Zeitschrift: Bulletin de la Société Vaudoise des Sciences Naturelles

Herausgeber: Société Vaudoise des Sciences Naturelles

Band: 10 (1868-1870)

Heft: 62

Artikel: Table pour le calcul de la formule hypsométrique de la place

Autor: Burnier, F.

DOI: https://doi.org/10.5169/seals-256564

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

TABLE

POUR LE CALCUL DE LA FORMULE HYPSOMÉTRIQUE DE LAPLACE

PAR

F. BURNIER, lieut.-col.

Le calcul par logarithmes de cette formule peut être sensiblement simplifié par un moyen déjà indiqué par Gauss en 1818. Aucun recueil français, à ma connaissance, n'a reproduit ce procédé; d'ailleurs Gauss adopte le thermomètre Réaumur. C'est ce qui m'a décidé à présenter à la Société la note suivante et la table en question.

Je pars de la formule de Laplace telle qu'elle est donnée dans l'Annuaire du bureau des longitudes; en négligeant, toutefois, le terme, insignifiant à l'ordinaire, qui dépend de la hauteur de la station inférieure.

On ramènera les deux baromètres à la même température en multipliant la différence T—T' par 7 et en retranchant ce produit de la 5^{me} décimale du logarithme de $\frac{H}{\hbar}$.

Je pose:

$$B = \log \left\{ \log \frac{H}{h} - 0,00007 (T - T') \right\}$$

Je représente par C le logarithme donné par la table et correspondant à la somme t+t' des températures de l'air; l'on aura alors

$$\log Z = B + C$$

La table a été établie pour la latitude de $46^{1/2}$ ° et pour une différence de niveau $Z = 1000^{m}$.

Si l'on veut tenir compte d'un changement de latitude, il faudra faire varier la 5^{me} décimale de C, en sens inverse et à raison de quatre unités par degré; dans les limites d'une dizaine de degrés au nord ou au sud.

La valeur de Z donnée simplement par la formule log Z = B + C devra subir une petite correction additive indiquée par la tabelle suivante :

Z 1500^{m} 2000^{m} 2500^{m} 3000^{m} 3500^{m} 4000^{m} 4500^{m} correction + 0,1^m 0,3^m 0,6^m 0,9^m 1,3^m 1,8^m 2,5^m

F. BURNIER.

t+t'	C	diff.	t+t'	C	diff.	t+t'	C	diff.
— 10	4,25563	0.0	+ 14	4,27639	0.5	+ 38	4,29621	
_ 9	,25651	88	15	,27724	85	39	,29702	81
_ 8	,25740	89	16	,27808	84	40	4,29782	80
7	,25828	88 88	17	,27892	84	41	,29863	81
- 6	,25916	88	18	,27976	84	42	,29943	80
— 5	,26004	87	19	,28060	83	43	,30023	80
- 4	,26091	88	20	4,28143	84	44	,30103	80
_ 3	,26179	87	21	,28227	83	45	,30183	79
- 2.	,26266	87	22	,28310	83	46	,30262	80
- 1	,26353	87	23	,28393	83	47	,30342	79
0	4,26440	87	24	,28476	83	48	,30421	79
$\begin{vmatrix} + & 1 \\ & & 2 \end{vmatrix}$,26527	86	25	,28559	83	49	,30500	79
3	,26613 ,26700	87	26	,28642	82	50 51	,30658	79
4	,26786	86	28	,28806	82	52	,30737	79
5	,26872	86	29	,28889	83	53	,30816	79
6	,26958	86	30	4,28971	82	54	,30894	78
7	,27044	86	31	,29052	81	55	,30972	78
8	,27129	85	32	,29134	82	56	,31050	78
9	,27215	86	33	,29216	82	57	,31128	78
10	4,27300	85	34	,29297	81	58	,31206	78
. 11	,27385	85 85	35	,29378	81	59	,31284	78 78
12	,27470	85	36	,29459	81	60	4,31362	10
13	,27555	84	37	,29540	81		>	

Exemple de calcul (celui de l'Annuaire):

Résultat identique avec celui de l'Annuaire en ne tenant pas compte du terme dépendant de l'altitude de la station inférieure.

