Zeitschrift: Bulletin de la Société Vaudoise des Sciences Naturelles

Herausgeber: Société Vaudoise des Sciences Naturelles

Band: 14 (1875-1877)

Heft: 75

Artikel: Matériaux pour servir à l'étude de la faune profonde du Lac Léman. Part

2

Autor: Forel, F.-A.

Kapitel: XXV: Analyse chimique du limon du fond de quelques lacs suisse

DOI: https://doi.org/10.5169/seals-258465

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

limon du fond des mers prouverait au contraire l'existence d'une période glaciaire, dans les régions polaires, analogue à celle qui y règne actuellement.

F.-A. F.

§ XXV. Analyse chimique du limon du fond de quelques lacs suisses

par MM. E. Risler et Walther, à Calève sur Nyon.

(Suite du § III.)

Voici les résultats de l'analyse de quelques échantillons de limon provenant de divers lacs, qui nous ont été remis par M. Forel.

Le fer a été dosé à l'état de peroxyde, mais il se trouve dans les limons à l'état de protoxyde; le contact des matières organiques le maintient dans cet état ou le réduit. De là vient la couleur gris-bleue des limons; la surface seule des échantillons se colore peu à peu en rouge, parce qu'elle s'oxyde dans les flacons où ils sont conservés.

Un fait à remarquer c'est que les limons des lacs de Neuchâtel, de Zurich, et de Constance, comme celui du lac de Genève, ne contiennent que des traces de potasse et de soude solubles dans l'acide chlorhydrique; mais il est probable qu'il y en a une certaine quantité à l'état de silicates dans la partie inattaquable par les acides. Les masses d'eau, dans lesquelles le limon était en suspension avant de se déposer, ont dissous la potasse et la soude qui se trouvaient en combinaisons solubles, comme elles

ont dissous les sulfates. L'eau du lac Léman contient par litre 5 milligrammes de soude, 2 milligrammes de potasse et 34 milligrammes d'acide sulfurique à l'état de sulfate de chaux (1).

16
80
2
19
)2
8
30
8
13
0

. 74,74 82,58 68,63

100,00 100,00 100,00 100,00 100

50,77

Partie impalpable.

⁽¹⁾ Bull. Soc. vaud. Sc. nat. XII, p. 175.

Pour compléter ces analyses il aurait fallu décomposer la partie inattaquable par l'acide chlorhydrique, soit au moyen du bicarbonate de soude, soit par l'acide fluorhydrique; elle est sans doute composée de particules très fines de silice et de silicates de toutes sortes.

Voici comment nous avons procédé pour l'analyse physique, c'est-à-dire pour la lévigation par laquelle nous avons séparé dans le limon de sable fin des particules impalpables. On en met une certaine quantité dans un verre à bec qu'on remplit d'eau et l'on agite avec une baguette de verre. Cinq minutes après chaque agitation on vide le verre et l'on recommence l'opération jusqu'à 38 ou 40 fois de suite, jusqu'à ce que l'eau ne se trouble plus.

E. R. et W.

Quelques indications plus précices sont nécessaires ici, sur l'origine et la provenance des échantillons de limon que M. Risler a analysés.

Les analyses I et II de limon du Léman ont été déjà décrites au § III (1^{re} série); les échantillons provenaient de 216 mètres et de 35 mètres de fond.

L'analyse nº III est du limon du lac de Neuchâtel pris devant la ville de Neuchâtel par 65 mètres de fond, le 12 août 1873 (¹). Ce limon avait été tamisé (²) et privé ainsi de tous les animaux vivants ou morts qu'il pouvait contenir.

- (1) Cf. § XXII. Dragage nº II.
- (2) Le tamisage n'a du reste enlevé que des débris orga-

L'analyse n° IV a été faite sur du limon du lac de Zurich pris par 50 mètres de fond devant Neumünster, le 17 août 1873 (¹), ce limon n'avait pas été tamisé, ce qui explique peut-être la proportion plus considérable de matières organiques.

L'analyse n° V, a été faite sur du limon du lac de Constance supérieur (Bodensee), récolté à une demi-lieue environ de la ville de Constance par 25 mètres de fond, le 21 août 1873 (²). Ce limon a été tamisé.

Le limon de l'analyse n° VI, vient du lac de Constance inférieur, ou lac de Zell (Untersee, Zellersee), devant Ermatingen par 20 mètres environ de fond (3); ce limon a été tamisé.

Si maintenant, sans entrer dans le détail des analyses, nous comparons les chiffres du tableau de M. Risler, nous remarquons au premier coup d'œil quelques faits intéressants.

Tout d'abord nous sommes frappés de la richesse relative en silice et en silicates du limon du Léman qui en contient de 66 à 67 pour cent, tandis que le lac de Constance n'en renferme que 41, celui de Zurich 33, celui de Neuchâtel 29 et enfin le lac de Zell 27 pour 100 seulement. La pauvreté du lac de Zurich et du lac de Zell s'explique en partie parce que ces lacs ne reçoi-

niques animaux et végétaux; il n'y avait dans aucun de ces échantillons ni cailloux ni sable grossier, et le tamisage n'a pu avoir aucune action sur l'analyse physique que M. Risler donne dans son tableau.

- (') Cf. § XXII. Dragage nº III.
- (2) Cf. ibid. n° V.
- (3) Cf. ibid. n° VII.

vent pas d'affluents alpins qui puissent leur amener directement de l'alluvion des montagnes primitives; la pauvreté en silice du lac de Neuchâtel s'explique par l'origine jurassique, c'est-à-dire purement calcaire, de la plupart de ses affluents. Mais la petite quantité de silice et de silicates du limon du lac de Constance, nourri, comme notre Léman, directement par un fleuve alpin ne s'explique pas immédiatement; elle provient peut-être de la localité même où j'ai fait mon dragage, localité située près de la sortie du Rhin hors du lac, loin par conséquent des lieux où l'alluvion alpine du fleuve se dépose. Quoi qu'il en soit la première conclusion que l'on peut tirer de ces chiffres, c'est la plus grande richesse en silice et en silicates de l'alluvion de la vallée du Rhône, comparée à celle de la vallée du Rhin ou à celle de la Limmat.

Quant à la quantité de chaux contenue dans ces limons, elle est à peu près directement inverse de la quantité des silicates. L'on n'a pas à s'étonner beaucoup de voir le limon du lac de Neuchâtel, avec son apparence crayeuse, être de beaucoup le plus calcaire parmi ceux de cette série; une seule chose pourrait être notée, c'est plutôt la grande proportion relative de silicates que l'on y retrouve encore. Mais cela s'explique suffisamment par l'abondance du terrain erratique provenant de la vallée du Rhône et par les terrains molassiques miocènes qui bordent les rives de ce lac.

Une preuve à l'appui de ce que je viens de dire de la richesse en silicates des alluvions de la vallée du Rhône, m'est fournie par les chiffres suivants tirés d'analyses de M. E. Risler (¹). Le limon d'alluvion de trois rivières torren-

⁽¹⁾ Journal de la Société d'Agriculture de la Suisse romande, XVI^e année, 1875, p. 75.

tueuses des environs de Sion en Valais lui a donné, entr'autres, les valeurs centésimales suivantes :

				Chaux	Ac. carbo- nique	Silice et silicates	Autres matières(*)
Limon	de	la	Morge (de Conthey)	22,8	11,0	48,5	17,7
»	de	la	Sionne	21,7	17,7	49,4	11,2
))	de	la	Borgne	2,3	1,7	88,1	7,9

La Morge et la Sionne viennent du nord, de la chaîne des Alpes Bernoises: leur alluvion est relativement beaucoup plus riche en chaux. La Borgne dont le limon est presque uniquement siliceux amène les eaux des vallées d'Hérens et d'Héremence, soit de la grande chaîne des Alpes valaisannes ou chaîne du Mont-Rose. Or comme la plupart des grands affluents du Rhône, la Viége, la Navisance, la Borgne, la Dranse viennent de cette chaîne du sud, la Massa qui vient du glacier d'Aletsch étant le seul affluent important de la chaîne bernoise, le limon de la Borgne représente mieux que celui des autres rivières le type de l'alluvion du Rhône. Sa richesse en silice donne donc en partie l'explication de l'abondance de cette substance dans le limon du fond du lac Léman.

Quant à la proportion des matières organiques dans le limon des lacs elle est partout très faible, et, connaissant la richesse de la faune profonde, j'aurais attendu une quantité relative plus considérable de ces substances; il faut cependant donner attention que la densité de ces matériaux organiques est beaucoup moindre que celle

⁽⁾ Dans cette colonne j'ai fait la somme des chiffres donnés par l'analyse pour l'acide phosphorique, la potasse, la soude, la magnésie, le sesquioxide de fer, l'alumine, les matières organiques et l'eau.

des matières inorganiques, et que sous un aussi faible poids relatif, leur volume est proportionnellement beaucoup plus considérable.

F.-A. F.

§ XXVI. Appareils pour l'exploration du lac.

J'ai dans le § IV, I^{re} série, exposé la méthode de dragage qui pendant plusieurs années m'a seule servi à collecter les animaux de la faune profonde. J'ai apporté quelques perfectionnements à ces recherches et je veux décrire ici mes nouveaux instruments.

1º Râteau à filet. J'attache au plomb de la sonde (2 à 3 kilogr.) par une ficelle de 3 ou 4 mètres de long l'appareil suivant que je traîne sur le sol. C'est un râteau en fer, le vulgaire râteau des jardiniers, de 20 centimètres de largeur, muni de 8 dents de 6 centimètres de longueur. Sur le râteau s'élève dans un plan vertical et perpendiculaire à l'axe du manche le cercle d'un filet de mousseline; ce filet recueille les animaux que le râteau, son manche et le plomb de la sonde dérangent et font sortir du limon. Au lieu du manche de bois du râteau je fixe un manche en gros fil de fer, de 25 centimètres de longueur, et je lui donne, après quelques essais, une inclinaison convenable, de telle manière que les dents du râteau frottent et grattent le sol, sans entrer trop profondément dans le limon. C'est à ce manche qu'est attachée la ficelle qui le relie au plomb de la sonde.