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SÉMINAIRE DE MATHÉMATIQUES, UNIVERSITÉ DE NEUCHATEL

Directeurs : Professeurs Félix Fiala et Roger Bader

UTILISATION D'UNE MÉTRIQUE SINGULIÈRE

DANS L'ÉTUDE DES FORMES HARMONIQUES
SUR UNE SURFACE DE RIEMANN

par

WERNER SÖRENSEN

INTRODUCTION

La théorie des fonctions et formes harmoniques dans un espace de

Riemann a fait l'objet de nombreux travaux récents. Les progrès réalisés

ont leur source dans la découverte d'une généralisation adéquate de

l'opérateur laplacien A et dans le développement systématique de la
théorie non seulement pour des formes différentielles mais pour une
classe étendue de fonctionnelles linéaires (courants).

Les résultats obtenus dans ces travaux ne sont pas applicables
immédiatement à la théorie des fonctions et différentielles harmoniques sur
une surface de Riemann, puisqu'une telle surface n'est pas en elle-même
munie d'une structure d'espace métrique.

Dans le présent travail, nous associons à la surface S l'une de ses

différentielles abéliennes de première espèce 0, exprimée en coordonnées
locales par 0 dz et nous introduisons sur S la métrique attachée à cette
forme en posant ds2=dz-dz. Moyennant quelques précautions rendues
nécessaires par les singularités que présente cette métrique aux points
en lesquels 0 0, nous pouvons transposer le formalisme développé dans
les théories susmentionnées et étudier les formes harmoniques sur S

comme solutions de l'équation A/u=0. Précisons d'ailleurs que les

notions de fonction harmonique ou de champ harmonique de degré 1

sont indépendantes de la métrique introduite.
Dans l'étude de l'équation Afi=ip, nous n'avons fait usage d'aucun

résultat général concernant l'existence et l'unicité de la solution. Au
contraire, nous avons prouvé l'existence de celle-ci en vérifiant qu'une
forme explicitement indiquée satisfait aux conditions requises. En
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d'autres termes, notre procédé fournit, dans le cas des surfaces de

Riemann envisagées, à la fois l'existence de l'opérateur de Green-de
Rahm et la forme explicite de son noyau.

Le chapitre premier est consacré au rappel des notions fondamentales

et expose les modifications qu'il convient de leur apporter pour
tenir compte des singularités de la métrique. Pour l'essentiel, ces notions
sont empruntées à l'ouvrage de G. de Rham : Variétés différentiables
(Paris, Hermann, 1955).

Le chapitre II présente l'étude de l'équation Aju rp dans le cas d'une
surface de Riemann compacte (close). Nous y définissons par son noyau
métrique un opérateur G dont nous vérifions qu'il jouit des propriétés
de l'opérateur de Green-de Rham. Cet opérateur permet d'exprimer
comme courant (solution d'un problème de Cousin) la « différentielle
harmonique avec singularités » admettant des parties singulières données.

Le chapitre III reprend l'examen de l'équation Afjt — xp dans le cas
d'un domaine relativement compact à frontière très régulière. Nous y
indiquons le noyau de l'opérateur de Green-de Rham correspondant
aux diverses propriétés à la frontière qu'on peut exiger de la solution.
Dans l'application faite au problème de Cousin, le langage utilisé permet
de formuler de manière naturelle la condition qu'il convient d'imposer
à la donnée des parties singulières lorsqu'elles ne sont pas en nombre
fini.

Il m'est agréable, enfin, d'exprimer ici ma gratitude à M. R. Bader
pour l'aide efficace et amicale qu'il m'a prodiguée tout au long de

ce travail.
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CHAPITRE PREMIER

NOTIONS FONDAMENTALES

1.1 Introduction d'uree métrique sur S. Forme adjointe.
Produit scalaire

Sur toute surface de Riemann S, d'ordre de connexion supérieur
à 1, il existe une différentielle abélienne 0, régulière sur S et à

intégrale de Dirichlet finie (Nevanlinna, 1941).
Soit 0=dz l'expression de 0 en coordonnées locales. En posant

ds2=dz-dz, on définit une métrique sur S, singulière aux points isolés en

lesquels 0=0. Pour abréger, nous appellerons ces points les points 0
et nous désignerons par S* l'espace de Riemann obtenu en excluant les

points 0 de la surface S.

A toute forme C30, cp, de degré 0, 1, ou 2 correspond, tout d'abord
sur S<2> une forme adjointe * cp dont l'expression en coordonnées locales

est la suivante :

9>o=/(P)> *<Po=f(p)'
dz

dt

2

dt/\dt,
2

<p1 a ¦ dt -f- ä ¦ di, *tp1 i (—adt -\-a-di),

tp2 Adt Adt, *q>2 —2i-A
d

\o

Z

U

-2

On note immédiatement que pour une forme de degré 1, la forme
adjointe est indépendante de la métrique particuhère introduite.

Le définition de *y> sur S* est étendue à S par continuité, ce qui est

toujours possible pour *(p0 et *<Pi, mais en général pas pour *<pi, dont
les coefficients deviennent singuliers aux points 0.

Nous désignerons par & l'espace des formes C°° sur S, par Q0 le

sous-espace des formes dont l'adjointe est encore C°° sur S. &0 comprend
donc toutes les formes C30 de degrés 0 et 1, ainsi que les formes de

degré 2 qui sont l'adjointe d'une fonction C°°. Nous désignerons par 5)

l'espace des formes C°° dont le-support est compact et nous poserons
3)0 ê0n®.



A deux formes homogènes de même degré cp et tp, on associe leur
produit scalaire „

((p,f)= i cpy*tp

défini quand l'intégrale envisagée converge. On vérifie immédiatement
les formules

(<p,y>) (y,(p) et (*tp, *xp) (<p,xp).

1.2 Différentielles d'ordre n. Sous-espaces <§„, 3)„, <S[„.

Champs harmoniques

Nous désignerons par d l'opérateur de differentiation extérieure.
d fait correspondre à une forme de degré k une forme de degré & + L
dont l'expression en coordonnées locales est donnée par :

d<Po v ' dt + -~ ¦ dt, dcpl (~— — \dtAdi, dw2 0.
ot dt \dt dt/

La forme cp est dite fermée lorsque dcp=0.
Avec de Rham (1955), nous introduisons et désignons par ô

l'opérateur de codifférentiation défini par ô= — *d*. ô fait correspondre à

une forme de degré k une forme de degré k — 1 dont l'expression en
coordonnées locales est donnée par :

«„-*(£+£
>9>2 2

\dzi

dt\
i^Ad^dzY7+(SA_Ad2z(dzy]d.
\dt dt2\dt [di dPXdi

La forme q> est dite cofermée lorsque dq> 0.
Tandis que dep est associé à cp indépendamment de la métrique, ôq> en

dépend au contraire essentiellement. A cause de la singularité signalée
de *rp2, les formes òrpl — *(d*(pl) et ô(p2=—-*d *tp2 ont des coefficients
singuliers aux points 0 et ne sont donc pas des formes C°° sur S. Nous
désignerons par Q>x le sous-espace des formes de <§0 dont les différentielles
premières dep et ècp appartiennent encore à <8o-

Plus généralement, nous considérerons les différentielles d'ordre re

d'une forme cp, obtenues en lui appliquant re fois alternativement les

opérateurs d et i5. Nous appellerons ê„ l'espace des formes dont les
différentielles d'ordre ry n appartiennent à <§0. Les formes de ê„ qui
sont à support compact constituent le sous-espace S)„ <§„ D 3). Enfin,



nous désignerons par iSL le sous-espace de <§„ comprenant les formes
dont les différentielles d'ordre ^ re sont de norme finie. On remarque
que pour des formes de degré 0, ê Q>.= ê1 =j£ ê2. Cela entraîne que
pour des formes de degré 1, Q> Qa =£ Q>x &2 tandis que pour des

formes de degré 2, <§ ^ ê0 <Sj zjL <g2.

Si 99 et y sont des formes homogènes, le degré de tp étant égal à celui
de dtp, on a

d(<p A*ip)=dq> A* y—dipA*cp.

Intégrons les deux membres sur un domaine Q, de frontière régulière Q',
et appliquons à l'intégrale du membre de gauche la formule de Stokes

I da— I a
tr n *f n''Ci ^Q'

Nous obtenons, en notant (99, ip)a le produit scalaire étendu à Q

I (d<p,tp)ü=(<p, ôip)a+ <pA*xp.
Jq,

Cette formule fondamentale montre que :

L'opérateur ò est transposé métrique (de Rham, 1955) de d sur
l'espace ®j.

En effet, si 9? et tp sont à support compact, on peut choisir pour Q

un domaine contenant les supports de cp et xp. Les produits scalaires
étendus à Q sont alors les produits scalaires tout court et l'intégrale
sur Q' est nulle. Il n'est pas nécessaire de supposer tpe'S)2 car *ôtp est

régulier pour tout ye©!.
On appelle champ harmonique (Spencer, 1953) une forme

appartenant à ê0 et qui est à la fois fermée et cofermée : epe &0, dçp=0, àcp—0.
Les champs harmoniques de degré 0 sont les constantes. Pour le

degré 2, ce sont les multiples constants de -dzAdz, puisque l'adjointe

d'un champ harmonique est évidemment un champ harmonique. Pour
le degré 1, on peut écrire localement q>x df, puisqu'un champ harmonique
est fermé, donc localement exact. La condition ôqp1 ôdf=0 exprime,
comme nous le verrons au N° 1.3 que f est une fonction harmonique.
Les champs harmoniques de degré 1 s'identifient donc aux différentielles

harmoniques habituellement considérées en théorie des fonctions.
On peut observer d'ailleurs directement que l'espace des champs harmoniques

ne dépend pas de la métrique introduite, puisque les expressions
de d<px et d*^ n'en dépendent pas.
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1.3 Opérateur laplacien. Formule de Green. Formes harmoniques

L'opérateur qu'il faut considérer comme la généralisation adéquate
du laplacien est, selon de Rham (1954), l'opérateur

A dô + ôd.

L'expression de A cp est particulièrement simple sur S0 lorsqu'on se sert
des coordonnées locales z, z:

A<p0
à2f

dz dz
Acpi= Aa-dz -f- Aâ-dz, Aq>2 ==A A-dz Adz.

Les formes obtenues sont en général singulières aux points 0, pour les

trois degrés. Elles définissent par continuité des formes C30 sur S lorsque
cpe&1, mais cette condition n'est pas nécessaire. Calculons en effet Acft
en coordonnées t, i :

Acpi
d (da
dt\dt

d (dû
dt — 4 —

di\dt
di.

Plaçons-nous en un point 0, où dz=t"dt. En écrivant que la partie
singulière de Acpi est nulle, on trouve pour le coefficient a(t, ï)

a(t, i)=f{t) + f • i-g(i) + I-+1- f+1- h{t, i),

où/(t), g(i) et h(t, i) sont des fonctions C°°. On en tire

*dcpx -2i k{t) k{i)
tn in + òcpx--

t" i" + ¦

où k(i)=g(i) -f- ig'(i) et où les termes non écrits sont réguliers. Donc
Ç^i^^i bien que A<px soit C°°. Démontrons que :

Pour qu'une forme a dont A a est C30 appartienne à <SX, il faut et il
suffit que

frrth òaA*cp—cpA*da=0, pour 99e<g0

I désigne la limite d'intégrales sur des cercles de rayon s centrés aux
tf tp

points 0. Cette hmite ne dépend pas de l'uniformisante locale choisie).
La condition est évidemment nécessaire. Pour voir qu'elle est suffi-
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lisante, plaçons-nous dans le cas d'un point 0i en lequel dz a un zéro

simple. Au voisinage de ce point, nous avons

*da= — 2i k_k
t i + <3a -2 k k

-+-.t t
+

où k est une constante, les termes non écrits étant réguliers. Formons

&=f.(dt + di), ê'=f-i{—dt + di),

où f est une fonction C°°, égale à 1 dans un voisinage de 0i, dont le

support compact ne renferme pas d'autre point 0 et se trouve dans le
domaine du système de coordonnées t, i. Nous avons

k).I ôaA*ïï—&A*da=8n(k + k), i oaA*ïï' — &'A*da=87ii(k—
tf rp J0

Ces deux intégrales devant être nulles, puisque $,&'e&^, on a fc=0,
ce qui entraîne la régularité de *da et ôa au point 0t. Le cas où dz

présente un zéro multiple n'offre pas de difficulté supplémentaire. Ces

considérations peuvent être répétées pour chaque point 0 ; la condition
imposée entraîne donc bien ae&l.

Dans la formule fondamentale I du N° 1.2, posons d'abord cp=òa
et ip= ß puis cp=ß et ip=da, où aeQ>l. Il vient

(dda,ß)0=(oa,dß)Q+ CdaA'ß, (Oda, ß)a=(da,dß)n- \ßA*da.
JQ, Jq'

En additionnant membre à membre, on obtient

II (Aa,ß)a (da,dß)ü + (oa,oß)a+ i daA*ß~ßA*da.
Jar

Enfin, en permutant les rôles de a et ß, puis en soustrayant membre
à membre, on obtient la formule de Green

III (Aa,ß)a (a,Aß)0+ i aA*dß—ßA*da + daA*ß-OßA*a.

En prenant pour a et ß des formes de ©j dont le support est contenu
à l'intérieur de Q, on voit que :

L'opérateur A est son propre transposé métrique sur 2\.
L'hypothèse a,ßei5)1 suffit en effet pour assurer la continuité des

integrands dans les produits scalaires (Aa,ß) et (a, Aß).
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Nous appellerons forme harmonique une forme appartenant à <§i et
vérifiant sur S* l'équation Acp=0.

Pour le degré 0, la condition Acp0 ôdf=0 équivaut à d*df=0.
Or cette expression est indépendante de la métrique introduite : les formes

harmoniques de degré 0 s'identifient aux fonctions harmoniques
habituellement étudiées en théorie des fonctions.

Pour le degré 2, les formes harmoniques sont les adjointes des

fonctions harmoniques, puisque *A A*.
Pour le degré 1, bornons-nous ici à insister sur le fait que la condition

Zl93= 0 sur S<p n'entraîne pas cpeQ>l. Nous donnerons aux Nos 2.3 et 3.4

des exemples de formes C sur S, vérifiant l'équation Zlç?=0 sur S$

mais n'appartenant pas à Q-,. Nous les appellerons formes
pseudoharmoniques.

1.4 Topologie sur les espaces de formes. Notion de courant

Un ensemble £)lC de formes 99 est dit localement borné au point p si,
dans un voisinage compact de p, les dérivées partielles d'ordre y=k des

coefficients des formes 99 sont bornées, quel que soit k.
9ÎL est borné dans Q> s'il est localement borné en tout point p. II

est dit borné dans © s'il est borné dans & et si les formes ont en outre
leur support compris dans un compact fixe1.

9TL est borné dans 61 si l'ensemble des normes des 99 est borné.
9ÎC sera dit borné dans <§„ (ou ©„) si les formes 99 appartiennent à <§„

et si 91c est borné dans Q (ou ©).
S)ÎC sera dit borné dans i3„ s'il est borné dans ê„ et si les différentielles

d'ordre <£ re des formes 99 sont de norme bornée.
De Rham nomme courant une fonctionnelle linéaire (T, 99) sur ©,

continue dans le sens suivant : | (T, 99) reste borné sur tout ensemble de

formes borné dans ®. Dans notre cas, il convient de remplacer © par ®0.

L'espace vectoriel des courants, dual de ©0 est noté ©0'. Nous

désignerons de même par ©„' l'espace des fonctionnelles hnéaires continues

sur ©„.
Exemple 1. Toute forme a à coefficients localement sommables

définit un courant T si l'on pose

(T, 99) (a, cp), pour 99 e ®0.

Un courant T sera dit C°° s'il existe une forme C a, telle que
(T, cp) (a,cp) pour 99e©,,.

1 Ces définitions sont empruntées à l'ouvrage de G. DE Rham, Var. diff. p. 43.
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Exemple 2. Appelons semi-méroharmonique1 une forme ß C sur
S—p, dont les coefficients présentent en p une partie singulière de

fonction méromorphe. Une telle forme définit un courant T si l'on pose

(T, <p)=vp(ß,<p), pour 99e©0,

vp désignant la valeur principale au sens de Cauchy. Moyennant une
partition de l'unité, on peut supposer le support de 99 compact, compris
dans le domaine du système t, i. Le calcul de (ß, 99) conduit à des

intégrales de fonctions de la forme • f et • g, où f et g sont
des fonctions C Les formules

f 1 1 f 1dmff(t,ï)dtAdi=- 7-J.dtAdi,
J tm+1 J V ' m\ J t dtm

,t ye |l,äe

r 1 1 r 1ome
¦g(t,t) dtAdi= ^dtAdt,J im+1 S V ' m J i àlm

l'lrrâ£ l'Iè8

montrent l'existence de vp (ß,cp) et la continuité de T vpß.

Exemple 3. Posons

(T, 99) 0 si 99 est de degré 0 ou 2,

(T»
dnä dna

dt" din
(p=a-dt-\- âdi,

T est évidemment une fonctionnelle linéaire continue sur ®0. On dit que
le courant T a pour support le point p parce que (T, 99) 0 pour toute
forme 99 dont le support appartient à S—p.

Remarque : Il est immédiat que deux formes C a et a' ne définissent
le même courant que si elles sont identiques.

1.5 Différentielles d'un courant. Exemples

Par définition, la différentielle dT d'un courant T sera la fonctionnelle

linéaire de ©{ définie par

(dT, cp) (T, ò 99), pour 99 e ©1.

La continuité de dT résulte du fait que si 99 varie dans une partie bornée
de ©x, ò cp reste dans une partie bornée de ©0.

1 Cf. la notion de forme semi-méromorphe dans L. Schwartz, 1953.
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On définit de même la codifférentielle ôT d'un courant T en posant

(<5T, 99) (T, dtp), pour 99e©!.

La définition des différentielles d'ordre n, comme fonctionnelles
linéaires de ©ré est complètement analogue.

Exemple 1. Si T a est une forme de &0, on peut identifier les

différentielles dT et <5T du courant avec celles da et ô a de la forme.

(dT, <p) (T, òcp) (a, ò(p) (da, cp),

(óT,99) (T, dcp) (a, dcp) (ôa, cp).

Exemple 2. SiT=vpß est semi-méroharmonique, il faut distinguer
les différentielles dT et ôT des fonctionnelles vpdß et vpoß.

(dT,tp) (T,o<p) vP(ß,o<p)=vp(dß,<p)- j ßA*<p,
Jp

(OT,cp) (T,dcp) vp(ß,dcp) vp(oß,cp) + f<pA*ß.
Jp

On obtient donc les différentielles dT et óT en ajoutant à vpdß et vpoß
des courants de support ponctuel p :

dT=vpdß + \Jp, où (XJp,tp) - ßA*tp,
Jp

OT=vpoß+Vp,ou(Yp,<p) + (<pA*ß.
Jp

Exemple 3. Si T=a est une forme de êl5 on peut identifier le

laplacien A T du courant et celui A a de la forme. Par définition

(AT,tp) (T,A<p) (a,Acp).
Par conséquent

(A T, 99) (A a, cp), puisque aeô1 et 99e©2.

Exemple 4. Si T=vpß est semi-méroharmonique, on obtient le

laplacien ZlT du courant en ajoutant à la fonctionnelle vpAßle courant
Wp de support ponctuel p :

(Wp,q>)= i cpA*dß—ßA*d(p + o<pA*ß—oßA*(p,
Jp

(AT,<p)=(T,A<p) vp(ß,A<P) vp(Aß,(p) + (Wp,<p).
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Un courant T sera dit fermé, cofermé ou harmonique selon que
dT=0 dans ©î, <5T=0 dans ©J, zlT 0 dans ®2. Signalons ici sans
démonstration l'important théorème de régularité des courants harmoniques

: un courant harmonique dans un domaine Q est égal à une forme
C°° dans Q (voir de Rham, 1955, p. 149).

Bornons-nous à établir que :

Si une forme C a, définit un courant harmonique, cette forme est

harmonique.

a) Soit 99 e © une forme dont le support ne contient pas de point 0.
L'application de la formule de Green montre que

(Aa, <p) (a, Acp) 0, puisque 99e®2.

On en déduit que Aa—0 en tout point de S&.

b) Montrons que aeêj. Il suffit de remarquer que les formes

#=/• (d(-|-d() et #'=/• i( — dt-\-di) envisagées au N° 1.3 appartiennent
à ®2 puisque d$=<5 # d #' <5 #' 0 au voisinage de0. Donc (a, A•&) 0

et (a, A&') 0. L'application de la formule de Green, compte tenu de

Aa=0 fournit immédiatement les relations

i ôaA*ê— &A*da=0, I OaA*#'—#'A*dce=0.

Nous avons remarqué au N° 1.3 que celles-ci entraînent aeêj.

chapitre 11

ÉTUDE DE L'ÉQUATION Afx=xp SUR UNE SURFACE
DE RIEMANN COMPACTE (CLOSE)

2.1 Généralités. Identité des formes et champs harmoniques

Dans le cas où S est une surface compacte (de genre p > 0), on peut
préciser sur quelques points les notions introduites au chapitre précédent :

a) On sait que sur une surface compacte de genre p, une différentielle
abélienne de première espèce s'annule en 2p—2 points (Weyl, 1947).
Il y a donc un nombre fini 2p—2 de points 0. Nous supposerons pour
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simplifier que ces points sont distincts, c'est-à-dire que 0 n'a que des

zéros simples.
h) La distinction entre <§„ et ®„ disparaît, puisque toute forme sur S

est à support compact.
c) Le produit scalaire de deux formes C°°, a et ß, existe toujours,

pourvu que l'une d'elles appartienne à <§„.

Les formules d'intégration du N° 1.2 prennent une forme intéressante

lorsqu'on les applique pour Q=S, puisqu'alors la frontière est
nulle. On obtient :

(d99, ip) (ep, ôip), si yie<g0,

(Acp, ip) (d<p, dip) -f (Òcp, Ôyj), si 99, tpeQ1,

(A(p,ip) (cp,Atp), si 99, ^eg].
Appliquons la seconde pour <p ye&1. Elle devient

(ZI99, cp) (dcp, dep) y (òcp, òcp),

si bien que 996^! et ^99=0 impliquent dç9==0 et »599=0. Autrement dit:
Sur une surface compacte, toute forme harmonique est un champ

harmonique.

2.2 Espace des champs harmoniques. Opérateur C

Examinons séparément pour les degrés 0, 1, 2 les solutions du
système dep=0 et 099=0.

1) d990 0 entraîne, 990 constante.
Les champs harmoniques de degré 0 sont les fonctions constantes.

2) Dans le domaine attaché au système de coordonnées t, i, où

cp1 a (t, i)dt-\- â (t, i) di,

les conditions d99x 0 et 0^=0 entraînent, d'après les formules du
N° 1.2

^° 0, ^ 0.
di dt

Donc a(t, i) est une fonction analytique de t seulement: a(t, i)=f(t).
Par suite 9?i 2 Slf (t)dt.

Un champ harmonique de degré 1 est la partie réelle d'une différentielle
abélienne de première espèce, et réciproquement. Il en résulte que :

Les champs harmoniques de degré 1 forment un espace vectoriel de

dimension réelle 2p.
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3) ôqp2=0 entraîne, d*cp2 0 d'où * 992 constante.

Les champs harmoniques de degré 2 sont les multiples de ~ dzAdz.
.Z

Désignons par c; les éléments d'une base orthonormée (inhomogène)
de l'espace des champs harmoniques. Constituons la forme double

2p+2

c(jP'9)=2_jC;(p)-c;(?)'
;= i

et l'opérateur C dont c(p, q) est le noyau métrique :

C<p (c(p,q), <p(qf).

On vérifie immédiatement que (C99, C;) (99, c;). Par suite

(Cep,f) (ep,f),

poui tout champ harmonique /. Cette formule montre que l'opérateur C

reproduit les champs harmoniques (Bergmann, 1950) : Cf=f. Elle caractérise

C99 comme projection orthogonale de 99 sur l'espace des champs
harmoniques. L'opérateur C ne dépend donc pas de la base C; choisie

pour former le noyau c(p, q).
L'opérateur C jouit des propriétés suivantes1:

1) C C C est son propre transposé métrique. En effet

(C99, xp)=(ep, Cf) }(ep, Ci)-(f, d).

2) * C C * C permute avec *. En effet

>d (p) ¦ (*a (q), *<p(q)) C*<p.£¦
La dernière égahté résulte du fait que les *C; forment une base
orthonormée s'il en est ainsi des C;.

3) dC ôC 0 et Câ=Cd=0.

Les premières égalités sont vraies par définition. Les secondes en
découlent puisque Cô et Cd sont transposés métriques de dC et ôC

respectivement.

1 Cf. les propriétés de l'opérateur H dans l'ouvrage de G. de Kham, p. 155.

2
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2.3 Espace des formes pseudo-harmoniques

Nous appellerons pseudo-harmonique toute forme appartenant à <§0

et vérifiant l'équation Acp=0 sur S*. Toute forme harmonique est donc

pseudo-harmonique, mais nous allons voir que l'inverse est faux, au
moins pour le degré 1. (Pour les degrés 0 et 2, on a Q0=Q1 et par suite,
toute forme pseudo-harmonique est harmonique.)

Envisageons les 4j> — 4 formes cpk et *epk(k=\, 2p—2) définies

par
<pk= (âtTfc-f idr'u) ¦ dz-y (^.Xk—iUr'k) dz,

où Tt et r'k sont des fonctions analytiques sauf au point 0k (en lequel

dz=t ¦ dt), ont en ce point le pôle -, cRta et 3r'k étant uniformes.
Posons encore

ep0=dz -f- dz.

Les 4p—2 formes 99^ et *cpk ainsi constituées sont C°° sur S. Elles
appartiennent donc à (§0= ê. D'autre part, les coefficients de dz et dz sont des

fonctions harmoniques sur S^. Par conséquent Acpk=0 sur S*: les
formes 99^ et *cpk sont donc pseudo-harmoniques. Posons

<pk=ak- dt-\- âk- di.

On établit immédiatement la propriété suivante des coefficients au :

Au point 0k, on a a;=0 si j=£k et ak=l. On en déduit:
Les 4jî—2 formes 99^ et *99t(fc=0, 1, ...,2p—2) sont linéairement

indépendantes sur le corps des réels.
En effet, la forme pseudo-harmonique

2p-2

ep y hq>k + ptk*<Pk =/• dt +/• di
4 0

a au point 0, un coefficient / qui vaut Xj—ipij. Par suite, l'équation
99= 0 n'est possible que si Xj—Hj=0, d'abord pourj ^ 1, puis poury 0.

Comme il n'existe pas plus de 2p champs harmoniques linéairement
indépendants et que 4p—2>2jo dès que />>1, on en conclut que
certaines au moins des formes pseudo-harmoniques epk et »99^ ne sont pas
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harmoniques. Notons d'ailleurs les formules suivantes, qu'on vérifie par
un calcul simple :

», rycjdwk oqidwk
*dtpk=la) —— oepk — Zéi~-,dz dz

a dwk 0 „ dwk
*d*99fc=2cft—-, ô*epk=23-r-,

dz dz

où dwk dtk—dx'k est une différentielle abélienne de première espèce.
Démontrons maintenant que :

Les 4jp — 2 formes 99^ et *epk(k=0,l, ...,2p — 2) constituent une
base de l'espace des formes pseudo-harmoniques.

Rappelons d'abord la remarque faite au N° 1.3 quant aux coefficients
d'une forme pi dont le laplacien Api est régulier sur S. Il en découle
immédiatement que pour une telle forme, l'intégrale de Dirichlet

D[pi, pi] (dpi, dfi) -f- (apt, ô/u)

reste bornée. Elle vaut

D[pi, pt] (Api, pt)— I ôptA*pi—piA*dpi.

On déduit de cette formule qu'une forme pseudo-harmonique dont les

coefficients sont nuls en tous les points 0 est un champ harmonique.
Soit 99 une forme pseudo-harmonique quelconque. Formons

2p-2

<>= 99— y hepk + pik*(pk=g-dt+g-di.

Nous pouvons choisir Xj et pij de manière à annuler g et g au point 0j.
Par suite, ip est un champ harmonique. La différentielle abélienne

tp-\-i*tp s'annule aux 2p—2 points 0j : c'est donc un multiple (complexe)
de dz. Donc ip=À0cp0-\- ptr,*ep0, où A0 et pi0 sont réels. Donc

2p-2

<P=y hepk + ßk*(pk,

ce qui démontre le résultat annoncé.
L'espace % des formes pseudo-harmoniques est donc un espace

vectoriel de dimension réelle 4>p — 2. Il se décompose orthogonalement
en l'espace Jfj des champs harmoniques, de dimension 2p et l'espace 3f2,
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de dimension 2p—2, des formes pseudo-harmoniques orthogonales aux
champs.

Dans l'espace 3C2, l'intégrale de Dirichlet D[m, pt] est une forme
quadratique définie positive. Il est donc possible de construire une base
de K2 dont les éléments hi soient D-orthonormés : D [A;,Ä;] oi,.
Constituons la forme double h(p, q) et l'opérateur D définis par

2p-2

Mp5g)=2_jM/>)-M?K

Dfi=D[h(p,q),fi(q)],
Dfi est défini sur l'espace des formes pt de D-norme finie et ne dépend
évidemment pas de la base choisie pour définir la forme h(p, q). On a

Dhi=DYh(p,q),hi-\ hi,

D reproduit donc les formes de l'espace 3£2. Par suite DDpt Dpt.
On notera qu'une forme pseudo-harmonique h est nulle si mais

seulement si Ch=0 et DA=0.

2.4 Solutions et pseudo-solutions de Véquation Apt ip

Nous dirons qu'une forme pi est une pseudo-solution de l'équation
Apt tp si elle appartient à <§0 et vérifie cette équation sur S^. C'est une
solution si elle appartient à Ql.

Avant de discuter la condition nécessaire et suffisante pour l'existence

d'une solution, voici quelques remarques préhminaires :

a) Une pseudo-solution de l'équation est déterminée à une forme
pseudo-harmonique près. Elle est donc univoquement caractérisée si l'on
exige que Cpi=0 et 0^ 0. Nous désignerons cette pseudo-solution
particulière par ^0'. Si pi^ existe, on a

D [y0), re] 0, pour tout hell.
b) Une solution ^*1' de l'équation est déterminée à un champ harmonique

près. Elle est donc univoquement caractérisée si l'on exige que
C^'^O. Si pt^ existe, nous avons

D[»(l), h] (ApiM, «)- j ofi(ï)A*h~hA*dpi{l\

d'où D f//1*, h\~(^, A), pour tout heii.
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Comme D [pi^\ h] 0 si h est un champ harmonique, on voit que la
condition Cip=0 est nécessaire pour qu'il existe une solution.

c) Si la pseudo-solution /x'0) et la solution pi^ existent, la différence
/r1' — pò-"' est égale à la forme pseudo-harmonique

B.ip=(h(p,q),tp(q)y

En effet C(pi^-pt^) CÎItp 0.

D'autre part D(pt^-pt^) J)[piM, h(p, -j)] =(ip, h(p, g)),

d'où: T>(piM-piW) DH.f=Hf.
d) Réciproquement, si la pseudo-solution pv0' existe et si Cip—0, la

forme pt pi^-{- Hy> est solution de l'équation.

En effet D [H.ip, h] (y>, h),

pour he}t2 quel que soit ip et pour tout reejf si Cip=0.

Donc D [pi, re] D [pt{0\ h] + D[E.ip, h] (tp, h), pour tout h e K,

/d'où ôpiA*h—hA*dpt 0, pour tout he il.
J tp

Si l'on prend h=cpk et h * cpk, l'intégrale en 0j =£ 0k est automatiquement
nulle et la condition écrite entraîne, comme au N° 1.3 que ôpi et *dpi
sont réguliers au point 0k. Ceci est valable pour tout point 0k. Donc
pt=pi^-\- Hip est une solution.

Nous allons démontrer maintenant le résultat fondamental :

La condition nécessaire et suffisante pour que l'équation Api=ip
admette une solution est que Cy>=0.

Nous avons vu déjà sous b) que la condition est nécessaire. Pour
démontrer qu'elle est suffisante, nous allons prouver qu'elle entraîne
l'existence de la pseudo-solution pt^ en construisant explicitement celle-
ci. D'après d) l'existence d'une solution sera ainsi démontrée.

2.5 Construction de la pseudo-solution /t'0' de Véquation Api y>

Soit g(pp0 ; qq0) la fonction harmonique en p pour p^q, qo, admettant

en ces points les singularités log qp et -| log q0p et
' 2jr 2jt

s annulant pourp=p0.
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Constituons les formes doubles

k(p, ?)=lp-1«+ ~(dzpdzq7- dzpdzq) -\- _-dzpAdzp- -dzqAdzq,
Zi Zi Z

yPoto (p » î)=« (ppo iqqo)k(p,q).

Soit jTp g l'opérateur admettant yp q (p, q) pour noyau métrique

rpai0<p (yp090 (p»î).fl»(ï))-

1) Pour tout epe&0, rp q ep est une forme C en tout point/> ^ç0

présentant en ce point la partie singuhère log qop-\k(p, q), <p(q)
2 71 \

/
En effet, les coefficients de la forme Tp qcp sont de la forme

g(PPo'i qq») '/(ç) dtqAdiq, où f(q) est C°° et il est bien connu qu'il

s'agit de fonctions C de p, sauf en p=q0.

2) Pour tout 99e ê0, rp q (1 — C)ç9 est une forme C30.

Cela tient au fait que k(p, q) est un champ harmonique en q.

3) L'opérateur (1 — C) Fp q (1 — C) ne dépend pas de pa et q0.
En effet, nous avons

g (ppi ; 9?i) —g (ppo ; 99o) + g (i>Po ; ?o?i) —g (PiPo ; 9?i) »

d'où

rJ,iîi(i-c)ç> ri,0l0(i-c)?»+«(pp0;Ï0Î1).(fc(p,?), (i-c)?(?)),

- (g (Pi Po ; 9?i) •k (P' 9). (i - c) 9 •

Le deuxième terme est nul ; le troisième est un champ harmonique en p.
Par conséquent

(î-c) rPlîl(i-c) ?=(i-c) rPo5o(i-c) 99.

Nous renoncerons donc à mentionner les indices p0 et q0.

4) L'opérateur (1 — C).T(1— C) est self-adjoint.
En effet, l'adjoint de cet opérateur est

(i-C)T'(i-c)'=(i-c)r'(i-C).
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Mais r'po,o a pour noyau g(qpy, pq0) ¦ k(q, p)=g(pq0; qp0) • k(p, q) à

cause de la propriété de symétrie de g(ppoqqo) qui s'exprime par la
formule

g(ppo;g?o)=g(??o;.w>o)-

Par conséquent r'p q ==Tq p et cette propriété résulte de la précédente.

5) Pour toute forme C xp à support compact sur S«, on a

(i-qrPoqoAv=y>-Cy,.

Par définition r'Pa%Atp=(yP(>%(q,p), Ay>(q)).

En appliquant la formule de Green au domaine obtenu en excluant de la
surface deux petits cercles de rayon e centrés en p et q0, nous trouvons
à la limite, puisque Ay=0,

r'p q Aip= I y>A*dy—yA*dtpJrôipA*y— ôyA*y>.
Jp,%

Un calcul classique montre que la hmite de l'intégrale existe et vaut

r'p0 %A V=V (p)- J>(p) i
où

J'v(p)==/(?o)' si W est de degré 0,

J'ip (p) a (q0) dzp y â (q0) ¦ dzp, si tp est de degré 1,

J'ip(p) A(q0) ¦ dZpAdzp, si tp est de degré 2.

Dans les trois cas, J'y) est donc un champ harmonique.

Par suite (1 — C)r'P(>q Atp=ip— Cip.

6) Pour toute forme epe&0, on a sur S<j> l'égahté

A rpaio (1_-C) <P=<P— C<P-

Soit en effet ip une forme C°° quelconque à support compact sur
S&. Nous pouvons écrire

ArPo9o(i-c)<p,v) =(rPo,0(i-c)v,Ay>)=((i-c)<p,r'Po,0AW),

(ep, (l-qr'PoqoAy,) (cp, (l-C)y),

((1-C)y,v).
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Cette relation prouve l'égalité des formes ATP (1 — C) 99 et (1 — C) 99 sur
la surface S0.

Il résulte de cette dernière propriété que l'équation Apt cp—C99

admet toujours la pseudo-solution

pi=(\-c)r(\-c)ep.
On vérifie immédiatement que D,m 0. La pseudo-solution ainsi
construite est donc ^0'. Ajoutons à /r0' la forme pseudo-harmonique

H (1- C) ep= (1- C) H (1- C) ep.

On obtient /r1', l'unique solution orthogonale aux champs harmoniques :

jMW=G<?=(l-C) (r+ H) (1-C)ep.

Nous appellerons l'opérateur G ainsi construit opérateur de Green-
de Rahm (Sörensen, Bader, 1957) ; nous allons en indiquer les

propriétés essentielles.

2.6 Propriétés de Yopérateur de Green-de Rham

(de kham, 1955)

a) L'opérateur G permute avec * : G* *G.
Partons de l'équation

AGcp=ep—C99.

Prenons l'adjointe des deux membres et tenons compte des relations
A*=*A et C * * C. Il vient

A*Gep=*cp—C*99.

Par ailleurs C*G99=*CGç9=0.

Or la seule solution de l'équation Api *cp—C*99 qui soit orthogonale
aux champs harmoniques est G *<p. Donc *G99=G »99.

b) L'opérateur G permute avec d : Gd=dG.
Partons de l'équation A G-cp=cp—C99. Différentions les deux membres

et tenons compte des relations dA=Ad=dôd et dC 0. Il vient

ZldG99=d99.

Par ailleurs CdG99=0. Or la seule solution de l'équation Api dep qui
soit orthogonale aux champs harmoniques est G-dep. Donc Gdcp=dGep.
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Il résulte des propriétés a) et b) que l'opérateur G permute avec
tout symbole de differentiation, pour autant que les expressions
obtenues aient un sens. Notons en particulier :

GAcp AGep ep—C99, pour epe&2,

dG1dep0 0, oGjÔ992 0, pour epe&1,

dG1ôep2=ep2— C992, ôG1dep0 tp0— Ccp0, pour 99e Q>1.

Démontrons par exemple ces dernières formules

dG1ôep2 G2dôep2 G2Aep2 ep2 — Cep2,

ôG1dq>0 Goôdep()=G()Aepo <p0 — Cep0.

c) L'opérateur G est son propre transposé métrique: G' G.

Car (AGep,Gy))=(ep—Cep,Gy)) (ep,Gy>),

et (A Gy>, Gq>) (ip—Cip, Gq?) (y>, Gep).

Mais (AGep,Gy>) (AGy>,Gep),

puisque G99, GtpeQ1 et que A est son propre transposé métrique sur <§!•

Donc (99, Gy>) (Gep, tp).

e) L'opérateur G transforme une partie bornée de <§0 en une partie
bornée de <§2.

On sait que si L(p, q) est une forme C°° sauf sur la diagonale p q,
où L(p, q) est le produit de log r par une forme C30, l'ensemble des

formes Aep=\Li(p, q), ep(q)\ est borné dans & s'il en est ainsi de

l'ensemble des formes 99. (Pour la démonstration, voir de Rham, p. 138,
lemme 4.)

Il en résulte immédiatement que si l'ensemble des formes 99 est
borné dans ê, il en est de même des formes G99. Vérifions que G99eê2-G99
est par construction une forme de Ql ; il ne reste qu'à constater que
ses différentielles secondes restent régulières. Pour le degré 0, il n'y a

que ôdG<p=AGep ep—C99 qui est C Pour le degré 1, <Sj <S2. Pour
le degré 2, il n'y a que dôGep =A Gep ep—C99 qui est G30.
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2.7 Les courants CT et GT

La définition des opérateurs C et G peut être étendue aux courants
si l'on pose

(CT,ç>) (T,Cç>), (GT» (T,Gç>).

On notera que :

1) Le courant CT est un champ harmonique. En effet,

2p + 2 \ 2p + 2

(CT,ç,) j T,^(Ci(g), <p(q))-Ci(p)\=YlCi^ ^H1"' «),
•=i j i=\

/2p+2 \

\YV,cï.Ci(q),cf(q)\,

2p+ 2

CT est donc identique au champ harmonique > (T,C;)-C;.
i= 1

Remarquons d'ailleurs que la définition de CT reste valable lorsque T,
sans être un courant est une fonctionnelle de ©ré, puisque le champ
harmonique C99 appartient à ®„ pour tout re.

2) GT est un courant associé à toute fonctionnelle linéaire T de ®2.
En effet, si 99 reste dans une partie bornée de <§0, G99 reste dans une
partie bornée de &2 et la fonctionnelle T reste bornée sur un tel ensemble.
Donc GT reste borné sur toute partie bornée de <§0.

Il en résulte en particuher que G/4 T est un courant si T est un courant,
ou que GdU ou GdU sont des courants si U est une fonctionnelle linéaire
de®;.

En transposant les formules du N° 2.2, on obtient

C*T=*CT, CdT=0, CzlT=0,

tandis que dCT=0, <5CT=0,

puisque CT est un champ harmonique.
De même, en transposant les formules du N° 2.6, on obtient

GzJT T— CT, dans ®q, pour tout courant T,

/1GT=T-CT, dans ®2,

dG!ÖU2 U2-CU2 et óG1dU0 U0-CU0, dans ©J.
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2.8 Le problème de Cousin

(de Rham, Kodaïha, 1950 ; Schwartz, 1953 ; Bader, Sörensen, 1957)

Rappelons qu'il s'agit du problème classique suivant :

On donne dans des ouverts V; formant un recouvrement de S des

formes méroharmoniques cai, vérifiant la condition de compatibilité
suivante: coi—coj est une forme harmonique dans V;nV,-.

On demande de trouver une forme méroharmonique eo telle que
oì—et); soit une forme harmonique dans V;. La solution étant déterminée
à un champ harmonique près, on la rend unique en exigeant, par exemple,
qu'elle soit orthogonale (en valeur principale) aux champs harmoniques.

Soient Ti=vpa)i le courant associé dans V; à coi, T vp co le courant
associé à la solution, si elle existe.
Formons dans V; la fonctionnelle XJi=ATi, explicitement définie par

¦b(Uj, cp) cpA*dcOi—cOiA*dcpyòcpA*eoi—òcOiA*

pour tout 9?e<§2 ayant son support dans V*. Les U; définissent
globalement une fonctionnelle U de ®2 et le problème posé peut être formulé
comme suit :

Résoudre l'équation /1T=U, avec la condition CT 0.
La condition nécessaire et suffisante pour que le problème ait une

solution est que CU=0.

a) S'il existe une solution T, on a CU=C/IT 0. La condition
est donc nécessaire.

b) Si CU=0, le courant T=GU est solution du problème. En effet,
nous avons vu que ZlGU U — CU dans ®2 et de plus CGU=0. La
condition est donc suffisante.

Discutons maintenant la condition CU=0.

1) Degré 0. La condition CU=0 équivaut à

(U,1)=V f'dw,= 0.

Si f désigne la fonction analytique dans V; dont co; est la partie
réelle, cette condition exprime le résultat classique que la somme des

résidus des différentielles df aux points singuliers qi doit être nulle.
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2) Degré 2. La condition CU 0 équivaut à

1 ' -). àcor-U,-dzAdz] — y ôcoi=0.

C'est la condition du degré 0 pour *co.
Dans le cas du degré 1, le problème se pose différemment du fait

que les formes <w; données sont fermées et cofermées en dehors de la
singularité qt et qu'on exige alors que la solution soit fermée et cofermée
dans tout domaine de la surface S — (g;). Reprenons le problème.

Envisageons dans V; les fonctionnelles dT; et ôTt, définies explicitement

par

(dTi,ep) - i ft);A*99, (òTi,ep)=+ I epA*eoi,
J*i J-ti

pour tout 996^! dont le support est dans V,-. Les dT; et <5T; définissent
globalement les fonctionnelles U2 et U0 respectivement. Il s'agit de

résoudre le système

dT=U2, <ST=U0, CT=0.

La condition nécessaire et suffisante pour que le problème soit
possible est CU0 0 et CU2=0.

a) S'il existe une solution T, on a CU0=C<5T=0 et CU2=CdT 0.
La condition est donc nécessaire.

b) Si CU0=0 et CU2 0, le courant T=G(dU0 + óU2) est solution
du problème. Nous avons vu en effet au N° 2.7 que

óG1dU0=U0-CU0=U0,

dGidUr^O,

(5T U0, dans®;.

Enfin, CT=CG(dU0-)-r3U2) 0. La condition est donc suffisante.
Explicitons maintenant les conditions CUo=0 et CU2=0. Elles

s'écrivent

U2,
* dzAdz"j=-\ j eOi=0, (U0,l) +V \*eoi=0,

et expriment le fait que les différentielles analytiques ö;=oj; + i*&); ont
aux points singuliers g; des résidus dont la somme est nulle.

dGl(5U2=U2--cu2=u2 et

<5G1ÔU2 0 et

d'où dT=U, et
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CHAPITRE III

ÉTUDE DE L'ÉQUATION Apt y> SUR UN DOMAINE
RELATIVEMENT COMPACT A FRONTIÈRE

TRÈS RÉGULIÈRE D'UNE SURFACE DE RIEMANN

3.1 Double de Schottky du domaine û

Soit Q un domaine relativement compact d'une surface de Riemann,
de genre g et dont la frontière, supposée très régulière (Parreau, 1951),

comporte c courbes fermées disjointes. Il est bien connu qu'on peut
souder à Q un symétrique Q (Bader, 1954), de manière à constituer
une surface close Q, qu'on appelle le double de Schottky (Ahlfors, 1950 ;

Duff, 1952) de Q. Ù a pour genre g 2g -\- c — 1.
Pour définir la métrique sur Q, nous prendrons une différentielle

abélienne 0 de Û, symétrique en ce sens que si en p, 0=dz, alors

en p, 0=dz. (0 est donc réelle le long de la frontière.) Les points
0 étant symétriques deux à deux sur Û, il s'en trouve g — 1 sur Ü ;

nous supposerons, pour des raisons de simplicité que les zéros de 0
sont d'ordre 1.

La correspondance involutive entre p et p sur Q permet d'accorder
les uniformisantes en p et p de telle manière que si g, voisin de p, a, dans
le système attaché en p, les coordonnées dx, dy, le point g ait dans le

système attaché à p les coordonnées dx, — dy. En un point p de la
frontière, on suppose en outre que dj>0 dans Q et <0 dans Q.

Deux formes cp et cp sont symétriques l'une de l'autre si la valeur de cp

correspondant au déplacement infinitésimal pq est égale à la valeur de 99

pour le déplacement symétrique pq. En coordonnées locales, nous
obtenons les formules explicites :

?e,(p)=f(p), <Po(p)=/(p)'

ep1(p) a(p)dx + b(p)dy, $1(p) a(p)dx—b(p)dy,

992(jp) A(p) dxAdy, y2(p) — A(p)dxAdy.

La correspondance entre 99 et ep est involutive par définition tp 99.
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On vérifie par des calculs simples les propriétés suivantes de

l'opérateur de symétrie ~^ :

(1) 99 A y> =cp A y>. (2) dep dep.

(3) ^ -»£. (4) l^2=— I 992.

Il résulte de (2) et (3) que òcp=òcp. Par suite : L'opérateur ~ commute
avec tout opérateur de differentiation.

Il résulte de (1) et (3) que epA*ip= — epA*y>. Par suite, en vertu de (4)

I (pA*y>= I cpA*y), c.-à-d. (ep, ip)~ (<f, y>)s.

I E

Une forme est symétrique (antisymétrique) sur Q si 99=9? (resp.

99= — ép). Les différentielles d'une forme 99 sont symétriques ou
antisymétriques en même temps que 99. Par contre, l'adjointe d'une forme
symétrique est antisymétrique et inversement.

La restriction à Q d'une forme antisymétrique est nulle le long de la
frontière. (Il en est donc de même des différentielles de cette forme.)
Démontrons que pour les formes pseudo-harmoniques, la réciproque
suivante est juste :

1) Une forme pseudo-harmonique sur Q vérifiant sur Q' les conditions
ep=ôcp= 0 se prolonge par antisymétrie en une forme pseudo-harmonique
sur Û.

Posons cp—adx-\-bdy où dx=8l(dz) et dy=3(dz).

Si 99 est pseudo-harmonique, a et b sont des fonctions harmoniques. Les
db

conditions 99=099=0 sur Q' impliquent a=0 et —=0 sur Q'. En vertu
dy

du principe de symétrie, on peut prolonger a et b en posant

a(p) -a(p), b(p)= + b(p),

ce qui justifie l'affirmation. On démontre de manière analogue :

2) Une forme pseudo-harmonique sur Q vérifiant sur Q' les conditions
*ep=*dtp=0 se prolonge par symétrie en une forme pseudo-harmonique
sur -Q.
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3.2 Extensions symétrique et antisymétrique de C99, H99, Fep

A toute forme sur Û, y>, correspondent une extension antisymétrique
y>a et une extension symétrique ips définies par

tpa=tp—ip, % y + y.
Quand le support de xp est dans Q, les extensions tpa et y>s réalisent le

prolongement de y> par antisymétrie ou par symétrie.
A tout opérateur hnéaire L sur Û correspondent de même des extensions

antisymétrique et symétrique définies par

T-iayj=Lty>—i-iip, \jsy>=\jy>-\-Liy>.

Si 1 (p, q) est le noyau de l'opérateur L, ceux de La et Ls sont

la(p, q)=Hp, q)—i{p, q)i h(p, q)=Hp, q) + i(p, q)-

Nous allons exprimer ces noyaux en termes dont la définition ne fait
intervenir que le domaine D, dans le cas où L est l'un ou l'autre des

opérateurs C, H, F.

1) On peut supposer que la base orthonormée des champs harmoniques

sur Q est formée de g + 1 champs antisymétriques ê; et de

g -\-1 champs symétriques ê;. Les noyaux ca(p, q) et cs(p,q) sont
alors

ï+i l+i
c«(P,q)=2_Jêï(p)'CÏ(q), Cs(p,q)=2mjcsi(p)-csi(q).

;=i i=i
Introduisons les formes c°=J/2-£" et C; j/2-c;. Elles constituent des

bases orthonormées sur Q des champs prolongeables par antisymétrie
(c.-à-d. nuls sur Q') et des champs prolongeables par symétrie (c.-à-d.
dont l'adjointe est nulle sur Q'). Nous avons

l+i l+i
c°(p, q) =2]c?(p) ' c?(?)' C-(P' 5) =J]cî(p) • cite)-

;=i t=i

2) Des considérations analogues pour H montrent que

I-i I-i
ha(p,q)=Yj^(p)-hl(q), hs(p,q)=Y^K(p)-h>.(q).

; 1 ;= 1
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3) Avant d'expliciter les noyaux de Fa et de rs, remarquons que
dans le noyau de JT, il convient, sur la surface symétrique Û, de

remplacer la fonction g (pp0 ; gg0) par la fonction

^(ppo ; qq0) g(ppoi qq*) + g (pp.; qq0)

qui jouit de la propriété de symétrie fy£ (pp0 ; gg0) %' (pPo '¦> qqo) ¦

Cela est possible, puisque le choix de pa et g0 n'influe pas sur
l'opérateur G.
Si l'on remarque que

lS^{PPo-iqqo)=6^{pPo-i~qqo) et k(p,q) k(p,q) d'où y(p,q) y(p,q)

on obtient

ya(p, q)=y(p, q)—y(p, q), ys(p, q)=y(p, q) + y(p, q)-

Les extensions antisymétrique et symétrique de ®i£(pp0 ; qqo), soit

g (p, q, Q) ^(ppo ; qq0) — ^(ppo ; gg0),

re (p, g, Q)= ®f(pPo ; gg0) + ®f(pp0 ; qqo)

ont pour restrictions à Q les fonctions de Green et de Neumann de ce

domaine (Schiffer, Spencer, 1954). Ce sont en effet des fonctions
harmoniques en p, ayant en p q la singularité voulue. Les propriétés à la
frontière découlent des propriétés de symétrie

g(p, q,Q) =—g(p,q,û), n(p,q,Q)= + n(p,q,Q),

g(p, q, Q) =—g(p, q, û), n(p, q, û)= + n(p, q, û).

Les noyaux de ra et r, prennent alors la forme

ya(p,q)

y*(p,q)

g(k + k) + n(k-k)

g(k-k) + n-(k + k)

Envisageons alors l'opérateur de Green-de Rham de Ù

G (l-C)(r+H)(l-C).
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On voit très simplement que ses extensions antisymétrique et
symétrique sont

G0 (1 - C.) (r. + H.) (1 - C.), G. (1 - c.) rr. + H.) (1 - C,),

où les opérateurs successifs agissent sur les restrictions à Q des formes

précédemment obtenues.

3.3 Champs harmoniques

Les champs harmoniques de degré 0 (d990 0) sont les constantes.
Les champs harmoniques de degré 2 (òcp2 0) sont les multiples constants
de dzAdz. Pour les champs harmoniques de degré 1, de norme finie

par définition, nous pouvons énoncer la proposition suivante :

Tout champ harmonique se décompose orthogonalement en un
champ harmonique cs prolongeable par symétrie sur Q, et la différentielle

df d'une fonction harmonique à intégrale de Dirichlet bornée.
Soit en effet cs le champ symétrique sur Q qui a les mêmes périodes

que le champ donné c sur les cycles d'une base de Q. Si cs désigne la
restriction de cs à Q, le champ c—c, est une forme fermée dont toutes
les périodes sur Q sont nulles. Donc

c=c„-\-df.
Comme ôdf—0, f est une fonction harmonique et comme df est de

norme finie, l'intégrale de Dirichlet de f est finie. D'autre part, la

décomposition est orthogonale car

(c„ df) (ôcs,f) -f- I /A*c,= 0, puisque *c5=0 sur Q'1.

La décomposition obtenue est évidemment unique. En l'appliquant
au champ harmonique c' — * c, on obtient pour c la décomposition duale

c=caJròcp2,

où c„ est un champ prolongeable sur Q par antisymétrie.
On notera que la condition * c= 0 sur Q' entraîne que c est prolongeable

sur Q par symétrie. En effet, cette condition entraîne * d/= 0 sur Q', d'où
(df, d/) 0, c'est-à-dire d/=0.

On voit de même qu'un champ harmonique vérifiant sur Q' la
condition c=0 est prolongeable sur Q par antisymétrie. Par suite:

Un champ harmonique tel que c=0 et *c=0 sur Q' est nul sur Q.

1 Si /n'est pas C30 sur O', on considère df comme limite en norme de dfn, oùfn est C°°
sur fl'. (Schiffer M. et Spencer D. C, 1954, p. 137.)

î
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Les champs harmoniques prolongeables par symétrie sur Q sont
reproduits par le noyau cs(p, q) introduit au N° 3.2.

Pour exprimer le noyau reproduisant des champs harmoniques
exacts df, examinons les produits scalaires (dg, df) et (dn, df), où g et re

sont les fonctions de Green et de Neumann du domaine Q. On vérifie
immédiatement que

(dg,df)=(g,ôdf)+ fgA*df=0\
Jq, Q'

(dn, df) (fôdn) + {fA*dn=f(q)-f(q0)=f(q)2,
J<l.%*Q'

puisqu'on peut supposer f(q0) 0. Par suite

(d(n-g),df)=f(q),

ce qui montre que les champs exacts df sont reproduits par la forme
double dpdq(n—g) qui est un champ enp et en q. Le noyau reproduisant
des champs harmoniques sur Q est donc, pour le degré 1

c (p, q) cs (p, q) + dp d, (re—g).

3.4 Formes pseudo-harmoniques et harmoniques

Précisons que dans le cas d'une surface non compacte, les formes

harmoniques et pseudo-harmoniques doivent appartenir à Qtx, ce qui
implique que leurs norme et D-norme sont finies.

Envisageons les 2g—2 formes Ok et *Ok définies par

ak^(S{,Xk-{-iSr'k) ¦ dz-\- (§lxk— i3r'k) ¦ dz,

où SiXk est la fonction harmonique uniforme nulle sur Q', ayant au

point 0k (en lequel dz=t-dt) la singularité cRl — ], tandis que 3t'k est

/1^
uniforme, nulle sur Q' et admet en 0k la singularité |I

Les formes 0% et *Ok sont C°° sur Q et vérifient sur Q0 l'équation
^99= 0. Ce sont donc 2g— 2 formes pseudo-harmoniques, nulles ainsi que
l'adjointe sur la frontière Q'. Nous appellerons de telles formes
strictement pseudo-harmoniques, à cause de la propriété suivante :

1 On a (dg, df)Qe 0 pour tout domaine QB limité par la ligne de niveau g £. La
formule est donc valable à la limite e 0 même si / n'est pas C010 sur Q '.

2 Voir la note p. 33.
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Une forme strictement pseudo-harmonique ne peut être harmonique
que si elle est identiquement nulle.

En effet, on a pour toute forme de <5ti

D[99, cp]=(Aep, ep) — J òcpA*cp—cpA*dcpk
Une forme harmonique nulle ainsi que l'adjointe sur Q' est donc un
champ harmonique. Mais un champ nul ainsi que l'adjointe sur Q' est

identiquement nul.
On démontre comme pour les formes cpk et * cpk du N° 2.3, en

examinant les développements aux points 0j que :

Les 2g—2 formes Ok et *Ok sont linéairement indépendantes sur le

corps des réels.
On voit comme au N° 2.3 qu'étant donné une forme strictement

pseudo-harmonique quelconque a, il est possible, en lui soustrayant une
combinaison linéaire à coefficients réels des Ok et *Gk, d'annuler les

coefficients de la forme aux points 0j. La formule et le raisonnement ci-
dessus montrent que la forme obtenue est identiquement nulle. Par
conséquent :

Les formes strictement pseudo-harmoniques forment un espace
vectoriel de dimension 2g—2 sur le corps des réels. Les formes Ok et *Ok

en constituent une base.
Etablissons maintenant que :

Toute forme pseudo-harmonique se décompose D-orthogonalement
en une forme strictement pseudo-harmonique et une forme harmonique.

Soit cr;(ï=l, ...,2g—2) une base D-orthonormée de l'espace des

formes strictement pseudo-harmoniques. 99 étant une forme
pseudoharmonique quelconque, posons

2g-2

h=ep— y D[cp, Oi] ¦ Oi.

; i

On a D [h, cr;] 0 pour ï=l, 2g—2, et donc D[/i, cr] 0 pour toute
forme strictement pseudo-harmonique a, ce qui entraîne

I oA*dh— ôhA*o=0.
•f tp

En prenant pour a les formes ak et *Ok, on voit que *dre et ô h sont
réguliers au point 0k. Par suite, h est une forme harmonique. Il est
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évident par construction que les deux composantes de 99 sont D-ortho-
gonales, ce qui rend la décomposition unique.

On déduit de ce résultat le théorème d'existence suivant relatif aux
formes harmoniques sur Q :

Etant donné une forme 8 à coefficients continus au voisinage de Q', il
existe une forme harmonique et une seule telle que /i= Ö et * A= * 0 sur û'.

Soit h—a-dx-\-bdy (où dz=dx-\-i-dy) la forme harmonique
cherchée. La donnée de h et * h sur Q' fixe la valeur des coefficients a et b

sur Q'. Soient a et ß les fonctions harmoniques régulières sur le domaine
Q et prenant sur Q' les valeurs a=a et /5 6. La forme tp=a-dx-\-ß-dy
est pseudo-harmonique sur Ü, telle que y>=6 et *ip=*d sur Q'. Décomposons

alors y> en ip=a-\- h. La forme harmonique re a sur la frontière
les valeurs imposées puisque a et *a sont nuls sur Q'. L'unicité est
immédiate, une forme harmonique nulle sur la frontière ainsi que
l'adjointe étant identiquement nulle.

3.5 Solution dans ifl; de Véquation Api=y>
avec les conditions aux limites pi=0 et *pi=0 sur Q'

Des calculs analogues à ceux du N° 2.5 montrent que la forme

/M r(0V= [g(p, q, G)'k(p, q), f(q)]a

vérifie, quelle que soit la forme C^ye® l'équation Apt y>. De plus,
pt *pt 0 sur Q'. Par contre pift&x et par conséquent pi n'est qu'une
pseudo-solution.

Ajoutons à pi la forme strictement pseudo-harmonique

2g-2

H<°W^(or,,y).or„'tp :

i= 1

où les cr; forment une base D-orthonormée des formes strictement
pseudo-harmoniques. Nous avons

D[«,of]= I piA*da— òoA*pt=0,
J<p,n'

puisque // et * pi sont nuls aux points 0 et sur û'. De même

D[H«Va] (v>,cr).
Donc

V[(i+H.Wf,o] (y>,o).
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Or

T>[pi + H<°V, a] (Api, a)- J ò(pt + H<°V) A*o-oA*d(fi+ H<°>y.).

Done

ô(pi + ïH0)y>)A*o-oA*d(pi+E.My,) 0.
tf m

Cette condition entraîne que pi^ (.T(0' -f- H(0)) y> e &ï. C'est donc la solution

du problème. L'unicité est immédiate. En résumé :

L'équation Apt y> admet, quel que soit ^e®, une solution unique
telle que ^=^ 0 sur Q' : c'est pi^= (r<0) + H(o))y).

3.6 Solution dans «SI^ des équations Api=y> avec les conditions

a) pi=0 et ôpi 0 sur Q' ; b) *pi=0 et *dpi 0 sur Q'

La condition nécessaire et suffisante pour que l'équation Apt tp

admette une solution telle que1w=<5/M=0 sur Q' est Cay>=0. La solution
est unique si l'on exige Ca/te=0.

En effet, si fi est solution, on a

(f, ca)=(Api, ca)= I —caA*d/n + ôpiA*ca=0.

La condition est donc nécessaire.
Si pi et pi' sont deux solutions, la différence h=pi—ja est une forme

harmonique telle que h=oh 0 sur Q' : c'est donc un champ harmonique
prolongeable sur Û par antisymétrie. Par suite, la condition Capi=0
rend la solution unique.

Pour montrer que la condition est suffisante, partons de

A Gtp=tp—Cip.

Prenons l'extension antisymétrique des deux membres. Il vient

AGay> y>a—Cay)=y>a.
Donc sur Q

AGay>=y,,

et il est évident que CoGay> 0. En posant y=(l—C„)99, on voit en
résumé que :

L'équation A pi 99 — C„ 99 possède pour tout 99 e © une solution unique
telle que pt ôpi 0 sur Û' et Capi 0. C'est

1"a== G„99 (1 — C0) (ra + Ha) (1 — C„) 99.
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b) On démontre de manière complètement analogue que :

L'équation A pi ep—Csep possède pour tout 9?e© une solution unique
telle que *pi=*dpi 0 sur Q' et CS/m 0. C'est

pis— Gsep= (1 — Cs) (rs + Hs) (1— Cs) ep.

3.7 Décomposition orthogonale de ep en une forme homologue à 0,
une forme cohomologue à 0 et un champ harmonique

Kodaira a démontré (de Rham, 1955), dans des conditions bien
plus générales, l'existence et l'unicité d'une décomposition orthogonale

99=E99+ F994- C99, pour 99e©,

où E99 est homologue à 0, F99 cohomologue à 0, C99 fermé et cofermé.
Nous allons expliciter cette décomposition en prouvant que

~Eitp=dòGaq), Fep ôdGsep.

Si nous substituons à E 99 et F 99 les formes indiquées, les conditions
imposées à E 99 et F 99 sont évidemment satisfaites, y compris l'orthogo-
nalité de E99 et F99 dont la vérification est immédiate:

(E99, Fep) (dôGaep, ôdGscp) j <5Gaç>A*<5dGs9>=0.

Posons donc ep Ficp -\-Fcp -\-Lep et montrons que L99=C99.

1) dE99=0, ôEep=oAGaep=ôep.

2) ôFcp=0, d¥ep=dAGscp=dep.

Il résulte de là que dhtp=òLep=0. Lep est donc un champ harmonique.

3) (E99, c) (dôGaep, c) J <5G„99A*c=0, pour tout champ c.
Jn,

4) (F99, c) (ôdGsep, c) — I cA*dGs99=0, pour tout champ c.
Jn'

Il en résulte que (99, c)=(L99, c) pour tout champ c, ce qui justifie
l'affirmation L99=Cçj.
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3.8 Solution dans «9^ de Véquation Api ip avec les conditions

aux limites ôpt=0 et *dpt 0 sur Q'.
Opérateur de Green-de Rham-Spencer (1953)

La condition nécessaire et suffisante pour que l'équation admette
une solution vérifiant les conditions ôpt *dpi 0 sur Q' est Cy>=0. La
solution est unique si l'on exige Cpi=0.

Si pi est une solution, on a en effet

\pi,c)= I
t

J rt'
(ip,c) (Api,c) I piA*dc— cA*dpi + ôjuA*c— ècA*pi=0.

La condition est donc nécessaire. D'autre part, si pi et pt' sont deux
solutions, la différence h=pi—pi' est une forme harmonique telle que
<5A=*dre=0 sur Q' : c'est donc un champ harmonique. La solution est
donc unique si l'on exige Cpi=0.

Pour prouver que la condition est suffisante, nous allons montrer
d'abord que la forme

pi'=Ù(Eip + Fip)

est une solution de l'équation qui vérifie les conditions à la frontière.

1) AG(F,ip+Fip) Fiy>+Fy>, puisque C(Ey> + Fip) 0.
Or sur Q, on a Eip -\-Fip=y>—Cip, et par suite Api ip.

2) En utilisant la relation dG=Gd du N° 2.6, il vient

dpi' G(dEip + dFip) GdFip=dGFy>.

Comme GFy est symétrique sur Û, on a *dpi' 0 sur Q'.

3) En utihsant la relation Gó (5G du N° 2.6, il vient

<5pi' ù-(ÒEy> + ÒFy>) ÙÒEy>=òGEy>.

Comme GEip est antisymétrique sur Q, on a ô/j,' 0 sur Q'.
Il suffit alors d'orthogonaliser cette solution par rapport aux champs

harmoniques sur Q pour obtenir la solution cherchée

pt Gip=(l-C)G(Eip + Fy>).

L'opérateur G ainsi défini a été envisagé dans le cas d'une variété
riemannienne par Spencer. Nous allons, dans le cas qui nous occupe,
examiner la forme explicite du noyau de cet opérateur. Calculons

(f + H) (1 - C) (E + F) y, (f + H) (E + F) y,.
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1) r(Eip + Fip)=^2(n+g).k(p,q),Eip + Fipj^

En décomposant le noyau de f1 en ses parties antisymétrique et
symétrique et en tenant compte des propriétés de symétrie de E y> et Fy>,

il vient

F(Eyj + Fy>) - g • (fc + fc) 7-n(k — k), Eip

1

1

+ 2

(g-k,Ey, + Fy,)n + i
(n — g)(k — k),Ey>

g(k — k) + n(k+k), Fip

1

+ 2
(n-g)(k + k),Fip

2) En introduisant H„ et Hs, on obtient de même

Û(Eip + Fy,) (ha, Etp)a + (hs, Fy>)Q.

Introduisons les opérateurs

r^ip=(g.k,(i~c)ip)a,

h™ (re—g) (k—fc) + ha, Eyi ~(n-g)(k+k) + hs,Fip

La solution du problème s'écrit, si l'on pose ip=ep—C99,

^=G99=(1-C)(r<») + H)(l-C)99.

Démontrons maintenant que le noyau h(p, q) de l'opérateur H ci-
dessus introduit jouit de la propriété de reproduction suivante :

D h(p,q), h' h'-Ch'

pour toute forme pseudo-harmonique re'.

a) D [pt, re'] (ç9— C99, h') (ep, h'— Ch')

pour toute forme pseudo-harmonique re' puisque pieô1 et ôpi=*dpi 0

sur Q'.

b) D (l-C)F^(l-C)ep,h'

j r(o'(l-C)?)A*dA'-óre'A*r(0>(l-C)?)=0
^0, fl'
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puisque r^(l — C)99 et *_T'°*(1— C) 99 sont nuls aux points 0 comme
sur û'.

c) En soustrayant membre à membre, on obtient

D[H(l-C)ç),A'] (ç»,A'-C*'),

c'est-à-dire ID \h(p, g), h' 99) (99, h'—Ch'),

ce qu'il fallait établir.

3.9 Propriétés de Vopérateur G

L'opérateur G jouit, entre autres, des propriétés suivantes :

a) G est son propre transposé métrique.
Nous avons en effet, comme dans le cas compact

(ZIG99, Gip) (ep, Gip), (AGip, Gep) (y>, G99).

Mais les membres de gauche sont égaux, comme le montre l'application
de la formule de Green

(A G99, Gip) (Gep, A Gip)

Jr I G99A*dGy—GipA*dGep-\- ôGcpA*Gip — ôGipA*Gep.- i GepAu

Par conséquent (99, G^;) (G99, yj), ce qui justifie l'affirmation.

b) GAep=ep—C99, pour toute forme de ©2.
Soit y> une forme quelconque de ©0. Nous avons

(GAep,ip) (Aep, G«/)),

(ep, AGip), puisque ep et ip sont à support compact,

(99, ip—Cip) (ep—Ccp, y>),

d'où l'égalité annoncée en tout point du domaine Q.

c) Gx vérifie pour toute forme de ©j les formules

(1) dG!d^o=0. (1') ôG^ep^O.

(2) dG1Ó9J2 992. (2') <5G1d990 990.
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Pour démontrer la première, différentions les deux membres de

l'équation
AGydepr) depo— Gdep0 dep0,

dA G1dcp0=A dG1dep0=0,

dG1dep0 est donc une forme harmonique de degré 2. Mais sur la frontière
Q', la forme et son adjointe sont nulles. Donc dG1d990 0 identiquement.

La démonstration de (1') est analogue.
Pour démontrer la troisième, différentions les deux membres de

l'équation
AG1ôep2 ôep2—C^992 Ó992,

d Zi Gj (5 992 Zi d Gj (5 992 dó 992 zJ 992,

d'où A(dGlôcp2 — 992) 0.

La forme de degré 2 dG1ôep2— 993 est donc harmonique. Mais sur la frontière

Q', *dG1òep2 0 et *992 0. Par suite dG1ôep2 — ep2 0 identiquement.

La démonstration de (2') est analogue.

d) G transforme toute partie bornée de <fl0 en une partie bornée
de (Sl2.

En effet, on voit comme dans le cas compact que l'ensemble des G99

est borné dans Q>2 si l'ensemble des 99 est borné dans <§0. De plus, le noyau
de G étant de carré sommable, l'ensemble des G 99 est borné dans (SI

s'il en est ainsi de l'ensemble des 99. Donc l'ensemble des G 99 est borné
dans tSI0.

A cause des conditions satisfaites par G99 sur Q', on a

(dG99, dG99) -f- (<5G99, òGep) (AGep, Gcp) (cp, G99),

ce qui prouve que l'ensemble des formes dGep et ÓG99 est borné dans Gi.

Donc l'ensemble des G 99 est borné dans iSlj.
A cause de l'orthogonalité de dôGcp et ôdGep, on a

(dôGep, dôGcp) -f- (ôdGep, òdGcp) (dòGcp -f- ôdGep, dôGep-7 ôdGep),

(99— C99, 99—C99),

ce qui prouve que l'ensemble des dôGcp et ôdGep est borné dans (51. Donc
l'ensemble des G93 est borné dans (5l2.
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3.10 Courants continus en moyenne à Vinfini.
Courants nuls à la frontière. Les courants CT et GT

Les courants que nous considérons jouissent au voisinage de la frontière

de propriétés de régularité qu'on peut caractériser avec précision
au moyen de notions introduites par G. de Rham (1955).

a) T est continu en moyenne à l'infini si (T, 99) j reste borné sur tout
ensemble de formes à support compact qui est borné dans <5t0. De même,
Te©; est continu en moyenne à l'infini si (T, 99) j reste borné sur toute
partie de ©; bornée dans & et Si.

(T, 99) peut alors être défini pour toute forme de © n (SI en posant
(T, 99)=hm(T, 99„), où {99,,} est une suite de formes à support compact
telles que le support de 99—99,, s'éloigne indéfiniment et que la norme de

99—99„ tende vers 0. (T, 99) reste borné surtout ensemble de telles formes

qui est borné dans <5l0. (Voir de Rham, 1955, p. 167, prop. 6.)
Si T est continu en moyenne à l'infini, on peut définir les courants

CT et GT, comme dans le cas compact, en posant

(CT,ep) (T,Cep), (GT,ep) (T,Gep),

les seconds membres étant bien définis. Ces définitions s'étendent
naturellement au cas de fonctionnelles linéaires continues de ®; ou ®2, pour
peu qu'elles soient continues en moyenne à l'infini.

b) Un courant est dit nul à la frontière (de Rham, 1954) si T et dT
sont continus en moyenne à l'infini et si de plus

(dT,ep) (T,ôep)

pour toute forme 99 e Ólj. (On voit immédiatement que si T est une forme a

à coefficients continus sur Q, ces conditions impliquent que a=0surß'.)
Etablissons maintenant les propriétés suivantes de CT et GT.

1) Si T est continu en moyenne à l'infini, on a dans ®2

Z1GT=T-CT.

En effet (AGT, ep) (GT, Aep) (T, GAep) (T, ep~Cep) (T-CT, 9)

pour toute forme 99e®2.

2) Si T0 et T2 sont nuls à la frontière, on a dans ®;

(1) dG!dTo=0. (1') r5Gl(5T2=0.

(2) dG1(3T2=T2. (2') ôG1dT0=T0.
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Ces formules s'obtiennent par transposition à partir de celles du
N° 3.9 c). Nous nous bornons à vérifier la première :

(dG1dT0,ep) (G1dT(),ô<p) (dT0,G1ô<p), si 99e®!.

Mais si T0 est nul à la frontière

(dT0, G1dq>) (T0, ôG1ôep) 0.

Donc (dGjdTo, ep) 0 pour tout 996®l5 d'où dGjdT^O dans ®;.

3) SiT, *T,dT,(5T sont nuls à la frontière, on a

GzlT=T-CT.

En effet (Gd<5T, <p) (dôT, Gcp) (ÔT, òGep) (T, dôGep),

(GôdT, ep) (ôdT, Gep) (dT, dGç>) (T, ÔdGep),

d'où (GzlT, ep) ÇT,AGep) (T, ep-Cep) (T~CT, ep).

3.11 Application au problème de Cousin

Bornons-nous ici au cas du degré 1, où les parties singulières données
sont fermées et cofermées au voisinage des singularités et où l'on exige
les mêmes propriétés de la solution.

Dans le cas où la surface n'est pas compacte, la forme méro-harmo-
nique eo n'est pas caractérisée univoquement par ses parties singulières
et ses périodes (Bader, 1954 ; Myrberg, 1955). U faut lui imposer en
outre une condition de régularité à l'infini. Nous choisirons la suivante :

le courant T=vpa> doit être continu en moyenne à l'infini.
Soit, comme au N° 2.8, Tj=vpcoj le courant associé dans V; à la

forme méro-harmonique coj. Soient à nouveau U0 et U2 les fonctionnelles
linéaires de ®; définies globalement par les ôTj et les dT,, vu les
conditions de compatibilité,

<5(T;-Tfc) 0, d(T;-Tfc) 0, dansVj-nVfc.

Le courant cherché T doit satisfaire aux conditions suivantes :

1) dT=U2, ÓT=U0.

2) T est continu en moyenne à l'infini.

3) T est orthogonal aux champs harmoniques : CT=0.
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Les conditions 1) et 2) déterminent la solution à un champ harmonique

près. La condition 3) fixe celui-ci univoquement. La solution est
donc unique, si elle existe.

Nous allons démontrer que :

Pour que la solution existe, il suffit que les fonctionnelles U0 et * U2

soient nulles à la frontière.
Formons le courant T Gj (dU0 + <5U2), ce qui est possible puisque

l'hypothèse faite implique que dU0 et ôLS2 sont continus en moyenne à

l'infini. Vérifions qu'il satisfait aux conditions.

1) Les formules du N° 3.11 sont applicables

dT=dGl(5U2 U2, ÓT (5G1dU0 U0, dans ©;.

2) dU0 et <5U2 étant continus en moyenne à l'infini, il en est de même
de GxdU0 et GjóUj et par suite de T.

3) CT=CG! (dU0 -f- <5U2) 0. T est donc bien une solution.

Remarque : Si les singularités sont en nombre fini, l'hypothèse faite
sur U0 et * U2 est automatiquement réalisée. Cette hypothèse est de toute
manière nécessaire si l'on exige que pour la solution T, les fonctionnelles
(5T et dT soient nulles à la frontière.
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