par

Exemples de points particuliers. — 1) Le point u zz a se

trouve sur Taxe des X à la distance de l'origine.
a

2) Le point v zz b est le point sur l'axe des Y dont

l'ordonnée est r-b

3) L'équation Au + Bt' zz 0 signifie le point qui se trouve

à l'infini dans la direction déterminée par tg « zz —

4) t; zz 0 est le point à l'infini dans la direction de l'axe
des Y.

5) Le point m zz 0 se trouve à l'infini dans la direction de

l'axe des X.

6) L'équation C zz 0, où C y. 0, qui paraît absurde,

signifie l'origine. En effet, si dans l'équation Au + Bv + G zz 0,
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>
<C
'

0, A et B tendent vers zéro, les coordonnées du point

représenté a;zz-^-, y=z-rr- tendent vers zéro.

3. Point d'intersection de deux droites données (uu vt) et

(ws, vt). L'équation du point demandé sera de la forme

ux + vy+ lrzO;
elle doit être satisfaite par les coordonnées des droites
données, en sorte que

M4a; + v^ + lzzO,
«j« + v3y + 1 zz 0.

En éliminant de ces trois équations les inconnues x et y, on
obtient l'équation cherchée

M U. ZZ — -(v — VA.
Vi — Vt

Les coordonnées ponctuelles de ce point sont

v » — v, u, — u,x zz 2 — y zz -—
Wt Vj — U3 Vi Mj V2 — M2 l>4

et l'angle a que fait son rayon vecteur avec l'axe des X est

déterminé par
Uà Ula

4. Droite qui joint deux points donnés (x^y,) et («2,y2). Les

coordonnées u, v de la droite cherchée satisfont aux équations
de condition

uXi + vyt + 1 zz 0,
uxt -f- v?ys + 1 zz 0.

En résolvant ces équations par rapport à m et v, on trouve

pour la droite demandée

u zz
^1 V*

v zz
X* Xî

Xi 2/s xi y{ x{ yi #s yt
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5. Angle de deux droites données (w,^,) et (m2,v2). L'angle
cherché y est égal à ± (*, —- tJ ; donc

m, v, — u. v,
tgyzz ±tg(r, —*t) ± cj fg wj t- 4

M4 M, + Vt Vt

Condition de parallélisme des deux droites (wl7 v4) et

(m,, u,) :

Wjflj — WäD, zz 0.

Condition de perpendicularité des deux droites (uu t'4)

et (ms, vä) :

m4 m, -f- Vi i\ — 0.

6. Distance ô du point (j?,ry) à la droite (u,v). L'équation
en coordonnées ponctuelles de la droite (u, v) étant

ux + vy -f- 1 0,

il s'ensuit qu'on trouve la distance demandée d'après la règle

connue de la géométrie analytique. Cette distance

wg + t)i? + 1

_ fit2 + v1

est considérée comme positive ou comme négative, suivant

que le point donné (£, rf) et l'origine se trouvent du même

côté de la droite donnée ou de côtés différents.

La distance S de l'origine à la droite (u, v) est

1

Observation. On voit sans difficulté que, si le système de

coordonnées adopté avait été oblique (avec l'angle des

coordonnées co), il suffirait de remplacer dans les formules pré-
sin r sin a

cedentes tg t par -:—-, r tga par -r— r tgy par& r sin (w—t) ° r sin (co — a)
siri v

-—;—-—r. Les équations des points et des droites ne se-
sin (w — y)
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raient pas changées, mais il faudrait substituer à la formule

pour d, la suivante :

u§ + vrt -f 1

} u* + v2 — 2 uv cos w
sin co.

7. Transformation de coordonnées.— 1) Passage d'un
système de coordonnées à un système parallèle.

Soit w l'angle des coordonnées, m et n les coordon¬
nées ponctuelles et par conséquent
um + vii + 1 zzO l'équation de la nouvelle

origine 0'. Si u et v sont les
coordonnées tangentielles d'une droite
quelconque par rapport au système de

coordonnées X, Y, u' et v' les

coordonnées de la même droite par rap-
Fig. 2. port au nouveau système X', Y' on a,

en posant «z cy zz — u
1

V —¦ b' '

(fig. 2) les relations

a
T b' '

¦m
b' + n _b'

De ces deux relations, il suit

u'
U rr

v rr

¦mu' — nv' + 1

v'
— mu'—nv' + 1

et

W zz

V'rr

u

mu + nv + 1

v

mu + nv + 1
"

2) Passage d'un système à un autre de même origine.

Soit w l'angle des coordonnées du système donné X, Y,
et soient « et ß les angles que font les nouveaux axes

X', Y' avec l'axe des X, en sorte que ß — « zz es' est le
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Fig. 3.
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nouvel angle des coordonnées. Si,
pour plus de brièveté, on introduit
encore l'angle auxiliaire y, c'est-à-
dire l'angle supplémentaire de celui

que fait une droite (u, v) quelconque

avec l'axe des X, la figure 3

donne

a sin (a -f- y) sin a -f- cos cc tg y

a' ~ siny ~ tgy '

b _ sin (ß + y) _ sin ß + cos ß tg y
b' ~~ sin (co + y) ~ sin w + cos w tg /

Mais comme de

b sin y

a
tgy

l'on déduit

sin (m -f- y) sin co + cos co tg y '

b sin to
tg/

on a aussi

a a sin a -f- b sin (m — a) b

a' ~ b sin co ' b'

a — b cos w '

asinß+ 6sin(w—/S)
a sm io

De ces deux équations on tire immédiatement

v sin a -f- u sin (w — a)

D'rr

sin w

v sin ß -\- u sin («j — ß)
sin co

et en résolvant par rapport à u et v :

u' sin ß — v' sin a
W rr r-'-cc- r

sm (/?— a) '

f' sin (dì — a) — u' sin (w — /J)
~ sin(/î — a)
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Remarque. S'il s'agissait de passer d'un système de

coordonnées à un autre système d'origine et de directions d'axes

différentes, il faudrait combiner les deux transformations qui
viennent d'être indiquées.

ETUDE DES COURBES PLANES

8. Lorsqu'il existe entre u et v une relation telle que

F (u, v) rr 0 ou »r/(ti),
chaque couple de valeurs de m et de v détermine une droite

ux + vy -f-1 rr 0 et l'ensemble de ces droites enveloppe
évidemment une courbe de sorte que F(u,v) Q ou u =f(v)
peut être considérée comme l'équation de cette courbe en

coordonnées tangentielles. Trouver l'équation de cette courbe

en coordonnées ponctuelles, revient à trouver l'enveloppe
des droites ux -f- vy + 1 rr 0 sous la condition F (u, v) zz 0.

Si, au contraire, les coordonnées x et y sont liées entre elles

par une équation telle que

<P(as, y) rrO ou y — (p(x)

chaque couple de valeurs de x et de y détermine un point

ux -f vy + l rr 0, et l'ensemble de ces points forme un lieu

géométrique dont l'équation est évidemment <P (x,y)=.0
ou y zz if (x). Trouver l'équation de ce lieu géométrique en

coordonnées tangentielles, c'est trouver le lieu géométrique
des points was + vy +1 rr 0 sous la condition ® (x, y) rr 0.

L'équation ux -f- vy + 1 rr 0, comme on vient de voir,
représente indifféremment un point ou une tangente de la

courbe, suivant que son équation est donnée en coordonnées

ponctuelles ou en coordonnées tangentielles.
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9. Problème de la tangente et de la transformation des

coordonnées ponctuelles en coordonnées tangentielles.

Supposons qu'on donne la courbe sous la forme
symétrique

* 9>(0, y V(0i
où t signifie une troisième variable indépendante, et

désignons par

les dérivées de x et de y par rapport à la variable t. La
tangente en un point (x,y) d'une courbe, étant la droite qui
joint ce point au point infiniment voisin, ses coordonnées

(u,v) satisfont aux deux équations

ux -f vy + 1 zz 0,

ux' + vy' zz 0,

d'où l'on tire

u zz- y
xy' — yx' '

(1)
' ii —

xy — yx1

En introduisant ces valeurs dans l'équation

uì + Vî] + 1 rr 0,

où £ et rj désignent les coordonnées courantes, on obtient

l'équation connue de la tangente

y'
v—y= jr$ — x)-

La direction de la tangente est donnée par

iar — _ Ü — ]L-ÈL — tMg
v ~ x' ~~ dx ~ (p' (t)

•
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Les formules (1) qu'on modifiera facilement, si la courbe
est donnée sous une autre forme, résolvent le problème de

la transformation des coordonnées ponctuelles en coordonnées

tangentielles. En effet, elles expriment u et v en fonction

de t et dans la plupart des cas c'est sous cette forme que
l'étude d'une courbe se fait le plus facilement. Si l'élimination
de la variable t est possible, on obtient l'équation de la courbe

sous une des formes ordinaires F (u, v) rr 0 ou u rz/(t)).

10. Problème du point de contact et de la transformation
des coordonnées tangentielles en coordonnées ponctuelles.

Soit u — ip(l),v — (f(t),

la courbe donnée et u' et v' les dérivées de m et de f par
rapport à t".

Le point de contact d'une tangente donnée n'est autre
chose que le point d'intersection de cette tangente avec la
tangente infiniment voisine ; par conséquent ses coordonnées

x,y doivent satisfaire aux deux équations

ux -f- vy + 1 rr 0,
M'as -f v'y rr 0,

qui donnent

x rr
¦ vu'

¦y — vu — uv'

En substituant ces valeurs dans l'équation

\Jx +Yy + 1 rrO,
où U et V signifient les coordonnées courantes, on obtient

pour l'équation du point de contact

n'
U — mzz4-(V— v).

v'
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Le point de contact se construit avec la même facilité que la

tangente en coordonnées cartésiennes, car on a

t„K_ y _ W _ du _ xp'(t)
s x ~~ v' ~~ dv ~~ y (0

"

Cette construction n'est en défaut que lorsque la tangente

passe par l'origine, c'est-à-dire dans le cas où «r»
et v zz oo.

Les équations (2) permettent de passer de l'équation d'une
courbe en coordonnées tangentielles à son équation en
coordonnées ponctuelles. U suffit d'en éliminer la variable t pour
arriver à une des formes F (x, y) zz 0 ou y rr f(x). (Cf.
Salmon : Treatise on the higher plane curves.)

11. Asymptotes. Si l'on considère les asymptotes d'une
courbe comme des tangentes dont le point de contact se

trouve à l'infini, elles sont comprises dans les tangentes
données par les formules (1). En effet, si

*=îp(0, y=4'(t)
est la courbe donnée, on cherchera les valeurs de t, pour
lesquelles x ou y ou les deux deviennent infinis, et on
obtiendra les segments que déterminent les tangentes
correspondantes sur les axes, en introduisant tour-à-tour les valeurs

trouvées dans les équations

1 xy' — yx1 1 xy' — yx1

u y' ' v x'

On aura une asymptote parallèle à un axe coordonné ou une
asymptote oblique, suivant que par ces substitutions l'une

des expressions — et — ou les deux prendront des valeurs

finies.
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Exemple. — Le folium de Descartes. L'équation de cette

courbe
xi + y3 — axy zz 0

est identiquement satisfaite, si l'on pose

t t'
x a y rr a

1 + Is ' tf 1 + f
Comme x et y deviennent infiniment grands pour t rr — 1

et que la substitution de cette valeur dans

1 t 1 C2

m 2—f' v 1 —2i3

donne rr — —, rr — —-, la tangente
m 3d 3 °

x + y + ± Q

est une asymptote de la courbe.

Lorsque la courbe est donnée en coordonnées tangentielles

V — <p(t), U — lp(t),

les formules (2) montrent immédiatement que pour les

asymptotes on doit avoir

m u'
v v'

Cette condition est nécessaire, mais non suffisante, car elle

exprime seulement que la tangente et le rayon vecteur de

son point de contact sont parallèles. Si cette condition ne
peut être satisfaite que par u rr v zz 0, la tangente
correspondante se trouve tout entière à l'infini et par suite elle
n'est pas une asymptote proprement dite. Si, au contraire,
une valeur de t, tirée de cette équation de condition, rend
wzzooetvzz=w,ona une tangente passant par l'origine.
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Dans ce cas, il s'agit de vérifier si le point de contact, donné

par x et y, se trouve ou ne se trouve pas à l'infini. Dans tous
les autres cas, une valeur t0 de t, qui satisfait à l'équation
M tt
— rr —r fournit une asymptote v zz y(t0), u rr ip(Q.

Exemple. Choisissons encore le folium de Descartes, qui
cette fois sera donné par

12-/5 \ 1— 2<3

a t ' v - a t" •

De l'équation — —r on tire t zz •— 1. Par conséquent

3 3
« zz — cy zz — est une asvmptote de la courbe.

a a • r

12. Equation du point de la tangente (u, v), dont le rayon
vecteur fait un angle droit avec le rayon vecteur du point de

contact. Courbe correspondante à la développée. Le point en

question joue par rapport au point de contact d'une
tangente le même rôle qu'en coordonnées ponctuelles la
normale par rapport à la tangente. Son équation est, en
désignant par U et V les coordonnées courantes,

U— u — -^(V— v).
u'

De même qu'on traite en coordonnées cartésiennes la

question de la développée, on peut, en coordonnées

tangentielles se poser le problème : Trouver le lieu géométrique

des points situés sur les tangentes d'une courbe donnée,

tels que leurs rayons vecteurs fassent avec les rayons
vecteurs des points de contact un angle droit. En d'autres

termes : Une courbe étant donnée, on demande une autre
courbe telle que si un observateur se place à l'origine et

regarde simultanément le point de contact d'une tangente
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de la courbe donnée et sur cette tangente le point
correspondant de la courbe cherchée, l'angle des deux rayons
visuels soit toujours un angle droit. Ou encore : Un triangle
rectangle à côtés variables dont le sommet de l'angle droit
est placé à l'origine se mouvant de manière que le second

sommet demeure sur une courbe donnée et qu'en ce point
l'hypoténuse soit tangente à la courbe, on demande le lieu

géométrique du troisième sommet.

Soit
V zz (f (t), u rr ip (t)

la courbe donnée. Le point de la courbe cherchée qui
correspond au point de contact de la tangente (u,v) de la

courbe donnée, a pour équation

U — «r- 4-(V— v).
u

Les coordonnées U,V de la tangente en ce point doivent

satisfaire à cette équation et à celle qu'on obtient en la
differential par rapport à t. On a donc pour déterminer U et V

les deux équations

u' (U—u) + V (V—i/)rr0
u" (U —m) + v" (V—v)=u'î + v'\

d'où

V—vzz

U— u- —

M'2 + V'%

l'v"—v'u"
u'2 + v'2

i'v"—v'u"

En éliminant la variable t de ces deux équations on obtient

l'équation de la courbe cherchée sous la forme F (u, v)rr0.
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Exemple 1. La parabole. L'équation en coordonnées

tangentielles de la parabole y% zz 2-pas est

V* ZZ — u.
p

Elle est identiquement satisfaite, si l'on pose

v — t, u rr -|-1\

En appliquant les formules ci-dessus, on trouve pour les

coordonnées U,V d'une tangente quelconque de la courbe
cherchée

Vrr— pH\
Uzzi + -!»/»,

p ^ 2 r '

d'où, en éliminant i,

(U— -LV — — —\ pl ~~ 8 p

Telle est l'équation de la courbe cherchée. En passant aux
coordonnées ponctuelles, il vient

1

xy1 + — as5 + cpy2 — 0.

(Courbe en affinité avec la cissoide.) (PI. 24, fig. 1.)

Observation. Il est clair qu'il aurait suffi de changer dans

l'équation de la développée de la parabole as en U, î/ en V
1

et p en — pour arriver à l'équation demandée.

Exemple 2. L'ellipse. L'ellipse —r + j-- rr 1 a pour équation

en coordonnées tangentielles

a2 m2 + 6V 1.

27
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Une tangente quelconque de cette ellipse est donnée par

_ sin t cos t

a ' b

La tangente correspondante de la courbe demandée se trouve

par les équations

V rr :,-;— cos31

U rr r»— sin3<,

d'où, par l'élimination du paramètre t, il résulte comme

équation de la courbe cherchée

2 s /a2 ;,2. |
(2) («V)3+(6U)3rr(—y-)

Traduites en coordonnées cartésiennes, les équations (1) et

(2) deviennent

- a6* J_
a2 — 62 ' sin t

{ìa) { __j^ _L^ rt2 62 '
COS t

et (2») a*x* + b*f (?~^-y x*y\

(Pl. 24, fig. 2.)

13. Normale et développée. Soient w et i> les coordonnées

d'une tangente quelconque de la courbe donnée, U et V

celles de la normale correspondante. On a pour déterminer

U et V les deux équations

Uw + VvrrO ou w(U — u) + v(Y — v) — (m2 + v2),

v' (U — u) — m' (V — v) zz 0

exprimant que la normale est perpendiculaire à la tangente

et qu'elle passe par le point de contact.
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Delà

U uv — vu

"'uu'+ vv'

V
uv' — vu'

rr — m. ——uu' -f- vv' '

Or, si u et v sont exprimés en fonction d'une troisième
variable t, U et V le seront aussi. Par conséquent ces équations

résolvent le problème de la développée. Il suffit d'en
éliminer t pour avoir l'équation de la développée sous la
forme F (m,?,') zz 0.

Exemple. L'ellipse. L'ellipse étant donnée comme
précédemment par

sin t cos t
u zz v rr —T-a b

on trouve en appliquant les formules ci-dessus

u- a— J- v-— L_
a2 — 62 ' sinT a2 — 62

"
cos «'

d'où il résulte pour l'équation de la développée

(a- _ py u« V rr a3 Vs + 6SU2.

14. Classe d'une courbe algébrique. Lorsqu'on combine

avec l'équation d'un point u rz av + ß, l'équation en

coordonnées tangentielles d'une courbe F (if, i>) rz 0, où F

signifie une fonction entière de u et v du degré n, on obtient

n couples de valeurs (réelles ou imaginaires) qui satisfont

aux deux équations. Cela revient à dire que la courbe admet

n tangentes (réelles ou imaginaires) émanant d'un point
quelconque. Par conséquent, la classe d'une courbe est identique

avec le degré de son équation en coordonnées

tangentielles.

On peut encore remarquer qu'il sera toujours possible de
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disposer de l'une des constantes arbitraires a et ß en sorte

que la résolvante des équations F (u,v) zz 0 et m zz an -f- /S

possède une racine double. Dans ce cas, le point u zz av -f- ß

est le point de contact de la tangente (u,v) correspondante.
Le problème : Etant donné a, déterminer ß de la manière

indiquée, revient à trouver tous les points de la courbe qui
sont situés sur une droite passant par l'origine. En
déterminant les deux constantes a et ß de manière à ce que la
résolvante admette deux couples de racines égales, ce qui
en général est toujours possible, le point ainsi obtenu sera

un point double ou un point de rebroussement. On en conclut

que les courbes de la classe n possèdent en général
des points doubles et des points de rebroussement, tandis

que les courbes de l'ordre n admettent des tangentes doubles

et des tangentes stationnaires comme singularités
habituelles. (Cf. Salmon : Higher pl. curves.)

Exemple. Cherchons les points doubles de la courbe

(u1 + v*)* — m2 + v8 rr 0.

En éliminant de cette équation et de

au + ßv + 1 rr 0

la variable v, on obtient

-, *- tt.+g^±^g+y-^+^ + g)tt+w T" ft* _|_ ß* " ^ (a1 + /î2)2
'

(a2 + /?2)

+ 1+^ -o.

Comme la courbe est symétrique par rapport aux axes
coordonnés il est évident que ses points doubles seront
symétriques par rapport aux axes. Par conséquent, si les points
doubles existent, il doit être possible de donner à a, ß, p
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des valeurs telles que le premier membre de cette équation
devienne identique avec

(w2 —J92)2zz0,

ce qui donne les quatre conditions

_4«_ &g* + tt.ß- + °lß*-ß*_
«2 + ß*

~~ ' («s + ß*y ~ p '

2«(2 + ^)_n _i±£__
(«2+,S2)s -U' (a*+/î*),-p'

d'où l'on tire

«zzO, /J=±]/8, p ±^.
Les deux points doubles de la courbe possèdent donc les

coordonnées a rr 0, ß rr ± /8 ; les tangentes principales
en ces points sont données par

r 1

tt=±K|, v — ± j7=-
(Pl. 24, fig. 3.)

15. Anemie de contingence. L'angle de contingence dr en

un point donné d'une courbe est l'angle que fait la
tangente (u,v) en ce point avec la tangente consécutive. Comme

(Cf. n" 9)

U U
tgr zz ou Tzz—arctg -v v

l'angle de contingence est donné par

vdu — udv
dr rr u* + v*

16. Interprétation de la dérivée seconde. Soit

u=f(v)
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l'équation d'une courbe. On sait que (Cf. n" 10)

tga —/(«),
où ce désigne l'angle que fait le rayon vecteur du point de

contact de la tangente (u,v) avec l'axe des X. De cette équation

on tire
« rr — arctg/'(v)

et par differentiation

da__ /"(»)
dv~ 1-H/W

Par conséquent l'angle a croît ou décroît, suivant que f"(v)
est négatif ou positif.

17. Concavité et convexité d'une courbe. Soit v la variable

indépendante à laquelle on convient de donner des

accroissements positifs dv. Vue de l'origine, la courbe u rr/(«;) sera

convexe ou concave en un point dont la tangente possède
les coordonnées u et v, suivant que pour ces valeurs w et v
les quantités dt etf"(v) sont de même signe ou de signes

contraires.
Cette règle est en défaut : 1° lorsque la tangente au point

considéré passe par l'origine ou qu'elle est une asymptote,
c'est-à-dire dans les cas où dt s'annule ; 2° lorsque f'(v) rr 0.

Dans les deux cas, savoir efcrrO et/"(t>)rr0, le point
considéré est un point singulier qui demande une étude spéciale.

18. Contact des courbes. Lorsque deux courbes

u=f(v) et ut <p(v)

ont en commun une tangente (u,v) et son point de contact,

on dit qu'elles possèdent en ce point un certain contact.
Ce contact est évidemment d'autant plus intime que les

tangentes des deux courbes qui suivent immédiatement la tan-
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gente commune, s'écartent moins l'une de l'autre. En effet,
si trois courbes sont en contact et que la seconde courbe

passe entre la première et la troisième, il est clair que le
contact de cette courbe avec une des deux autres courbes

sera plus intime que celui des deux autres courbes entre
elles. Afin d'obtenir une définition plus précise du contact
de deux courbes, il faut calculer leurs angles de contingence

au point considéré.

Si par un accroissement positif h de la variable indépendante

v la fonction u passe en u + Ju rz/(fl -\-h), «4 en

m, -f- ^w4 zz if (v + h), les angles de contingence Jt et Jtt
deviennent (Cf. n° 15)

vJu—uh vJut— uh

et leur différence est

JUi — Ju
J%i —Jt — —v. —r~.—r—U* + V*

d'où l'on tire

_ Jtt — Jt
H —r ZZ Jut JU,

fc

expression dans laquelle la projection sur l'axe des Y de la

perpendiculaire, abaissée de l'origine sur la tangente
considérée, est représentée par

v
M2 -j- V*

Or, le développement de (JUi — Ju) suivant des puissances
ascendantes de h commencera en général par un terme d'un
ordre supérieur au premier. Divisant encore par h et posant

Jti — Jt JUi — Ju
hk h

Ahm + Bhm+n +

le plus petit des exposants, savoir m, sera appelé l'ordre du
contact des deux courbes.
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Cette définition est en défaut lorsque le point de contact
de la tangente considérée se trouve sur l'axe des Y. Dans ce

cas, il suffit de regarder u comme variable indépendante et

de chercher le développement de —'—? correspondant

à un accroissement h de u.

En général, on aura soin de choisir la variable indépendante

de façon que le développement de (Jut—Ju), ou de

(JVi—Jv) commence par une puissance supérieure à la
première. Alors la définition ne subit aucune exception.

Exemple 1. Les deux courbes

w —lzz (v— \f
Ui — \-(v — \f

ont en commun la tangente wzzMjZzl^rrl et son point
de contact as rr — 1, y rr 0. Pour trouver l'ordre de leur

contact, posons v — 1 -f- h, d'où il suit

Ju —h}-\-

Jui — hx -f

h
1

L'ordre de contact est par conséquent rr T.4

Exemple 2. Les courbes

u —1 (v — 1)*,

Ui— 1 — (v—1)*

ont en commun la tangente w zz m, rr 1, « rr 1 et son point
de contact. Ce point de contact x rr 0, y rr —1 étant situé
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sur l'axe des Y, il convient de regarder u comme variable

indépendante. Il va sans dire qu'on trouvera encore par là

l'ordre de contact rr —
4

Exemple S. Les courbes

u rr v3 «(r«*
se touchent à l'origine. Dans ce cas on a

h

Par conséquent l'ordre du contact des deux courbes à l'origine

est encore zz —

Lorsque les deux fonctions

u —f(v) et Ui rr if (v)

permettent dans le voisinage des valeurs communes v zz v0,
u rr m4 rr w0 le développement suivant le théorème de Taylor,
en sorte que

u0 + Ju =f(v0) +f (v0) .à+f (vQ). £1 +

+ fn^-TJZn+fn+1 ^'ÎIZ^fT) +

h /i2
M0 + JUi rr if (t>„) + cp'(v0). -r -f sp>0) j^ +1.2

+ ^^-l^n+^+l^-T^^)+
la définition indiquée ci-dessus peut s'énoncer comme il suit :

Les deux courbes u=f(v) et Ui (p(v) possèdent en une

tangente commune (w0, v0), qui n'est pas une tangente
singulière pour chacune d'elles, un contact de l'ordre n, lors-
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que pour v — v0 les fonctions f(v) et y>(v), ainsi que leurs n

premières dérivées, affectent les mêmes valeurs, tandis que
les dérivées (n + l)ième fn+x (v) et c/)"*1 (v) prennent des

valeurs différentes. En un tel endroit, les courbes ont (n + 1)

tangentes consécutives communes et le contact se fait avec

ou sans intersection suivant que n est un nombre pair ou

impair.
Toutefois cette définition exige que le point de contact

commun ne soit pas situé sur l'axe des Y.

Exemple. De quel ordre est le contact de la parabole

i + iu + 3u*=v* ou m —— |—L/iqriF
et de la circonférence

2uî + 2«, zz t,2 ou Ui rr- L _ L fî+ï?
au point as rr 1, y rr 0, c'est-à-dire au point de contact de

la tangente commune wzz — 1, « rr 0

Pour v rr 0, il vient M rr — 1,

(£).=•¦(£).=-'• (£).=•¦(£)=9i

«.=-'^a=^)=-^)=o^0=6-
Les trois premières dérivées des fonctions u et w4 étant

égales, les dérivées quatrièmes différentes pour v rr 0, il
s'ensuit que l'ordre du contact des deux courbes rr 3.

19. Cercle osculateur, différentielle de l'arc, rayon de

courbure. Le cercle osculateur en une tangente donnée (u,v)
d'une courbe a trois tangentes consécutives communes avec
la courbe. Par là ce cercle est défini uniformément; car trois

tangentes consécutives étant données, le sens de courbure
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l'est en même temps. Si donc a et ß sont les coordonnées

cartésiennes de son centre, q son rayon, l'équation du cercle

osculateur aura la forme

(aU+iîV+l)2r=ç2(U2 + V«),

et les constantes a, ß et q seront déterminées par les trois
conditions

(ccu + ßv + iY=Q'(ut + v*),

{au + ßv+i)(a*i + ß) Ç.(M^ + V),

a ¦ 4\ d*u / du ,r, /du\* diu'\
(aU + ßV+i)aw + (a- + ßy=Q^l+(a-)+u-w\

qui indiquent que la circonférence admet la tangente (u,v)
et les deux tangentes qui la suivent immédiatement. Au lieu

de résoudre ces équations, ce qui n'offre aucune difficulté,
on se borne à chercher l'expression du rayon de courbure

par la voie suivante :

Supposons la courbe donnée sous la forme

v zz (f (t) «ri/) (t).

Alors on tire des formules

v
vu' — uv'

u'
vu'—uv'

par differentiation

dx

(Cf. n° 10.)

dt " ' (vu' — Ml»')2

dy u'v"—v'u"
dt ~ ' (vu' — uv'Y



420 BULL. H. AMSTEIN SÉP. 28

d'où pour la différentielle de l'arc :

u'v" — v'u" ./—r-,—àds rz ± --—-, yu1 + v-(vu — uv y

Le signe du radical sera toujours choisi en sorte que ds soit

positif.

Or, comme o zz -j- il vientK dt

Q
(vu' —uv')SjV + o3-

D'après ce qui vient d'être établi relativement au signe de ds,

il est clair que q aura toujours le signe de dt. En d'autres
termes : Un observateur placé au point considéré de
manière à avoir le point infiniment voisin (correspondant à un
accroissement positif de la variable indépendante) devant

lui, verra le centre de courbure à sa gauche ou à sa droite,
suivant que q sera positif ou négatif.

20. Tangentes multiples. Soit/(U,V)zrO l'équation de la
courbe. D'après le théorème de Maclaurin on peut écrire

/(U,V) zz A0 + A, (V- v) + A2(U-m) +

+ l [Au (V- vY + 2Ad2 (V- v) (U- u) + A2S (U - m)2 ] +

+ |[A«i (V-tO3 + 3Am(V-t,)2 (U-M) +
+ 3Am (V- v) (U- uy + AS22 (U- m)5 ] +

où

A0 f(u,v),Ai=(^)uv,A^Quv,

A - (El) A - dtf\ A - (W\ etcAii~ \dV2A... ' 1S~ VdVdüA. ' ä2_ VdU2/....
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Or, si A0 rr 0, la droite Vrr v, U zz u est une tangente
de la courbe et son point de contact est donné par l'équation

A,(V— v) + A2(U— u) rr 0.

Si on a simultanément A0 rr 0 et At rr A2 rr 0, la droite
V rr v, U rr u est une tangente double de la courbe. Ses

deux points de contact s'obtiennent par l'équation

A14 (V — vy + 2 A15 (V — v) (U — u) + A32 (U — m)2 rr 0.

Pour que la courbe possède une tangente multiple, il faut,

comme on vient de le voir, que/(U,V) satisfasse aux
conditions

A0 rr Aj rr A2 rr u ;

la tangente est double, si les dérivées secondes de /(U ,V),
savoir AM, A12, A22 ne sont pas toutes égales à zéro, et ses

points de contact sont réels ou imaginaires, suivant que

A2 a a >n
¦"•12 AU ¦ti22 ^r u

ils sont réels et ils coïncident, lorsque A^zr AH A22. Dans

ce dernier cas, la tangente considérée est une tangente
singulière de la courbe. Pour reconnaître la singularité qui a

lieu, il faudrait tenir compte des premiers termes d'un ordre

supérieur au second, qui ne s'annulent pas. Comme cette

étude est en général assez pénible, elle ne sera pas poussée

plus loin, attendu que l'on va déterminer les singularités
d'une courbe par un autre procédé qui, le plus souvent,
présente moins de longueur.

On voit facilement quelles sont les conditions qui amènent

une tangente triple, quadruple, etc.

Exemple 1. Pour la courbe

(m2-M2)2 — (w.s — «2) 0

la droite à l'infini (v rr m rr 0) est une tangente double. Ses



422 BULL. H. AMSTEIN SÉP. 30

points de contact u rr ± v se trouvent dans les directions

«rz±45°. (PL 24, fig.3

Exemple 2. La courbe

(v— iy + (M —1)*_ 2a (t>— l)3-r-26(w—l)*(v—1) 0

possède une tangente triple Mrzl, «zzi. Les trois points
de contact sont déterminés par les équations

i uzJU + t/fi

21. Eléments singuliers. Soit m rr m0 v rr «0 une tangente

singulière, (a;0, y0) son point de contact. Pour trouver la
forme qu'affecte la courbe en ce point, on prend ce point
pour origine, la tangente considérée pour axe des abscisses et

la normale correspondante pour axe des ordonnées d'un
nouveau système de coordonnées, et l'on développe u et v
suivant les puissances ascendantes d'une troisième variable t.

Ces développements permettent de reconnaître l'ordre dont
m et v deviennent infiniment grands à la nouvelle origine.
On aura par exemple

u—al~m + ait~m + m' +
v= bl-n + bit-n+n' +

où a,aA, b,bi... sont des constantes différentes de zéro,
m et n des nombres entiers, et puisque l'axe des abscisses

est une tangente de la courbe évidemment n > m. Alors
quatre cas peuvent se présenter :

1. Si m est un nombre impair et n un nombre pair, l'élé¬

ment de courbe se trouve des deux côtés
de la normale et en entier du même côté
de la tangente. La singularité en question
tient à ce que le contact de la tangente
avec la courbe est d'un ordre différent du

Fig. a. premier.
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2. Soient m et n des nombres impairs.
Alors l'élément de courbe possède des

points des deux côtés de la normale et

en même temps des deux côtés de la

tangente. Le point considéré est un point
d'inflexion.

3. Lorsque m est un nombre pair,
n un nombre impair, l'élément de courbe

se trouve des deux côtés de la tangente
et en entier du même côté de la normale

et le point singulier est un point de

rebroussement de la première espèce.

4. Si enfin m et n sont des nombres

fairs, l'élément reste en entier non-seulement

du même côté de la tangente,
mais aussi du même côté de la normale.

Le point critique est alors un point de

rebroussement de la seconde espèce.

Exemples. L'origine est un point singulier pour les quatre
courbes

1) w.rr v3 ou
tu t-i
Ì v —:t-

- (mrr t~
3) v rr u'- -f u2 ou

v — t-u + l

,; 2) u-v3 ou
Mrr<-2
frr<-3'

â (u — t-v ou uni-
savoir un point d'inflexion pour la première, un point de

rebroussement de la première espèce pour la seconde et un

point de rebroussement de la seconde espèce pour la
troisième. La singularité de la quatrième courbe consiste en ce

1

qu'à l'origine, la courbe forme un contact de l'ordre •-- avec

l'axe des X. (Pl. 24, fig. 4-7.)
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Exemple 5. On propose de chercher les singularités de la
courbe

(u + \y ~(v+iy.
En posant

t u — (1 + e)
v — 1-M3

cette équation est identiquement satisfaite. On reconnaît
facilement que l'origine est un point de rebroussement de la

première espèce et que la tangente u=z — 1, «rr — 1 avec
le point de contact x rrO, y rr 1 est une tangente singulière.
Pour trouver la forme qu'affecte la courbe en ce dernier

point, on transporte d'abord l'origine du système de

coordonnées au point asrrO, wrz 1, ce qui donne (Cf. n° 7,1.)

1 + P — 1 + <3

ui — iz— v, — *

et l'on tourne ensuite les axes coordonnés d'un angle de

— 45°. (Cf. n° 7,2.). Alors il vient

«,= _ *
(|-» + l); Pj=-L(_2t — _*--' + l).

Comme dans ce cas m zz 1, n zz 3, le point considéré est un

point d'inflexion. (Pl. 24, fig. 8.)

22. Polaires réciproques. L'équation de la polaire du point
(£, rj) par rapport à la circonférence as2 + m2 rr 1 est

$x + »£!/—1.

Si l'on pose £rr—u. y — — v, on obtient l'équation

Ma; + vy -f 1 rr 0

qui a servi de point de départ au présent mémoire. Suivant

qu'on l'interprète en coordonnées ponctuelles ou en coor-
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données tangentielles, elle représente soit la polaire du point
(£,i?), soit le pôle de la droite Sx + rjy^z 1. La polaire d'un

point figure ainsi comme lieu géométrique des pôles de toutes
les droites passant par ce point, et le pôle d'une droite est

l'enveloppe de toutes les polaires des points de cette droite.

Lorsque le point (ï,r;) décrit une courbe/(ï,rj) zz 0, la

droite (u,v), polaire du point (jf,ij), enveloppe une seconde

courbe /(— u, — v) zz 0. Deux courbes, liées entre elles de

la manière indiquée, ont été appelées des polaires réciproques

par rapport à la circonférence a;2 + w2 — 1. Les substitutions

£ zz — u, iq— — v

dans l'équation /(?,»,) zz 0 et

M zz — §, v rr — r,

dans l'équation /(w ,t')rr0 résolvent par conséquent le

problème de trouver en coordonnées °, „ "la polaire
ponctuelles c

v -, j ponctuelles
réciproque d une courbe donnée en coordonnées T .¦ ii j.
En même temps ces considérations permettent de reconnaître
la nature intime des coordonnées tangentielles.

Les relations £ rr — u, ?jrr —v entraînent les autres qui
suivent :

777=7777' J 7r ì^+^=ì^ + v-,

d'où il résulte que la tangente au point (£,?;) de la courbe

f(§, ij) rr 0 est perpendiculaire au rayon
vecteur du point de contact delà tangente

(—u, — v) de la courbe/(—u, —v) 0

et réciproquement, et que le rayon vecteur

du point (?,»/) est la valeur

réciproque de la distance de l'origine à la

tangente (—m,—v). (Cf. n° 6.)

28
Fi
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Le principe de la dualité que l'on rencontre ici, règne dans

toute la géométrie. Aussi les géomètres se sont-ils servis de

ce puissant instrument pour doubler en quelque sorte les

résultats de leurs recherches. Il serait inutile d'insister plus

longuement sur ce principe qu'on trouve développé dans

tous les bons ouvrages sur la géométrie analytique, notamment

dans les excellents ouvrages de M. Salmon. Qu'il suffise

d'avoir montré le rapport qui existe entre les coordonnées

ponctuelles et les coordonnées tangentielles.

23. Podaire d'une courbe par rapport à l'origine. Si d'un

point donné A on abaisse des perpendiculaires sur toutes les

tangentes d'une courbe donnée, le lieu géométrique des pieds
de ces perpendiculaires est une courbe qu'on appelle la
podaire de la courbe donnée par rapport au point A. On va
chercher les relations qui existent entre les coordonnées

tangentielles (u,v) d'une tangente quelconque d'une courbe et

les coordonnées ponctuelles (x,y) du point correspondant de

sa podaire par rapport à l'origine. Soit

ux -f vy + 1 rr 0

la tangente considérée,

uy — va? rr 0

la perpendiculaire abaissée de l'origine sur cette tangente.
De ces deux équations on tire

(1)

[y

M
_ u- + V* '

V

~ v.r + »4 '

et réciproquement :

/ X
l M rr

(2)
y + y' '

y
x- + i/ '
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Ces formules résolvent le problème de la podaire et le
problème réciproque. En effet, si/(«,i>) rr 0 est la courbe don-

née i /( —
a;i + yi ' — F+7/ ° est l'équation de sa

podaire, et si <p(x,y) 0 est l'équation de la courbe donnée,

V — -r~i—2 > ï~~;—î — 0 sera celle de la courbe dont
m2 + v1 ir + v2 '

la proposée est la podaire.

Exemple 1. Si l'on fait les substitutions (2) dans l'équation
de l'ellipse

a2u2 + òVrr 1,

il vient pour la podaire par rapport à l'origine

a2 ai2 + b*y* (x* + w2)2.

Exemple 2. Pour la parabole

p(u* + v2) zz 2u,

rapportée à son foyer, on obtient la podaire

as2 + m2 2.«
_ p

p- (x*+y*y — ~ x2 + y* ' °U X — ~~
2 '

Exemple 3. La lemniscate

(as2 + y2)2 — a" (x* — y2) rr 0

est la podaire de l'hyperbole equilatere

a2 (m2— v3) rr 1.

24. Courbes équidislanles. Lorsqu'on porte des deux côtés

des points d'une courbe donnée sur les normales une

longueur constante k, l'ensemble des points ainsi obtenus forme

une nouvelle courbe (qui dans certains cas peut dégénérer

en deux courbes différentes) qu'on appelle courbe equidistante

de la courbe proposée. Elle peut aussi être considérée
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comme l'enveloppe d'un cercle de rayon k dont le centre

se meut le long de la courbe donnée. De ces définitions il
suit immédiatement que les tangentes en des points
correspondants des deux courbes sont parallèles. C'est cette

propriété qui servira à établir l'équation de la courbe equidistante

en coordonnées tangentielles.

Soit/(m, t») rr 0 la courbe donnée. Si ç rr -— est la
y m2 + v2

distance de l'origine à une tangente quelconque (u,v) de

cette courbe

1 1

(1) Q±k -==-=- dr fc

/m2 + v* /U2 +V2

sera la distance de l'origine à la tangente correspondante
(U,V) de la courbe equidistante. Comme ces tangentes sont

parallèles, on a de plus

En résolvant les équations (1) et (2) par rapport à u et v on
trouve

U
1=F fc|/U2-l-V2'

_ V" 1 rr: k j/lP+V2 '

En conséquence, pour obtenir l'équation de la courbe
equidistante, il suffit de remplacer dans l'équation donnée u et v

par les valeurs trouvées.

Exemple 1. Si l'on fait les substitutions indiquées dans

l'équation de la circonférence de rayon r et du centre (a,ß),

(au + ßv + l)2 rr r- (m2 + v1),

il vient
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(«U + ßY + 1 qr k yU2+V2)2 rr r2(U2 +V2)

ou
(«U + ßY + l)2 rr (r ± k)3 (U2 + V2),

ce qui représente deux circonférences concentriques des

rayons (r ± k).

Exemple 2. Pour l'ellipse a2m2 + 62t'2 rr 1 ou

U :

cos w sin w— v —Kl

a b

on trouve

U _ cos (p Y sinfp
1 =F k i/u2 +V2 a ' 1 rcfc yu»-t_v4 - f

d'où, en éliminant 1 'angle <f

a2U2 + b1 V2 rr (1 rc k yTF+V2)2.

Remarque. Afin de faire un travail un peu complet, tout
en conservant le cadre limité de ce mémoire, il a fallu aborder

le problème des courbes équidistantes, bien que cette

partie du mémoire, comme du reste plusieurs autres qui ont
été ajoutées dans le même but, n'offre absolument rien de

nouveau. Pour plus de détails, on renvoie le lecteur à

l'ouvrage, cité déjà plusieurs fois : Salmon, Higher pl. curves.

25. Problème analogue à celui des trajectoires. La
traduction du problème des trajectoires isogonales en
coordonnées tangentielles donne lieu au problème suivant qui
ne manque pas d'intérêt : Etant donné un système de

courbes /(m,v:a) rr 0, où a signifie un paramètre variable,
trouver un autre système F(m,î;;C) 0 tel que chaque
courbe de l'un des systèmes ait au moins une tangente
(réelle ou imaginaire) commune à chaque courbe de l'autre
système et que les rayons vecteurs des points de contact
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(ou le prolongement de l'un d'eux) fassent entre eux un
angle constant ß, en sorte que pour un observateur à l'origine

qui regarderait simultanément les deux points de contact

des tangentes communes, l'angle des rayons visuels soit

toujours le même.

Soit _, du\ 0

l'équation différentielle du système de courbes

donné. On en tire

tgarr-
du
dv — (f(u,v).

Fig. 9.

Or, pour les courbes cherchées on doit
avoir

-£=»<.+» tg« + tg/? _ — <f>(u,v) + tgß
1— tgatgß l+(p(u,v).tgß'

L'équation différentielle du système de courbes cherché est

par conséquent

du <p(u,v) — tgß
dv — 1 + <p(u,v).tgß '

L'intégrale générale de cette équation résout le problème

proposé.
Dans le cas particulier /5rr90°, l'équation différentielle

des courbes cherchées prend la forme simple

1du
dv <p (u,v)

Exemple. On demande de résoudre le problème énoncé

pour les paraboles confocales avec l'origine comme foyer

commun



du
dv ~

luv

celle des courbes cherchées devient

du, V* — M2

dv 2m v
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(1) M2 + l2 ZZ —v a

et ß rr 90°.

L'équation différentielle du système donné étant

i

¦

L'intégrale générale de cette dernière est

(2) «2 + v* -rr ¦

¦

On reconnaît aisément que ces courbes sont identiques, à

l'inversion des axes près, avec les courbes données.

Comme les équations (1) et (2) sont satisfaites pour
m rz v rr 0, la droite à l'infini est une tangente commune à

toutes les courbes. Deux courbes quelconques des deux
systèmes possèdent en outre la tangente commune

2a 2C
yrzw-a2 + C2' a2 + C2'

sa direction est donnée par

m a

Lorsque a rr C, il vient u rr v, c'est-à-dire la tangente

commune à deux courbes correspondant à la même valeur
des paramètres a et C, fait l'angle r rr — 45° avec l'axe

des X. On peut observer encore que ses points de contact

se trouvent sur les axes coordonnés. (Pl. 25, fig. 9.)
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B. Coordonnées tangentielles polaires.

26. La longueur q de la perpendiculaire abaissée de l'ori-
x v

gine sur une droite —|- — — 1 et l'angle g> que fait cette

perpendiculaire avec l'axe des X,
déterminent complètement la droite. En raison
de l'analogie qui existe entre cette manière
de fixer la position d'une droite et celle qui
consiste à déterminer un point par ses

coordonnées polaires, il paraît convenable

d'appeler q et (p les coordonnées tangentielles

x 11

Fig. io. polaires de la droite —I- ~ zz 1, savoir or ab
son rayon vecteur et <p sa déviation.

La transformation des coordonnées tangentielles rectilignes

en coordonnées tangentielles polaires est donnée par
les formules

Q 1

a zz

d'où

(1)

COS (p u '

sin (p

1

V '

COS (f

V-- sin ip

et la transformation inverse par

(2)

/m2+ V'
,COSç/: 'fûF+v- „smcpz V

v v
tgcprr —.
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L'équation q zz const, représente une circonférence du

rayon q comme l'enveloppe de toutes ses tangentes. L'équation

<p rr const, signifie un point à l'infini dans la direction
perpendiculaire à (p. On peut envisager ce point comme
l'enveloppe de toutes les droites perpendiculaires à la direction <p.

Les deux équations ensemble déterminent par conséquent
(le signe de q étant donné) une tangente particulière de la
circonférence.

En faisant les substitutions (1) dans l'équation

Mas + Vy _|_ i — o,
il vient

(3) x cos (p + y sin <p rr q

et si l'on pose encore

x rr r cos xp, y rr r sin xp,

où r et xp sont les coordonnées ponctuelles polaires du
point (x,y) :

(4) r cos (ip — (p) rr ç.

Les équations (3) et (4) représentent indifféremment soit
en coordonnées tangentielles un point (x,y) ou (r,xp), soit
en coordonnées ponctuelles une droite (o,cp), suivant qu'on
y regarde as. et y, r et tp ou q et (p comme constants.

Lorsqu'il existe entre q et cp une équation f(ç, (p) rr 0, les

équations (3) et (4) représentent pour chaque couple de
valeurs de q et ip une droite ; l'ensemble de ces droites
enveloppe une courbe F (x,y) rr 0 ou Q>(r,xp) rr 0 dont l'équation
en coordonnées tangentielles est précisément f(ç,<p) rr 0.

Si, au contraire, on envisage x et y, r et xp comme
paramètres variables, liés entre eux par les équations F (as,w) 0

ou ®(r,xp) rr 0, les équations (3) et (4) donnent pour chaque
couple de valeurs de as et m ou de r et xp, un point, et
l'ensemble de ces points forme un lieu géométrique, savoir
F (x,y) rr 0 ou d» (r,xp) rr 0.
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27. Transformation des coordonnées ponctuelles en

coordonnées tangentielles polaires et vice-versa. Soit

f(Q,<p) 0

l'équation d'une courbe. Une tangente quelconque de cette

courbe est donnée en coordonnées ponctuelles par

(1) x cos çp -f- y sin cp rr q.

En différentiant cette dernière équation par rapport à cp, on

obtient pour la tangente infiniment voisine

(2) — x sin çp -f- y cos cp rr -^-.

De (1) et (2) on tire les formules de transformation

dp
x rr r cos i//rç cos çp — -j— sin cp,

dp
y — r sin xp rr p sm çp -(- -^S- cos cp,

dç

y
Çsiny-f- —cosçp

J=tgt/,rr Jt
0 cos cp — -j^- sin cps dip

0. + wWçp/

Dans ces formules q est considéré comme fonction de cp ; en

conséquence, il suffit d'éliminer des deux premières équations

le paramètre cp pour obtenir l'équation de la courbe

sous une des formes F (x,y) rr 0 et <$(r,xp) rr 0.

Lorsque la courbe est donnée en coordonnées ponctuelles

rectilignes
F(as,M)rrO

l'équation

(1) as cos cp -f y sin çp zz q,



43 SÉP. ÉTUDE DES COURBES PLANES BULL. 43^

interprétée en coordonnées tangentielles, représente un point
de la courbe. Le point infiniment voisin satisfait à l'équation

(3) cos çp + sin cp ~ rr 0.

De ces deux équations il suit

dy
3 dx

V'+(:

col«=-;l-
En éliminant x (y étant considéré comme fonction de x) de

ces dernières équations, on arrive à l'équation f(q,çp) rr 0

de la courbe en coordonnées tangentielles polaires.

Enfin, si l'on veut passer des coordonnées ponctuelles
polaires aux coordonnées tangentielles polaires, on partira
des équations

r COS (xp — cp) rr q,
dr

cos (xp — çp) — r sin (0 — cp) rr 0,

desquelles on tire

2 L/dn"

dr
r sm xp ;— cos xpy dip y

tgy -jz
r cos xp + -r— sin xp

Pour les applications qui vont suivre, il sera utile d'établir
les équations en coordonnées tangentielles polaires de quelques

courbes bien connues.
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Coord, ponot. Coord, tg. pol.
1) Le point.

x rr a, y zz b, ou
au -+- bv + 1 rr 0 prr acoscp + ösincp.

2) La circonférence.

(x—«)2-f- (y—ß)* — a*. q a + acos(p + ßsm(p.

3) La parabole.

y» 2p^| —ä) pcosçprr-/).
4) L'ellipse.

+ r* rz 1 q zz/a2cos2cp-f-ö2sin2cp.

5) L'hyperbole equilatere.
as2 — w2 zz a2 p rr « }/cos2cp

6) La spirale logarithmique.
r ek* çrrcos#etf+?)t85,

où # rr arctg A.

7) La développante du cercle.

i x rr a (X cos X — sin X)
\ y rz a (A sin X + cos A) • • • • —«ÎT-

8) La cycloïde.
as rr fl(cosÂ—1)

ii/rrafA + sinLl)
<? 2a«psinçp.

9) L'épicycloïde.

i x rr — a sin A + ft sin T X '
¦

1 6 ,s /0 — 6

/ a,
• * « (« + *>™fc+T»).

f y acos/ — 0C0S-7-A
\ o

où le rayon du cercle fixe rr (a — b) et celui du cercle mobile

rr b. Lorsque 6 est négatif, la courbe devient une hy-

pocycloïde, par exemple pour a rr — c, 6 rr — — c

10) L'astroïde.

as ¦=-- c cos3 X 1

^zzcsinU «^«U*.
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Observation. On reconnaît immédiatement que si/(p,çp) rr 0
est l'équation d'une courbe en coordonnées tangentielles
polaires, /(r,i//)rr 0 sera celle de sa podaire par rapport à l'origine.

En d'autres termes : Le problème de trouver l'équation
d'une courbe en coordonnées tangentielles polaires est

identique avec celui de trouver en coordonnées ponctuelles
polaires la podaire de cette courbe par rapport à l'origine.

Interprété à ce point de vue, le tableau précédent donne
les podaires des courbes dont il y est question.

28. Interprétation géométrique de la dérivée ¦—¦ Asymptotes.

De l'équation

' + ($)"

il suit que la valeur absolue de ~ est un côté d'un triangle

rectangle dont l'hypoténuse est le rayon vecteur r du point
de contact et l'autre côté le rayon vecteur q- de la tangente

(£,cp) (fig. 10). La dérivée -~ mesure par conséquent sur la

tangente la distance du pied de la perpendiculaire q au point
de contact. Vu de l'origine, le point de contact se trouve à

gauche ou à droite de la perpendiculaire q, suivant que la

valeur absolue de q augmente ou diminue avec les angles
croissants.

La tangente (q,<p) est une asymptote toutes les fois que -j-aip

devient infiniment grand, sans qu'on ait en même temps

q rr oo.

29. Les coordonnées tangentielles se prêtent facilement à

la résolution de certains problèmes élémentaires tels que les

suivants : 1) On demande une courbe pour laquelle la dis-
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tance du point de contact d'une tangente quelconque au

pied de la perpendiculaire, abaissée de l'origine sur cette

tangente, soit une fonction donnée F (p,çp) de q et çp.

L'intégrale de l'équation différentielle

£='«¦»>
fournit la solution.

2) On cherche une courbe telle que le rayon vecteur du

point de contact d'une tangente (q,(p) fasse avec celui de la

tangente un angle qui soit une fonction donnée F (q,<p)

de q et çp.

Comme tg(xp — çp) rr — -7^., ce problème conduit à

l'équation différentielle

''"
rr tg [F(e,çp)].jl dq_

q dip

3) On demande une courbe telle que le rayon vecteur du

point de contact d'une tangente (q,(p) soit une fonction donnée

F(p,çp) de q et cp. Ce problème exige la résolution de

l'équation différentielle

F(W)=VV + (*)'.
Etc.

Exemple 1. Trouver une courbe pour laquelle la distance

du point de contact d'une tangente quelconque au pied de

la perpendiculaire abaissée de l'origine sur cette tangente
soit constante rr a.

On obtient immédiatement

dp

dip

d'où q rr a<p -f- C. (Développante du cercle.)
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Exemple 2. On veut que cette distance soit toujours rr nq.
Alors il vient

dq

o> n?'

q rr Ce"?. (Spirale logarithmique).

Exemple 3. On cherche une courbe pour laquelle xp rr n<p.

Dans ce cas on est conduit à l'équation différentielle

1 dq

-qdj tg(n-D»,
dont l'intégrale est

C
Q ^

J/cos(n— l)cp

Pour nrr 1 cette équation représente la circonférence q C,

pour w rr 2 une parabole, rapportée à son foyer.

Exemple 4. Quelle est la courbe qui satisfait à la relation

r rr nq
La réponse est donnée par l'intégrale de l'équation

différentielle

savoir par

q rr Ce' ,'"*-1 (Spirale logarithmique).

30. Différentielle de l'arc. Angle de contingence. Rayon de

courbure. En différentiant les équations (Cf. n° 27)

dq
X rr q cos çp — --— sin cp

dp
y rr q sin cp -f- -r— cosçp

par rapport à çp, on obtient
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f da; rr — (q + -j-M sin çp d çp

dy— (p + ^Jcoscpdçp,

d'où il suit pour la différentielle de l'arc

ds Y(dxy + (dyy (q + 0) dip.

Comme t rr 90° + çp (fig. 10), l'angle de contingence est

dt rr dçp.

Pour le rayon de courbure R, enfin, on trouve l'expression

simple

r _ ds _ d2?

dr * dcp2

Un observateur, placé au point de contact d'une tangente

(q,<f) de manière à avoir le point infiniment voisin devant

lui, aura toujours le centre de courbure à sa gauche. En

d'autres termes : Le centre de courbure se trouve du même

côté de la tangente que l'origine ou de l'autre côté, suivant

que q et R sont du même signe ou de signes différents.

Exemple 1. On demande une courbe dont la longueur de

l'arc s, compté à partir de çp rr 0, soit proportionnelle au

rayon vecteur q avec la condition que pour p rr 0, ¦—¦ zz a.

d2
on aComme s — C"(q + jXj d<p,

0

d'où par differentiation

d2p dq
" d<p3

~~ d(p '
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Pour intégrer cette équation différentielle linéaire, nous
distinguons trois cas :

1) n> 2. Dans ce cas l'intégrale devient

q zz Aexi? + Bex»î,

où l,-»+/**«-4 ; n-Yny^l
2 2

Les conditions initiales donnent pour la détermination des

constantes arbitraires A et B

A + B 0, XiA + A2Bzz a,

d'où A zz — Br r
en sorte que l'équation de la courbe demandée est

q rr — (eM?—ex»ç).

2) n < 2. L'intégrale générale de l'équation différentielle
est dans ce cas

n -r j" cT A en. gEg çp + B ™ gEg T
1

En introduisant les conditions initiales, il vient

ArrO,Brz_J-l_.
V 4 — ?i2

La courbe demandée a donc l'équation

2a f»? /a __ m*
g rr — e2 sin Li. iL«.

/4 — n2 2

3) n rr 2. Dans ce cas la résolvante de l'équation
différentielle possède une racine double. Par conséquent l'intégrale

est de la forme

p rr e (A + Bip) ;
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par suite des conditions initiales on a

AzzO, B — a,
de sorte que

q rr oçpe

1
Exemple 2. On cherche une courbe pour laquelle s rr — ag>s,

avec les conditions initiales çp zz 0, p zz ~- rr Ò.

Ce problème conduit à l'équation différentielle

d*q

d7^ + ^'
dont l'intégrale générale est

p rr acp -(- A cos çp + B sin çp.

Pour qu'elle satisfasse aux conditions initiales, on doit avoir

AzzO, Bzz —a.

Par conséquent la courbe demandée a pour équation

p rr a (çp — sin çp). (Développante du cercle.)

Exemple 3. Trouver une courbe dont le rayon de courbure

soit proportionnel au rayon vecteur p.(R rr nq).

dîq
Comme R rr p -j- --—-, il s'agit de résoudre l'équation

différentielle

$ <—>*
Suivant que 1) n > 1, 2) n < 1, 3) n rr 1, l'intégrale devient

1) p rr Ae? •'5=I -f Be-91'"711,

2) q Acos (cp/T^n) -f Bsin(cpVl —n),

3) p rr Acp + B.
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Dans le second cas la courbe est une épicycloïde, par
g

exemple pour n rr - une cardioide, pour n zz — 3 une as-

troïde, dans le troisième une développante du cercle et pour
A zz 0 une circonférence.

31. Relations entre une courbe et sa podaire. Si/(p,çp)rr 0
est l'équation d'une courbe en coordonnées tangentielles
polaires, on sait que /(p,çp) rr 0 peut aussi être envisagée
comme l'équation en coordonnées ponctuelles polaires de la

podaire par rapport à l'origine de la courbe considérée.

(Cf. n°27.) Or, la normale N et la sous-normale S„ polaires
d'une courbe sont respectivement

N=v^(J|)\s.= *,
d'où il résulte le théorème : La normale polaire en un point

quelconque P de la podaire d'une courbe
est égale au rayon vecteur r du point
correspondant P' de cette courbe et la sous-
normale de la podaire au point P est

égale à -—., savoir égale à la distance

PP' (Cf. n° 28).

En appelant w l'angle que fait la
normale au point P de la podaire avec le rayon vecteur p de

ce point, il vient

t» rr xp — çp cotg co rr cotg (xp — çp) rr p -^

Moyennant ces théorèmes la normale et la tangente de la

podaire peuvent facilement être construites.

Fig. 11.
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Le rayon de courbure R au point P' de la courbe

proposée étant (Cf. n° 30)

R-<? + dT2

et celui de la podaire au point correspondant P

¦dQ^-s

R'
b-+0j

«¦+¦($¦-.£

•[«¦+(Ä)l-«(» d*g\ 2r' — pR'+ d<p!

il existe entre les deux rayons de courbure la relation
linéaire

r2 f2

n, f* r"7 R'_ 7R rz t— — ZZ ; ou2r2 —pR 9^_R r 2l!_R
Q Q

Par conséquent, R étant connu, R' pourra être construit

moyennant une quatrième proportionnelle et réciproquement.

Observation. On peut remarquer que R' devient infiniment

grand, lorsque 2 —- — R rr 0. Une courbe qui satisferait en

tous ses points à cette dernière condition, aurait pour
podaire une droite. Or, on sait que la parabole, rapportée à

son foyer, est une pareille courbe. Afin de savoir s'il n'existe

pas encore d'autres courbes jouissant de la même propriété,
r2

intégrons l'équation différentielle 2 R rr 0 ou
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+ w) _ d'p
2-

p - e + dçp2
•

En la mettant sous la forme

d (-)V p / dp
acp rr ;—-, ou p rr -r—

on obtient d'abord l'intégrale première

çp — çp0 zz arctg ^ ou -J- rr tg(çp - c/0),

et ensuite l'intégrale seconde

log
C

~~ log cos ^ ~~ ^
qui peut s'écrire

C
P :

COS (çp — çp0)

On reconnaît par là que la parabole est la seule courbe

qui jouisse de la propriété indiquée.
R r2

L'équation -^- rr — permet une construction très simple

du rayon de courbure de la parabole. (Pl. 24, fig. 10).

32. Aire d'une courbe. En différentiant l'équation

cos(xp — çp)rr £(Cf. n°27),

il vient

— sin (xp — c/) (dip — dcp) rr d (£)

d'où l'on tire
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\r/ \r/ dip *acp
dxp — dcprr -—, -rr —r.—j—zz --—-. —dq,

sm(xp — çp) dp dq
d<p dip

dr dq dq d*q d%q^
q

< «<--ip ap a*p / « p\
p dcp q*d<p dw'dw1, v dq1/,dxp=- -r-dw zz -\ £ ^—2-dcp rr r-^—dw zzT r dq r dq r*

dq dq

«4dq.
r2

La différentielle de l'aire A d'une courbe en coordonnées
1

ponctuelles polaires étant dA rr — r2 dip, on a

dArrLr.#rrLçRdçprrL(e. + ?0)dy.
Si l'on désigne par At l'aire de la podaire de la courbe

considérée, en sorte que

^rr-p'dçp,
il suit

dA _ R
dAj ~~

p

Lorsque ce rapport est constant rr n (Cf. n° 30) et qu'on a

soin de prendre les intégrales entre les mêmes limites, il est

évident que le rapport des aires des deux courbes est le

A
même, savoir -r- — n-

A{
C'est ainsi qu'on trouve par exemple que l'aire de la

développante du cercle p rr acp est égale à celle de la spirale
d'Archimede p rr acp, si toutefois on compte ces surfaces à

partir d'une couple de points correspondants jusqu'à une
autre couple de points correspondants. (Pl. 25, fig. 11.)
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33. Polaires réciproques. On a vu (Cf n° 22) que le pôle

d'une droite (p,çp) par rapport à la circonférence pr 1 est
1

situé à la distance — de l'origine sur la perpendiculaire,

abaissée de l'origine sur cette droite. Par conséquent, si

/(p,çp)rrO est l'équation d'une courbe en coordonnées

tangentielles polaires, /(—,çp) rr 0 sera l'équation en coordonnées

ponctuelles polaires de la polaire réciproque de cette

courbe par rapport à la circonférence p rr 1.

Exemples.
Courbe donnée Polaire réciproque

en coord, tg. pol. en coord, ponct. pol.

1) La circonférence.

1 1

prra. — — • (Circonf. du rayon -).

p rr ]Ao2 cos2 cp -(- 62 sin2 çp

2) L'ellipse.

1

/a2 cos2 cp -f- b2 sin2 cp

1 1

(Ellipse aux axes - et t-)

3) La parabole.

1

pcosçprr-p
2 1

prr—cos çp. (Cire, du rayon -* p P
passant par l'origine.)

4) L'hyperbole equilatere.

—
1 (Autre hyp.

p — a y cos 2 çp
a/cos 2 çp eqml.)

5) La développante du cercle.

q — aq prr — (Spir. hyperbolique.)
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6) Courbe dont la podaire est une spirale hyperbolique.

pzz— prr—. (Spir. d'Archimede.)
q a

7) Spirale logarithmique,

q rr ae? p rr— e-?. (Autre spir. log.)

34. Courbes équidistantes. Soit/(p, cp) rr 0 l'équation d'une
courbe. De la définition des courbes équidistantes (Cf. n° 24)
il suit immédiatement que l'équation d'une courbe equidistante

s'obtient en remplaçant dans/(p,cp)rrO le rayon
vecteur p par q±k, en sorte que f(q±k,çp) 0 sera l'équation

cherchée.

Si R est le rayon de courbure en un point quelconque de

la courbe /(p,çp)rr0, R±& sera celui de la courbe
equidistante au point correspondant.

La longueur de la courbe/(p,cp)rr0 étant

: p'Rdcp,

celle de l'arc correspondant de la courbe equidistante sera

k)dq rr s ± k (çps — çp4),

ce qui démontre une des propriétés principales des courbes

équidistantes.

:J>

35. Développée riime. Les normales d'une courbe donnée

p rz/(cp) étant les tangentes de la
développée de cette courbe, on peut envisager

la développée comme l'enveloppe de

toutes les normales de la courbe proposée.

Or, la normale en un point
quelconque P de la courbe p rr/(çp) est

parallèle à la perpendiculaire, abaissée deFig. 12.
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l'origine sur la tangente en ce point et la distance entre ces

deux parallèles est égale à -r- (Cf. n° 28). De là il résulte

qu'en appelant p, et çpt les coordonnées tangentielles
polaires de la normale en question, savoir d'une tangente de

la développée, on aura

dp 1

Afin d'obtenir l'équation de la développée cherchée, il
suffit d'éliminer le paramètre cp de ces deux équations.

En répétant ce procédé on arrive aux équations suivantes

remarquables par leur simplicité

dnq n

où p„ et çp„ désignent les coordonnées de celle des tangentes
de la développée >iième qui correspond à la tangente (q,q) de

la courbe proposée. Par l'élimination de l'angle çp de ces deux

équations il vient pour l'équation de la développée nitme

correspondant à la courbe p =/(çp)

p„rr/»(çpn — Hj).

Exemple 1. Le fait que la développée /iiëme de la courbe

p rr a + 04 cp -f a2cp2 -f -f- a„ qn

est évidemment la circonférence p zz a, permet de reconnaître

qu'en ce système de coordonnées toute courbe pour
laquelle p est une fonction entière de cp du degré n, représente

une développante nièine du cercle. • *

Exemple 2. Soit la spirale logarithmique

p rr Ae°i.
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La développée nième de cette courbe, savoir

p„=: Aane°(f»-ni)

est identique avec la courbe donnée, mais placée différemment.

On peut obtenir la coïncidence des deux courbes en
choisissant convenablement la constante a. En effet, si m
désigne un nombre entier, il suffit de tirer a de l'équation

Aea(T-äm*) — Aanea(f-nf)

tï
ou 0 rr nlogo + a (2m— — n

Â

dqn dq
qui exprime que pn rr p et en même temps -f— rr -p- pour

<p„ rr cp. Pourvu que m > 0 et 4m > n cette équation admet

toujours une racine réelle. (Pl. 25, fig. 12.)

Exemple 3. Soit la cycloïde

p rr 2a [sin cp -\- (n — çp) cos çp].

La dérivée nièm* de p devient

j\ — la [(1 — n) sin (cp -f n J) + (n — q) cos (çp + n J)].

Tt
En remplaçant cp par (cpn — n ^-) dans cette équation, il suit

pour la développée ri'hme

n 4- 2
p„rr2o[(l— n)sinçp„-f- n — <pB)cos<p„3•

On reconnaît sans difficulté que cette courbe ne diffère de la

proposée que par la position.

Exemple 4. Soit Yépicycloïde

fa + b
p (a + 6)sin(£—£cp).

De cette équation on tire

dnQ ia /a + b\n /a + b n\
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It set en substituant pour çp sa valeur (qn — n =-), il vient
À

a -f 6\n r(a + è) cpn — nbrcl
qn=(a + b) (t--)n sin f a — 6 J'

Cette dernière équation montre que la développée nième de

l'épicycloïde est une courbe semblable à la proposée.

36. Développante rièmt. Par le procédé inverse de celui

qui a servi à déterminer la développée rita" d'une courbe

donnée p rr/(çp), on peut établir l'équation de la développante

ri*"*' de cette courbe.

Soient, en effet, p_i et çp_i les coordonnées tangentielles
polaires de celle des tangentes de la développante nihaK qui
correspond à la tangente (q,q) de la proposée.

Alors on doit avoir

dq_i n
5_zrp,çp_1zrçp_f,

d'où l'on tire en observant que
dcp_i zz dcp

Fig. 13. p-,zrJpdçp + C|.

En continuant ce procédé on obtient pour la tangente

(p_n, çp_„) de la développante nième correspondant à la

tangente (o,cp) de la courbe donnée

p_„ =fdqfdq Jpdçp + Ct q n~* + C, cp
—ä +

+ Cn_d çp + c„,

çp_nrrçp — H-

L'élimination du paramètre variable q de ces deux équations

conduit à l'équation cherchée.
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Exemple 1. Cherchons la développante nième du point

p rr a cos (f + 6 sin f.
On trouve successivement :

Pour la développante première

p_i osinc/> — ocosçp -f- Cj,

n9-i-9~- g-,

d'où p_i rr acos</>_i 4- bsinif—i -\- G,. (Circonférence

du centre (a,b) et du rayon C,.)

Pour la développante seconde

p _srra sin <p—\ — bcosip—i 4- C^-i 4- C2,

ip-i — V-i — 2»

d'où p-a^acoscp-a 4-6sinçf _2 4-CJçc,_a4-Cs.
(Développante du cercle.)

Enfin pour la développante riime
-

p_n acosçc5_„4- 6sin<?_„4- C^l-;1 H-CjÇpu-'^'-f

4-C«-! </>_„ + C„.

Exemple 2. La développante première de l'ellipse

p rr }/a2cos2ç/> 4- 62sin2<ß

est déterminée par

q-t zr P}''a2cos2ço4-6,sin!,f dç* 4- C, rr aE(A^) + C,,
0

où E(k,<p) signifie, d'après Legendre, l'intégrale elliptique

de la seconde espèce en question et k zz -

9-1 9-%.
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De ces deux équations il suit :

BULL. 453

n.p_1rzaE(^_1-L.-)-|-C1.

Exemple 3. Pour la développante première de la parabole

a

il vient
cos <p

3 1

P_j rr alogtg (^ n + ^ f_i) 4- Ct.

37, Podaire nlème d'une courbe par rapport à l'origine.
Bien que renonçant à l'emploi des coordonnées tangentielles
polaires pour la solution du problème des podaires nibma, le

problème lui-même a paru assez important pour justifier son

insertion dans ce mémoire. La solution pourrait d'ailleurs
se donner avec la même facilité en coordonnées tangentielles.

Soient r,xp les coordonnées polaires d'un point P quel¬

conque de la courbe proposée

r=f(ip), ri,xpi-, r2,i/'2; rn,xpn
les coordonnées des points
homologues P4, P2,...Pre respectivement

de la lrc, 2ae,...nième podaire
de la courbe donnée et soit # l'angle

que fait la tangente au point
P avec le rayon vecteur r. Alors

Fig. 14.

on sait que d'une part

et d'autre part (Cf. n° 31)

rdxp

dr

dri
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en sorte que
dxp dxl'i
dr * dr{

En continuant ce même raisonnement, on obtient les égalités

dxp dxpi dxpt _ _ rn dt//„
dr * dri 2 dr3 drn

qui démontrent le théorème : En des points homologues les

tangentes des podaires successives d'une courbe donnée font
avec les rayons vecteurs correspondants des angles égaux.
De ce théorème on déduit immédiatement

r,rz r sin # i

r2zz rt sini> r sin2 # Ì

r»rr rn-_isin # :— rsin" &

et VBrr xp — n (-l2 -Ü).
Les deux équations

r

W> + &"
^rr^-narctg^)dxp)

résolvent le problème proposé. Dans les cas où l'élimination
du paramètre xp est possible, on obtient l'équation de la
podaire niime sous la forme F(rn,xp„) rr 0.

Ces équations restent encore applicables, lorsque n est

zéro ou un nombre entier négatif. Pour une valeur négative
de n la courbe donnée figure elle-même comme podaire rihmt

de la courbe cherchée. Dans le cas de «rrO on retombe

sur la courbe donnée.



63 SÉP. ÉTUDE DES COURBES PLANES BULL. 455

Exemple. Appliquons les formules précédentes au cas

o
r zz

y cos mxp

où m signifie un nombre positif ou négatif, entier ou
fractionnaire. On obtient pour la podaire niëm<!

O n——-ro (cos mxp) m

y cos mxp [y 1 -{-tg1 mxp]

i//„r xp — n.arctg (tgmxp) rr (1 —nm) xp,

d'où en éliminant l'angle xp

[mipn 1 »-—
cos -A—-— m

1 — nm]
Cet exemple donne lieu à de nombreux cas particuliers.
Considérons-en quelques-uns.

1" cas particulier. Soit m rr 1 ; alors la courbe donnée

a

cosi//

est une droite parallèle à l'axe des Y. Sa podaire nième a
l'équation

rB-a^C0S__J
Cette formule devenant inapplicable pour n rr 1, ce cas doit
se traiter directement. On trouve

tpi rr 0, rfra.
La podaire première de la droite est par conséquent un point
sur l'axe des X.

1

nrr2, r2zzacosi/v (Circonférence du rayon --¦ a passant
Jt

par le pôle.)
1

n rr 3, r5 rr — a (1 -f cos xp*). (Cardioide.)
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n 4, U fl (COS
ccj

i//„)5,

n — —-1, r.
a 2a

- t
i

(Par-'-, 1
(COS j xp.-i)S

"~i + COS xp_

n — —•2, r.
a

(Pl. 25, fig- 13.)~*~
<

1

(cos-i//_-O'

2?- cas particulier, m rr 2.

r rr (Hyperbole equilatere.)
}/cos2t/<

rBrza[cos(r^)]n-5.

n rr 1, r, zz a /cos 2i/v (Lemniscate.)

2 |
n rr 2, r2 zz o (cos ô- c//2 "

l.r^rr- ~ -5. (Pl.25,fig. 14.)

(TOS g (//_-

On peut remarquer que deux hypothèses m rr \i et m rr r
1 1

amènent les mêmes suites de courbes, lorsque n rr v p.

est un nombre entier. Par exemple /x rr 1, rr- ;

4
fizz 3, v -

Remarque. Les rayons vecteurs r, ri, r2, rn formant
une progression géométrique, et les angles correspondant

V.V— (f -*)- V —2 $—*),... V-»(j-*) une
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progression arithmétique, il est évident que les points
P,P^.-.P« d'une courbe donnée rrr/(<//) et de ses n
podaires successives sont situés sur une spirale logarithmique
dont l'équation est

(fr-ff)log sin 3
iiu—a

R r.e 2

où R et *P désignent les coordonnées courantes et où

(rdxp\»=•*<%)¦
38. On propose de trouver une courbe dont la podaire

nifeme sort une courbe semblable par rapport à l'origine prise

pour centre de similitude.

Il y a trois cas à distinguer.

1er cas. La similitude est telle que les rayons vecteurs des

points homologues sont proportionnels, savoir rn rr mr.
Dans cette équation m doit évidemment être un nombre
fractionnaire.

Soit r —/((//) l'équation de la courbe cherchée. La fonction

f(xp) doit alors satisfaire à l'équation différentielle

rmr zz ;—

d'où l'on tire

dr J _!
— zz y/ m n — 1 dip-

L'intégrale générale de cette équation est

log j, rr xpy m n — î.

ou

v:r-Ce1 ' m "-1

30
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En posant pour simplifier }jm~n— 1 rrtgco, l'équation de

la courbe cherchée devient

rr: Ce*'8™,

celle de sa podaire niëme

r„ rr C cos n m e (+» + "••) « u.

Ces deux courbes sont des spirales logarithmiques identiques,

mais placées différemment. En tournant la première
d'un angle

xp0 — n cotg w [w tg w 4- log cos w~\

autour de l'origine dans le sens des angles décroissants, on

peut amener la coïncidence.

Il est presque inutile d'ajouter que pour rwzz 1 on obtient
la circonférence r rr C.

2d cas. On demande que la similitude soit directe avec

correspondance arbitraire des rayons vecteurs proportionnels.
Si dans ce cas rrr/(t/j) est l'équation de la courbe cherchée,

celle de sa podaire nième aura la forme

rn rr mf(xpn + p),

où m et (i sont des nombres réels quelconques. Pour la
première de ces courbes on a

° /'M
et pour la seconde

ig^/fe+je-i
"/'(M+^n)"

Or, en des points homologues qui correspondent à

xp.= xp, xpnzzxp — n.arctg /(V) '
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on doit avoir y rr S- (Cf. n° 37), d'où il suit l'équation

f{Xp) /'[,+ ^-narctgÄ]'
à laquelle on peut satisfaire par l'hypothèse

/M- *

f'(<p)--k'
où k désigne une constante. L'intégrale générale de cette

dernière équation différentielle étant

log-^ rr ± kxp ou r =/(</,) rr Ce±ki,

on reconnaît que la courbe cherchée sera encore une spirale
logarithmique. La constante k se détermine moyennant la

condition qu'en des points homologues on ait (Cf. n° 37)

r Ce±H
rn

"~W>y£)TVii+krrdxp

ou

_i i - i i i \- «i'mCe-,±k ]* + i — n arcig(±A-;; Ce

/(1+ *»)"'
d'où il suit

m e ± fc > - n arctg (± ;.-); _ 1

~Y{\+Wn'
et en prenant les logarithmes

log m ± k (u qr n arctgfc) + - log (1 + k1) rr 0.

Si l'on convient de prendre le radical } 14- k- positivement,
m devra aussi être un nombre positif.
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Discussion des deux équations

1%

(1) log m + k (n — n arctg k) -f ^ log (1 + k?) rr 0,

(2) log m — k (p 4- n arctg k) + ^ log (1 + A2) rr 0.

Comme (2) s'obtient de (1) en changeant k en —k, il est

clair que si les deux équations possèdent des racines

positives, elles admettront aussi des racines négatives. Il suffira,

en conséquence, de constater dans les différents cas l'existence

ou l'absence de racines positives.
Considérons d'abord l'équation (1)

f(k) log m + k (xi - n arctg k) + | log (1 + k1) rr 0,

en n'admettant que des valeurs positives de n. Comme

/' (k) rr ci — n arctg k

s'annule pour Ä rr tg - et que

la fonction/(A") possède un maximum pour A; zz tg —.

Soit maintenant 1) m > 1, /t > 0. La valeur initiale

/(0) zz log m étant positive, le maximum

log m 4-1 log (1 4- tg21)

le sera aussi. Pour que la fonction puisse devenir négative,
Tt

p doit satisfaire à la condition p<in — Alors l'équation

possède une seule racine positive.
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2) m < 1, p > 0. La valeur initiale est négative. Pour

que le maximum soit positif, il faut que

n

g- log (1 4- tg2 — > — log m, ou p > n arccos /m.

Si on prend encore p<.n — en sorte que

n
Tt II ,/
cccr > — > arccos y m
2 n

ce qui est toujours possible, l'équation possède deux racines
n

positives qui dans le cas limite g, zr n arccos Ym coïncident.

3) m>l, j«<0. La valeur initiale est positive. La fonction

décroît jusqu'à — oo. Par conséquent il existe une seule

racine positive, sans que p soit soumis à une condition de

limite.

4) m<Cl, M<0. Ce cas diffère du précédent en ce que
la valeur initiale est négative, d'où il suit que l'équation (1)
n'admet point de racine positive.

Si l'on applique le même raisonnement à l'équation

f)
(2) f(k) rr log m- k (,« -f n arctg k) + - log (1 + /c2) zr 0,

on trouve

1) m > 1, jtt > 0. Une racine positive; p sans condition.

2) m < 1, p > 0. Point de racine positive.

Tt
3) m > 1, tt<0, — ju <C m ô-. Une racine positive.

n

4) m<l, jU< 0, — > > arccos /m Deux raci-

n

nés positives qui coïncident à la limite —^tt m arccos /m\



462 BULL. H. AMSTEIN SÉP. 70

Remarque. Afin d'obtenir, pour la construction, des courbes

dont on connaisse la forme à l'avance, il est plus simple
de choisir k et de calculer p. C'est ainsi que pour

«rr 1, mrr-, k rr — 1

on a trouvé (i rr — 1,1319718...rr — 64°51'26" et par la
suite

r zr Ce-*, r, rr L Ce«-««-— ?>, (Pl. 25, fig. 15.)

tandis que les hypothèses

n 2, m rr 4, A rr -7=

donnaient

p rr — 1,8522151... rr — 106°7' 27",
i/ +—1,8582...

r Ce v'\ r2rz4Ce •* (P1.25, fig. 16.)

#"e cas. On demande que la similitude soit inverse.

En suivant un raisonnement analogue à celui qui a été

employé dans le second cas, on trouvera que la circonférence
seule répond à toutes les conditions du problème.

39. Comme dernière application des coordonnées tangentielles

polaires on pose le problème : Trouver une courbe

dont la développée nitme soit une courbe semblable par
rapport à l'origine prise pour centre de similitude.

Ce problème a beaucoup d'analogie avec un problème
plus général concernant les développoïdes qui a été traité
récemment par M. Haton de la Goupillière dans son
mémoire : Recherche sur les développoïdes des divers ordres.

(Annales de la Soc. se. de Bruxelles, 2e année, 1877.) Aussi
n'en donnons-nous ici la solution qu'à titre d'application in-
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téressante des coordonnées tangentielles polaires. La perte
de généralité provenant de ce qu'on a disposé d'avance du
centre de similitude, trouve en quelque sorte une compensation

dans l'avantage que la solution proposée se prête à

la construction sans intégration préalable. Quant au mode

de solution, nous ne saurions mieux faire que de suivre
l'analyse élégante de M. H. de la Goupillière.

Il convient de distinguer les cas de la similitude inverse

et de la similitude directe, tout en laissant arbitraire la

correspondance des rayons vecteurs proportionnels.

I. Similitude inverse. Soit prz/(ç>) l'équation de la courbe

cherchée. Celle de sa développée ni6n"J aura la forme

p„ zz mf(gi—<pn),

où m et p signifient des nombres quelconques positifs ou

négatifs. Or, on sait (Cf. n° 35) qu'en des points correspondants

on doit avoir

d"p n

Tt
Si donc on donne à 9„ la valeur <p -f n --¦, il vient

(1) qn=fn(<p) mf(ß — n^ — <p),

et en différentiant cette équation encore n fois

(2) fin (f) rr e» mfn (u — n J — 9),

où s est mis pour — 1. C'est une équation aux différences

mêlées. Pour la ramener à une équation différentielle

ordinaire remplaçons <p par p — n -^ — <p, ce qui donne

/«»0*—n J - 9) *n m/" (9)
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et moyennant (1)

fìn(p — n^ — 9) sn m2f(fi — n^ — ip).

Tt
En remplaçant de nouveau p — n <p par 9, on obtient

l'équation différentielle linéaire de l'ordre 2n

(3) /*»(?)-*«m2/(çp),
dont l'intégration n'offre aucune difficulté.

En effet, la résolvante de (3) est

Âînrr ê"m2 rr e^m1, où i rr/— 1.
On en tire

n

Xy, rr reak», r rr y [m]
où [m] désigne la valeur absolue de m et

«4-2 (ft — 1)
2?l

L'intégrale générale de l'équation (3) est par conséquent

qz=f((p)-2Aie^.
1

En observant que Xv. zr — Ak., lorsque /c" rr n -f ft', on peut
écrire

n
(4) prz2(Ake^4-Bke-^)-

1

Or, l'intégrale (4) devant satisfaire non-seulement à l'équation

(3), mais aussi à l'équation différentielle (1) qui est de

l'ordre n, il s'ensuit que n des constantes Ak et Bk ne sont

pas arbitraires. L'équation (1) servira à les déterminer. En

y remplaçant f(9) par la valeur trouvée, il vient

2X"k (Ak«»w + e"BkC-V) rr
i

n
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Dans ces deux sommes les termes d'indices différents ne
permettent plus de réduction entre eux, on peut donc se borner
à comparer les termes généraux, ce qui donne

A^(Ake1kî + ««Bke-xkT)zz

rr m[Ake'Ak^-nIi e-''k<?-|-Bke-,'k<ii-n5> e1"],

xlAk mBYe-^^-ni>

AktnBk zz mAkexk b~nlK

De l'une ou de l'autre de ces dernières équations il suit

xn
Bkrr — e'lck-np. &

m

^ X), \m\Comme — rr ^-^ e™v
m m

on a maintenant

n u

p rr 2 Ak [e*w ± e n«k» + »k (*-*£-»)],
i

où l'on prendra le signe supérieur ou le signe inférieur,
suivant que m est positif ou négatif.

Afin de faire disparaître l'imaginaire de l'intégrale p, il
faut distinguer les cas de n pair et de n impair.

a) Lorsque n est un nombre pair, chaque terme de la
n

somme 2 est accompagné d'un terme conjugué, sauf toute-
i

nfois les deux qui correspondent àftrrl et à ft rr — 4- 1.

Si l'on considère ces deux termes en premier lieu, on a

at rr - Tt, X^re* rr n

et <i ^.rrcT, Xy L.rzrert'zz
cjn +1 ' |n + 1
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Par conséquent, le premier terme de la somme devient

A4 [ep*' dr efu'e-rï*] rr
rr 2 Ai [(cosrip -\- i sinrç>) dr e8' (cosr<p —- i sinrç»)] rz

2A4 [(1 ± e^) cosrço -f t(l q= e8i) sinrç>],

où ß=n^ + r(n — »2).

Soit, pour simplifier

2A1(l±e80rrC,
d'où

ctgL^
»c.

« .**..'' /-c«*',
suivant qu'il s'agit des signes supérieurs ou des signes

inférieurs.

En introduisant ces valeurs, le premier terme prend la
forme

ÌC
1

j—cos (rip--ß)
cos jß

— sin (rp — -ß),
sin

g
ß

ou si l'on modifie encore la constante arbitraire

1
cos (rf — wß)

ci \
sin(rçp — -ß).
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Le terme correspondant à l'indice (-^n + 1) se présente

sans transformation préalable sous la forme réelle

Quant aux autres (n — 2) termes, il suffira pour amener
la forme réelle de faire la somme et la différence de deux

termes conjugués (abstraction faite des constantes

arbitraires), tels que

e^k? -f- gnafci* 4-Xfc (n — ng — t) —

— o Vf (cos «k + i sin ok) _j_ g n«kt+. r (cos otk + i sin «k ([i — nj—?)

exVdr e — "V + ^'k k — n2~?! rr

— gfç (cos«.—i sin ak)_(_.,— tt<*ki+ r (cos«k — isin otk) (i* — n- — ç)

OÙ Â'jjrrre-^4

signifie le nombre conjugué de Ak. En changeant encore
convenablement les constantes, on aura remplacé les termes

complexes aux indices ft et n — (ft — 2) par l'expression
réelle

Qk er?cosak cos (rçcsinak) dr ercos*k G*-»!-?).

cos [wak 4- r (fi — n--- — 9)sin «J \ 4-

4- Dk \ er?cos«k sin(ry sinak) dr ercosak d*-";-?).

sin [n«k 4- r (« — m --¦ — ç>) sin «J j.

Si l'on désigne, pour abréger, cette expression par F(ç>,ft),

la forme définitive de p devient
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(5) î 1

[cos(rf—-ß)
ç cA

1
+C|.+1[«-p»±«-r?'-"I»<f»] +

sm(rip—-ß)

+ 2F(<p,k).
2

Dans cette équation, où les lettres r, ak et ß ont la
signification suivante

V-T, n + 2(ft —1) fl N nr — y [m], «krr A^ i tt, /3zz rçt + (1 — r)n ^
on prend les signes supérieurs ou inférieurs, suivant que m
est positif ou négatif.

b) Lorsque n est un nombre impair, chaque terme de la
n

somme 2 se trouve accompagné d'un terme conjugué et il
i

n'y a que le premier qui doive être considéré séparément.
En procédant de la même manière que dans le cas a) et en
maintenant la signification des lettres r, ak et F(çp,ft), on
obtient

cos(rç* —-/?) |(n +
(6) pzrCJ i + 2F(9,k).

[ sin(r<p—-ß)

Dans le cas le plus simple, n rr 1, r rr 1, la courbe se

réduit à un point ; pour n rr 1, r y. 1 elle devient une épi-

cycloïde.

II. Similitude directe. Si dans ce cas p—/(f) est l'équation

de la courbe cherchée, celle de la développée nième de

cette courbe sera

p» mf(p + 9„).
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Or, comme

Qn dr pour Çn 9 + n ï '

on est conduit à l'équation différentielle de l'ordre n

(1) f*(9) mf(tl + n% + 9).

La résultante de (1) étant une équation transcendante

Xn zz m.e^ + "f)

elle ne pourra en général être résolue que par approxima-
Tt

tion. Cependant, cela n'arrive pas lorsque /tzr — n —, c'est-

à-dire lorsqu'on admet que les rayons vecteurs proportionnels

p et p„ appartiennent à des points homologues des deux

courbes. En effet, dans cette hypothèse la résolvante prend
la forme

Xn rr m,
et l'intégrale générale de (1) devient

(2) p rr J Ake'k?;
Ì

où pour une valeur positive de m

2(ft-l)
r rr }'m, «k rr w, /k zz re V

n

et pour une valeur négative de m

n
i fr n ri ti —- 1

r rr y\m\, c*k zz n, Xk zr reV

Pour débarrasser l'intégrale (2) des imaginaires, il faudra

distinguer entre les valeurs paires et impaires de n. Moyennant

le procédé connu que nous venons d'appliquer sous I)
et en désignant, pour plus de brièveté, l'expression

Cker* COi"k cos (r<p sin «k) + Dker?c08'k sin (rçc sin «k)
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par F(ip,ft), on trouvera

1) pour m>0 et« pair

-n
9 Cei +Ci e-*i + 2F(9,k);

2n + 1
2

2) pour m>0 et n impair

prr de*- + 2 F(9,k);
2

3) pour m<^0, n pair

I»
o=2F(9,k);

i
4) pour m < 0, ?i impair

* C^ + 1,«-r' + *f~lW
Parmi les courbes représentées par ces quatre équations

se trouvent comme cas particuliers le point, la spirale
logarithmique, l'épicycloïde, etc.

40. Si l'on demande une courbe dont la développée niima

soit une courbe semblable, en faisant abstraction du centre
de similitude, quelques légères modifications dans la
méthode employée au numéro précédent, suffiront pour
résoudre ce problème plus général.

Une première modification consiste à rapporter les deux

courbes, savoir la courbe cherchée et sa développée niime, à

deux systèmes différents de coordonnées tangentielles
polaires dont les axes sont parallèles.

Soit alors, par exemple, dans le cas de la similitude
inverse p rr/(ç>) l'équation de la courbe cherchée, rapportée
au premier système de coordonnées et

p*n rr mf(n — 9n)
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celle de sa développée nièrae rapportée au second système de

coordonnées. L'équation de la

courbe cherchée, transformée

dans le nouveau système, sera

p* zz f(f) — a cos 9 — b sin ip,

où a et b signifient les coordonnées

rectangulaires de l'origine
du second système de coordonnées

par rapport au premier.
Or, comme les deux courbes sont maintenant rapportées

au même système de coordonnées, en des points homologues

on doit avoir (Cf n° 35)

* dnq* Tt

Fig. 15.

dç>"

c'est-à-dire

(i)mf(p—n~—<p)=fn(9)—a.cos(9+n-^)—bsm(9+n^).

En différentiant cette équation deux fois

(2) m/'(u—n^—9)=fn+t(9)+acos(<p+n~)+bsin(9+n%)

et en ajoutant (1) et (2), il vient

(3)m[/(/c-nJ-ç.) + /"Cu-nJ-ç,)]rr/»(^)+/^(^)-

Si l'on différentie (3) encore n fois

m «» [/» (,«- n ~ -ip) +fn+\fi-n J -9)]=/în (9)+/ìn+ì (9)

Tt
et que l'on remplace 9 par (p — nâ~ 9Ì on obtient moyennant

(1) et (2) l'équation différentielle linéaire de l'ordre

(2n + 2)



472 BULL. H. AMSTEIN SÉP. Si)

(4) mh» [f(ç) +/'(9)-] rr /»»+¦ (ip) + /¦» i».
La résolvante de cette équation étant

(5) (A2 4-1) (2j«-mV')r.O
on voit que l'intégration n'offre aucune difficulté. L'intégrale
générale contiendra (2n 4- 2) constantes, dont (n 4- 2) peuvent

être déterminées à l'aide des équations (1) et (3).

Exemple. Dans le cas le plus simple

m rr 1 n rr 1, p rr 0,

où l'on exige que la développée première soit égale à la

courbe cherchée, les équations (1), (3), (4), (5) prennent la

forme

(1«) f(-^-<p)=f'(<p) + asm9~bcosV,

(3*) /'" (9) + f'{9) - f" (-~PW(-~-Ç»)=0,
(4°) /,v(f) + 2/"(ç.)+/(y?)zr0,

(5«) (Â2+1)2rz0.
La résolvante (5a) possède les racines doubles

X rr 4- * et Â rr — i.

Par conséquent l'intégrale générale de (4a) sera

p =/(?) (A 4- Bf) cos ip + (G -f Der) sin <?.

En substituant cette valeur de f(ip) dans l'équation (3a) on
trouve BrrO et (la) donne encore

1 1

Dzz — a, Czz-(0 — -an),

en sorte que l'équation de la courbe cherchée devient

p rr A cos 9 + \^-(b — ^ au) — aip sin 9
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et celle de sa développée première

p* zz A cos ft — [j (b — |- art) + aftl sin ft.

La courbe demandée est donc une cycloïde quels que
soient A, a et b. Or, comme le terme A cos q n'a pour effet

que de déplacer les deux courbes parallèlement à elles-

mêmes on peut faire A rr 0. Alors, en choisissant par
exemple o zz — 2c, b rr — en, il s'ensuit

Q '-~ 2ccp sin q,

et tf rr 2CÇ/JJ sin qt

ou en coordonnées rectangulaires

x zz X* :rr —c(l—icosxp)

y — y* rr c(xp + sin xp).

Errata. — Page 440 Bull. (sép. 48), ligne 5 en remontant, lisez

0, au lieu de p 0.
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