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UTILISATION D'UNE METRIQUE SINGULIERE
DANS L’ETUDE DES FORMES HARMONIQUES
SUR UNE SURFACE DE RIEMANN

par

WERNER SORENSEN

INTRODUCTION

La théorie des fonctions et formes harmoniques dans un espace de
Riemann a fait I'objet de nombreux travaux récents. Les progrés réalisés
ont leur source dans la découverte d’une généralisation adéquate de
I'opérateur laplacien A et dans le développement systématique de la
théorie non seulement pour des formes différentielles mais pour une
classe étendue de fonctionnelles linéaires (courants).

Les résultats obtenus dans ces travaux ne sont pas applicables immé-
diatement a la théorie des fonctions et différentielles harmoniques sur
une surface de Riemann, puisqu’une telle surface n’est pas en elle-méme
munie d’une structure d’espace métrique. .

Dans le présent travail, nous associons a la surface S I'une de ses
différentielles abéliennes de premiére espéce @, exprimée en coordonnées
locales par @—=dz et nous introduisons sur S la métrique attachée a cette
forme en posant ds’—=dz-dz. Moyennant quelques précautions rendues
nécessaires par les singularités que présente cette métrique aux points
en lesquels @=0, nous pouvons transposer le formalisme développé dans
les théories susmentionnées et étudier les formes harmoniques sur S
comme solutions de l’équation Au=0. Précisons d’ailleurs que les
notions de fonction harmonique ou de champ harmonique de degré 1
sont indépendantes de la métrique introduite.

Dans I’étude de I’équation Au=1, nous n’avons fait usage d’aucun
résultat général concernant l’existence et l'unicité de la solution. Au
contraire, nous avons prouvé l'existence de celle-ci en vérifiant qu’une
forme explicitement indiquée satisfait aux conditions requises. En
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d’autres termes, notre procédé fournit, dans le cas des surfaces de
Riemann envisagées, a la fois l’existence de I'opérateur de Green-de
Rahm et la forme explicite de son noyau.

Le chapitre premier est consacré au rappel des notions fondamen-
tales et expose les modifications qu’il convient de leur apporter pour
tenir compte des singularités de la métrique. Pour I’essentiel, ces notions
sont empruntées a l'ouvrage de G. pE REAM: Variétés différentiables
(Paris, Hermann, 1955).

Le chapitre II présente I’étude de ’équation Au=vy dans le cas d’une
surface de Riemann compacte (close). Nous y définissons par son noyau
métrique un opérateur G dont nous vérifions qu’il jouit des propriétés
de Popérateur de Green-de Rham. Cet opérateur permet d’exprimer
comme courant (solution d’un probléme de Cousin) la « différentielle
harmonique avec singularités » admettant des parties singuliéres données.

Le chapitre III reprend ’examen de I'équation du=1 dans le cas
d’un domaine relativement compact a frontiére trés réguliére. Nous y
indiquons le noyau de l'opérateur de Green-de Rham correspondant
aux diverses propriétés a la frontiére qu’on peut exiger de la solution.
Dans I’'application faite au probléeme de Cousin, le langage utilisé permet
de formuler de maniére naturelle la condition qu’il convient d’imposer
a la donnée des parties singuliéres lorsqu’elles ne sont pas en nombre
fini.

Il m’est agréable, enfin, d’exprimer ici ma gratitude 3 M. R. BADER
pour l'aide efficace et amicale qu’il m’a prodiguée tout au long de
ce travail.



CHAPITRE PREMIER
NOTIONS FONDAMENTALES

1.1 Introduction d’une métrigue sur S. Forme adjointe.
q ]
Produit scalaire

Sur toute surface de Riemann S, d’ordre de connexion supérieur
a 1, il existe une différentielle abélienne @, réguliére sur S et a inté-
grale de Dirichlet finie (NEvANLINNA, 1941).

Soit @=dz l'expression de @ en coordonnées locales. En posant
ds®=dz-dz, on définit une métrique sur S, singuliére aux points isolés en
lesquels @=0. Pour abréger, nous appellerons ces points les points @
et nous désignerons par Sy l’espace de Riemann obtenu en excluant les
points @ de la surface S.

A toute forme C™°, ¢, de degré 0, 1, ou 2 correspond, tout d’abord
sur Sy une forme adjointe *¢ dont l’expression en coordonnées locales
est la suivante:

dz* i .
@ =f(p)> g, =f(p)" . -idt/\dt,
p,=a-dt}a-di, xp, =1 (—adt 4 a-di),

|3, |—2
p,=AdtN\di, *(p2=_2i.A.l3_:

On note immédiatement que pour une forme de degré 1, la forme
adjointe est indépendante de la métrique particuliére introduite.

Le définition de *y sur S, est étendue a S par continuité, ce qui est
toujours possible pour *¢, et *¢;, mais en général pas pour *¢p,, dont
les coefficients deviennent singuliers aux points @.

Nous désignerons par & l’espace des formes C™ sur S, par &, le
sous-espace des formes dont I’adjointe est encore C™~ sur S. &, comprend
donc toutes les formes C° de degrés 0 et 1, ainsi que les formes de
degré 2 qui sont I’adjointe d’une fonction C™°. Nous désignerons par 9
I’espace des formes C™° dont le support est compact et nous poserons

@gzégn@.
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A deux formes homogénes de méme degré ¢ et y, on associe leur

(%w)=fsv/\*w

produit scalaire

défini quand I'intégrale envisagée converge. On vérifie immédiatement
les formules
(@, w)=(y, @) et (*¢,*p)=(p, ).

1.2 Différentielles d’ordre n. Sous-espaces &,, Dn, ..

Champs harmoniques

Nous désignerons par d l'opérateur de différentiation extérieure.
d fait correspondre a une forme de degré k une forme de degré k-1,
dont I'expression en coordonnées locales est donnée par :

¢ of .. daé Jda .
T o a, dipy = m———)d/\d, do,—0.
Po=3p Bt 5% & (dt ot) ¢ P2

P

La forme ¢ est dite fermée lorsque dp=0.

Avec pDE RuAM (1955), nous introduisons et désignons par & 'opé-
rateur de codifférentiation défini par § =—+d+. § fait correspondre a
une forme de degré k une forme de degré k—1 dont I'expression en
coordonnées locales est donnée par :

ba  da |dz|_2
S, =0, S, =—2(2% N et
%o 1 (&ﬁm) dt|

\dz

“2/0A . d2s "dz)"l‘ OA |, &2 (dz —1) )
b, —2 % [(CE_AE( )dt o8 _ATE(%) .
LL l(az de? (d’t/ , +(af e (df)

La forme ¢ est dite cofermée lorsque d¢p =0.

Tandis que dg est associé a ¢ indépendamment de la métrique, d¢ en
dépend au contraire essentiellement. A cause de la singularité signalée
de *vy,, les formes dp,=—*(d *¢,) et dp,—=—*d *@p, ont des coefficients
singuliers aux points @ et ne sont donc pas des formes C™ sur S. Nous
désignerons par &, le sous-espace des formes de &, dont les différentielles
premieres dp et dp appartiennent encore i &,.

Plus généralement, nous considérerons les différentielles d’ordre n
d’une forme ¢, obtenues en lui appliquant n fois alternativement les
opérateurs d et 6. Nous appellerons &, I’espace des formes dont les
différentielles d’ordre < n appartiennent a &;. Les formes de &, qui
sont a support compact constituent le sous-espace 9, =&, N D. Enfin,
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nous désignerons par ¢, le sous-espace de &, comprenant les formes
dont les différentielles d’ordre < n sont de norme finie. On remarque
que pour des formes de degré 0, & =8, =8, # &,. Cela entraine que
pour des formes de degré 1, & =48, # &, =&, tandis que pour des
formes de degré 2, & £ 6,= &, # 6, -

Si @ et y sont des formes homogeénes, le degré de y étant égal a celui

d(pA*p)=dpA\*p—3SyA\+gp.

Intégrons les deux membres sur un domaine (2, de frontiére réguliére £,

de dp, on a

et appliquons a l'intégrale du membre de gauche la formule de Stokes

fdazfa
fr) Q'

Nous obtenons, en notant (p, p), le produit scalaire étendu a 2

I (do, v)o=(p, 6w)g+f¢/\*w-
-

Cette formule fondamentale montre que :

L’opérateur § est transposé métrique (DE Rmam, 1955) de d sur
Pespace 9,.

En effet, si ¢ et y sont a support compact, on peut choisir pour 22
un domaine contenant les supports de ¢ et y. Les produits scalaires
étendus a (2 sont alors les produits scalaires tout court et l'intégrale
sur {2’ est nulle. Il n’est pas nécessaire de supposer peD, car *Jy est
régulier pour tout pe9);.

On appelle champ harmonique (SPENCER, 1953) une forme appar-
tenant a &, et qui est ala fois fermée et cofermée : pe &, dp=0, dp=0.

Les champs harmoniques de degré 0 sont les constantes. Pour le

degré 2, ce sont les multiples constants de ;dz/\dz', puisque 1’adjointe

d’un champ harmonique est évidemment un champ harmonique. Pour
le degré 1, on peut écrirelocalement ¢, = df, puisqu’un champ harmonique
est fermé, donc localement exact. La condition d¢,=ddf =0 exprime,
comme nous le verrons au N° 1.3 que f est une fonction harmonique.
Les champs harmoniques de degré 1 s’identifient donc aux différen-
tielles harmoniques habituellement considérées en théorie des fonctions.
On peut observer d’ailleurs directement que I’espace des champs harmo-
niques ne dépend pas de la métrique introduite, puisque les expressions
de do, et d*¢, n’en dépendent pas.
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1.3 Opérateur laplacien. Formule de Green. Formes harmoniques

L’opérateur qu’il faut considérer comme la généralisation adéquate
du laplacien est, selon pE Ruam (1954), I’opérateur

A=dd+ dd.

L’expression de 4 g est particuliérement simple sur Sy lorsqu’on se sert
des coordonnées locales z, % :

2
A(pg:-4(j§_, Aoy =Aa-dz+ Ada-di,  Aps=AA.-dz A\ ds.
z20Z

Les formes obtenues sont en général singuliéres aux points @, pour les
trois degrés. Elles définissent par continuité des formes C™ sur S lorsque
@€ &;, mais cette condition n’est pas nécessaire. Calculons en effet A ¢,

en coordonnées t, i:
—2 - ! —2
)dt—4a (‘9“ dz )dt’.

0 [da

Apr=—4 —| - - N2\ 2. | a0
ot\ ot oi\ ot |dt

Plagons-nous en un point @, ou dz=t"dt. En écrivant que la partie sin-

guliére de A¢, est nulle, on trouve pour le coeflicient a(t, 7)

dj
di

a(t, ) =f(t) + o i g(F) - 1 ot B (e, 6,

ol f(t), g(i) et h(t, ) sont des fonctions C°. On en tire

apeafHO KO ofkO kO],

i t A

ou k(f)=g (i) + g’ (i) et ou les termes non écrits sont réguliers. Donc
@£ 6, bien que Ag¢, soit C™°. Démontrons que :

Pour qu’une forme a dont Aa est C™° appartienne a &,, il faut et il
suffit que

f@a/\*gp—qp/\*da:O, pour pe&,

4

(]désigne la limite d’intégrales sur des cercles de rayon & centrés aux
@

points @. Cette limite ne dépend pas de I'uniformisante locale choisie).
La condition est évidemment nécessaire. Pour voir qu’elle est suffi-
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sante, plagons-nous dans le cas d’un point @; en lequel dz a un zéro
simple. Au voisinage de ce point, nous avons

EM sl K
t i t i

*da=—21

ol k est une constante, les termes non écrits étant réguliers. Formons
d=f- (dt+ di), V' =f-i(—dt4 di),

ol f est une fonction C™, égale 4 1 dans un voisinage de @;, dont le
support compact ne renferme pas d’autre point @ et se trouve dans le
domaine du systéme de coordonnées ¢, i. Nous avons

f@a/\*ﬁ—ﬁ/\*da=8n(k+l}), faa/\*ﬁ'_ﬂ'/\*dazsm(k—k).

2 /]

Ces deux intégrales devant étre nulles, puisque &, 3 €&,, on a k=0,
ce qui entraine la régularité de *da et da au point @;. Le cas ol dz
présente un zéro multiple n’offre pas de difficulté supplémentaire. Ces
considérations peuvent étre répétées pour chaque point @ ; la condition
imposée entraine donc bien ae ;.

Dans la formule fondamentale I du N° 1.2, posons d’abord ¢=2da
et y=7p puis p=F et p=da, ol aeH,. Il vient

(dda, Bo=(da, 6ﬁ)g—f—fﬁa/\*ﬁ, (dda, f)o=(da, df)a— | pA*da.

En additionnant membre 4 membre, on obtient
11 (Aa, Blo=(da, dB)o + (da, 6p)q —]—fﬁa/\*ﬁmﬁ/\ *da.
-

Enfin, en permutant les réles de o et £, puis en soustrayant membre
a membre, on obtient la formule de Green

111 (Aa,ﬁ)gz(a,Aﬁ)g—{—fa/\*dﬂ——[)’/\*da+éa/\*ﬁ—éﬁ/\*a.

En prenant pour a et § des formes de 9, dont le support est contenu
a Dlintérieur de £, on voit que:

L’opérateur A est son propre transposé métrique sur J,.

L’hypothése a, €D, suffit en effet pour assurer la continuité des
intégrands dans les produits scalaires (4a, f) et (a, 45).
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Nous appellerons forme harmonique une forme appartenant a &, et
vérifiant sur Sy ’équation 4¢=0.

Pour le degré 0, la condition A@,=4ddf=0 équivaut a d+*df=0.
Or cette expression est indépendante de la métrique introduite :les formes
harmoniques de degré 0 s’identifient aux fonctions harmoniques habi-
tuellement étudiées en théorie des fonctions.

Pour le degré 2, les formes harmoniques sont les adjointes des
fonctions harmoniques, puisque *A=A4+*.

Pour le degré 1, bornons-nous ici a insister sur le fait que la condition
Ap=0 sur Sy n’entraine pas pe&,. Nous donnerons aux Nos 2.3 et 3.4
des exemples de formes C™° sur S, vérifiant I’équation 4¢=0 sur S,
mais n’appartenant pas a &;. Nous les appellerons formes pseudo-
harmoniques.

1.4 Topologie sur les espaces de formes. Notion de courant

Un ensemble 91T de formes ¢ est dit localement borné au point p si,
dans un voisinage compact de p, les dérivées partielles d’ordre =k des
coefficients des formes ¢ sont bornées, quel que soit k.

91T est borné dans & s’il est localement borné en tout point p. Il
est dit borné dans D s’il est borné dans & et si les formes ont en outre
leur support compris dans un compact fixel.

T est borné dans ¢ si I’ensemble des normes des ¢ est borné.

AN sera dit borné dans &, (ou D,,) si les formes @ appartiennent a &,
et si DN est borné dans & (ou D).

N sera dit borné dans ¢, s’il est borné dans &, et si les différen-
tielles d’ordre =n des formes ¢ sont de norme bornée.

DE RHAM nomme courant une fonctionnelle linéaire (T, ¢) sur 9,
continue dans le sens suivant : |(T, ¢) reste borné sur tout ensemble de
formes borné dans 9. Dans notre cas, il convient de remplacer O par D,.

L’espace vectoriel des courants, dual de 9, est noté 9,’. Nous dési-
gnerons de méme par 9,’ ’espace des fonctionnelles linéaires continues
sur 9D,.

Exemple 1. Toute forme a a coeflicients localement sommables
définit un courant T si I'on pose

(T, p)=(a. ), pour ge .
Un courant T sera dit C™° s’il existe une forme C7°, o, telle que

(T, p)=(a, p) pour pe<,.

1 Ces définitions sont empruntées a 'ouvrage de G. pE Ruam, Var. diff. p. 43.
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Exemple 2. Appelons semi-méroharmonique! une forme f C sur
S—p, dont les coefficients présentent en p une partie singuliére de
fonction méromorphe. Une telle forme définit un courant T si ’on pose

(T, p)=vp(B. ¢), pour g€ D,,

vp désignant la valeur principale au sens de Cauchy. Moyennant une
partition de I'unité, on peut supposer le support de ¢ compact, compris
dans le domaine du systéme ¢, i. Le calcul de (f, ¢) conduit a des

- -8, ou fetgsont

_ . 1
intégrales de fonctions de la forme ey fet P

des fonctions C°°. Les formules

ftmlﬂ-f(t, {) deAdi=—- flf;—mf-dt/\dt',

m! t otm
Lt;;s “‘;5
1 . I | lomg
g (t, ) dit AN di=—- ——=.dtAdt,
fi'"“g( ) m!]t’&f’”
[t =& t.=e

montrent I'existence de vp (S, ¢) et la continuité de T=wvp f.
Exemple 3. Posons
(T, )=0 si ¢ est de degré 0 ou 2,

o"d o"a
——| si p=a-dt-} adi,
8t”+(9f“L,SI(p a +a

(T, qﬁ):[

T est évidemment une fonctionnelle linéaire continue sur ;. On dit que
le courant T a pour support le point p parce que (T, ¢)=0 pour toute
forme ¢ dont le support appartient a S—p.

Remarque : 11 est immédiat que deux formes C™ a et o’ ne définissent
le méme courant que si elles sont identiques.

1.5 Différentielles d’un courant. Exemples

Par définition, la différentielle dT d’un courant T sera la fonction-
nelle linéaire de D; définie par

dT, ¢)=(T, d¢), pour ¢e;.

La continuité de dT résulte du fait que si ¢ varie dans une partie bornée
de 9,, d¢ reste dans une partie bornée de 9D,.

L Cf. la notion de forme semi-méromorphe dans L. ScEWARTZ, 1953.



On définit de méme la codifférentielle 6T d’un courant T en posant
(0T, p)=(T, dg), pour ¢e9);.

La définition des différentielles d’ordre n, comme fonctionnelles
linéaires de D, est complétement analogue.

Exemple 1. Si T=a est une forme de &,, on peut identifier les
différentielles dT et 6T du courant avec celles da et da de la forme.

- (dT, ¢)=(T, d¢)=(a, 6¢)=(da, ¢),
(0T, ¢)=(T, dp)=(a, dp)=(da, ¢).

Exemple 2. Si T=uvpp est semi-méroharmonique, il faut distinguer
les différentielles dT et 6T des fonctionnelles vpdf et vpdp.

@T, ¢)= (T, aqn)zvp(ﬁ,acp)=vp(dﬁ,qa)—fﬁ/\*¢,

p

(6T, )= (T, d«p)zvp(ﬂ,dw):vp(aﬁ,qoquo/\*ﬁ-

On obtient donc les différentielles dT et 6T en ajoutant & vpdf et vpdf
des courants de support ponctuel p:

dT=vpdp + U,, ou (Up,gv):—-fﬁ/\*%

p

0T=vpdp +V,, ou (Vp,cp)z+f(p/\*ﬁ.
P

Exemple 3. Si T—a est une forme de &,;, on peut identifier le
laplacien AT du courant et celui 4a de la forme. Par définition

(AT, ¢)=(T, Ap)=(a, A¢).

Par conséquent
(AT, p)=(4a, ¢), puisque a€ &, et peQ,.

Exemple 4. Si T—=uvpf est semi-méroharmonique, on obtient le
laplacien AT du courant en ajoutant a la fonctionnelle vp A4S le courant
W, de support ponctuel p:

(Wp. ) Ifw/\*dﬁ—ﬁ/\*dthr599/\*13—5!9/\*%
P

(AT, )=(T, Ag)=vp(B, Ap)=vp (45, ¢) + (W5, ).
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Un courant T sera dit fermé, cofermé ou harmonique selon que
dT=0 dans 9;, 6T=0 dans D;, AT=0 dans D,. Signalons ici sans
démonstration 'important théoréme de régularité des courants harmo-
niques : un courant harmonique dans un domaine £2 est égal 4 une forme

C™ dans 2 (voir bE Ruam, 1955, p. 149).
Bornons-nous a établir que :

Si une forme C™, a, définit un courant harmonique, cette forme est
harmonique.

a) Soit e une forme dont le support ne contient pas de point @.
L’application de la formule de Green montre que

(da, p)=(a, 4¢)=0, puisque p€<,.

On en déduit que 4a=0 en tout point de Sy.

b) Montrons que a€®,. Il suffit de remarquer que les formes
G=f-(dt4di) et ' =f-i(—dt+ di) envisagées au N° 1.3 appartiennent
a D, puisque d¥=08=d?¥ =9 =0 au voisinage de @. Donc (a, 49)=0
et (a, 49)=0. L’application de la formule de Green, compte tenu de
Aa=0 fournit immédiatement les relations

f&a/\*ﬁ——ﬁ/\*dazo, féa/\*ﬁ'——ﬁ'/\*da:O.

L] @

Nous avons remarqué au N© 1.3 que celles-ci entrainent a€ &;.

CHAPITRE II

ETUDE DE L’EQUATION Au=y SUR UNE SURFACE
DE RIEMANN COMPACTE (CLOSE)

2.1 Généralités. Identité des formes et champs harmoniques

Dans le cas out S est une surface compacte (de genre p > 0), on peut
préciser sur quelques points les notions introduites au chapitre précédent :
a) On sait que sur une surface compacte de genre p, une différentielle
abélienne de premiére espéce s’annule en 2p—2 points (WEYL, 1947).
Il y a donc un nombre fini 2p—2 de points @. Nous supposerons pour
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simplifier que ces points sont distincts, c’est-a-dire que @ n’a que des
zéros simples.

b) La distinction entre &, et D, disparait, puisque toute forme sur S
est a support compact.

¢) Le produit scalaire de deux formes C™, a et f, existe toujours,
pourvu que I'une d’elles appartienne a &,.

Les formules d’intégration du N© 1.2 prennent une forme intéres-
sante lorsqu’on les applique pour 2=S, puisqu’alors la frontiére est
nulle. On obtient :

(do, v)=(g, o), si Y€ &y,
(A, p)=(do, dy) 4 (d¢, o), si @, pe b,
(A, p)=(p, Ay), si @, pe&;.

Appliquons la seconde pour p=vye &,. Elle devient

(Ao, p)=(dg, dp) + (d¢, 69),

si bien que pe &, et Ap=0 impliquent dp=0 et ¢p=0. Autrement dit:
Sur une surface compacte, toute forme harmonique est un champ
harmonique.

2.2  Espace des champs harmoniques. Opérateur C
Examinons séparément pour les degrés 0, 1, 2 les solutions du sys-
téme dp=0 et dp=0.
1) dg,=0 entraine, ¢,= constante.
Les champs harmoniques de degré 0 sont les fonctions constantes.

2) Dans le domaine attaché au systéme de coordonnées ¢, #, ol
pr=al(t, i) dt+ a(t, i)di,

les conditions dg,=0 et dp,=0 entrainent, d’aprés les formules du

No 1.2 e
oa

da_,  oa

ot ot
Donc a(t, i) est une fonction analytique de ¢ seulement: a(t, {)=f().

Par suite pr=28Rf(t)dt.

Un champ harmonique de degré 1 est la partie réelle d’une différentielle
abélienne de premiére espéce, et réciproquement. Il en résulte que :

Les champs harmoniques de degré 1 forment un espace vectoriel de
dimension réelle 2p.
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3) J0¢,=0 entraine, d*¢@,=0 d’ou1 *¢p,—constante.
Les champs harmoniques de degré 2 sont les multiples de ;-dz/\dz'.

Désignons par c; les éléments d’une base orthonormée (inhomogéne)
de I’espace des champs harmoniques. Constituons la forme double

2p + 2

c(p, =) ci(p)-c(q),

i=1

et 'opérateur C dont c(p, q) est le noyau métrique :

Cop=(c(p. ), p(0))-
On vérifie immédiatement que (Coe, ¢;) = (g, ¢;). Par suite

(Co, f)=(9, f)

pour tout champ harmonique f. Cette formule montre que ’opérateur C
reproduit les champs harmoniques (BErReMANN, 1950): Cf=f. Elle carac-
térise Cp comme projection orthogonale de ¢ sur I’espace des champs
harmoniques. L’opérateur C ne dépend donc pas de la base ¢; choisie
pour former le noyau ¢(p, q).

L’opérateur C jouit des propriétés suivantes?!:

1) C'=C C est son propre transposé métrique. En effet

o) =72 Co) =) (@) (v ).

2) »C=C» C permute avec *. En effet

*Co =Z*ci(p) (e (@) ¢(q)),
=Z*ci (P)'(*Ci (9) *90(9))20*99-

La derniére égalité résulte du fait que les *¢; forment une base ortho-
normée s’il en est ainsi des c;.

3) dC=06C=0 et  Cd=Cd=0.

Les premiéres égalités sont vraies par définition. Les secondes en dé-
coulent puisque Cd et Cd sont transposés métriques de dC et 4C res-
pectivement.

1 Cf. les propriétés de lopérateur H dans I'ouvrage de G. pE Ruam, p. 155.
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2.3 Espace des formes pseudo-harmoniques

Nous appellerons pseudo-harmonique toute forme appartenant a &,
et vérifiant ’équation 4 p—=0 sur Sg. Toute forme harmonique est donc
pseudo-harmonique, mais nous allons voir que I'inverse est faux, au
moins pour le degré 1. (Pour les degrés 0 et 2, on a §,= &, et par suite,
toute forme pseudo-harmonique est harmonique.)

Envisageons les 4p—4 formes ¢, et *¢(k=1, ..., 2p—2) définies
par

o= (Rt +1d7) - dz + (Rre—iJ 1) - d3,

ou 7, et 7; sont des fonctions analytiques sauf au point @; (en lequel

' 1 . .
dz=t-dt), ont en ce point le pdle =, R7; et J7i étant uniformes.
Posons encore !

po=dz -+ dz.

Les 4p—2 formes ¢y et * g, ainsi constituées sont C°° sur S. Elles appar-
tiennent donc & &,= &. D’autre part, les coefficients de dz et dz sont des
fonctions harmoniques sur Sy. Par conséquent Ap,=0 sur Sg: les
formes g et *¢; sont donc pseudo-harmoniques. Posons

(pk:ak'dt—l_dk'di'

On établit immédiatement la propriété suivante des coefficients ay:
Au point @i, on a ¢;=0 si j~k et a,=1. On en déduit:

Les 4p—2 formes ¢ et *¢(k=0, 1, ..., 2p—2) sont linéairement
indépendantes sur le corps des réels.

En effet, la forme pseudo-harmonique

2p—2

'P:Z}uktpk + Uk * @ =f'dt+f‘df
E=0

a au point @; un coefficient f qui vaut A;—iy;. Par suite, ’équation
@=0 n’est possible que si A;=u;=0, d’abord pour j = 1, puis pourj=0.

Comme il n’existe pas plus de 2p champs harmoniques linéairement
indépendants et que 4p—2>2p dés que p>1, on en conclut que cer-
taines au moins des formes pseudo-harmoniques ¢; et *¢, ne sont pas
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harmoniques. Notons d’ailleurs les formules suivantes, qu’on vérifie par
un calcul simple :

~ dwy, dwy,
*do,=24 ——, oppr=—2HR —,
Pe=29 dz i & dz
*d*qgk:zg{dﬂ“, 5*%:23‘1"1“,
dz dz

oi dwy=d7y—d7; est une différentielle abélienne de premiere espéce.
Démontrons maintenant que :

Les 4p—2 formes ¢ et *¢,(k=0,1,...,2p—2) constituent une
base de I’espace des formes pseudo-harmoniques.

Rappelons d’abord la remarque faite au N° 1.3 quant aux coefficients
d’une forme y dont le laplacien Ay est régulier sur S. Il en découle
immédiatement que pour une telle forme, I'intégrale de Dirichlet

D[y, pl=(dp,dp) + (du, o)

reste bornée. Elle vaut

D[Mwu]:(AMaM)—faﬂf\*.u—ﬂf\*dﬂ-

[

On déduit de cette formule qu'une forme pseudo-harmonique dont les
coefficients sont nuls en tous les points @ est un champ harmonique.
Soit ¢ une forme pseudo-harmonique quelconque. Formons

2p—2

wxw—ZM O+t pr=g-dt +g-di.

k=1

Nous pouvons choisir ; et 4; de maniére a annuler g et § au point @;.
Par suite, y est un champ harmonique. La différentielle abélienne
w-+i*y s’annule aux 2p—2 points @, : c’est donc un multiple (complexe)
de dz. Donc p=24, py+ o * @p, 00 4y et p, sont réels. Donc

ce qui démontre le résultat annoncé.

L’espace H{ des formes pseudo-harmoniques est donc un espace
vectoriel de dimension réelle 4p—2. Il se décompose orthogonalement
en I’espace Jf; des champs harmoniques, de dimension 2 p et I’espace J{,,
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de dimension 2p—2, des formes pseudo-harmoniques orthogonales aux
champs.

Dans I’espace J(;, I'intégrale de Dirichlet D[u, u] est une forme
quadratique définie positive. Il est donc possible de construire une base
de J{, dont les éléments h; soient D-orthonormés : D [h;, hj]=0;;. Cons-
tituons la forme double h(p, q) et 'opérateur D définis par

2p—2

h(p. ) =) hs(p) i),

Du=D[h(p, q), n(9)],

Dy est défini sur I'espace des formes u de D-norme finie et ne dépend
évidemment pas de la base choisie pour définir la forme h(p, q). On a

Dh;=D [k(p, q), hi]=hi,

D reproduit donc les formes de ’espace J{,. Par suite DDy=Dyu.
On notera qu’une forme pseudo-harmonique h est nulle si mais seu-

lement si Ch=0 et Dh=0.

2.4  Solutions et pseudo-solutions de I'équation Au=vy

Nous dirons qu’une forme u est une pseudo-solution de ’équation
Apu=1 si elle appartient a &, et vérifie cette équation sur S;. C’est une
solution si elle appartient 4 &;.

Avant de discuter la condition nécessaire et suffisante pour ’exis-
tence d’une solution, voici quelques remarques préliminaires :

a) Une pseudo-solution de ’équation est déterminée a4 une forme
pseudo-harmonique prés. Elle est donc univoquement caractérisée si 'on
exige que Cu=0 et Du=0. Nous désignerons cette pseudo-solution
particuliére par u(©. Si u© existe, on a

D [p9, h]=0, pour tout helf.

b) Une solution u® de I’équation est déterminée 4 un champ harmo-
nique preés. Elle est donc univoquement caractérisée si 'on exige que
CuM=0. Si u™ existe, nous avons

D [u, k)= (4D, k) — f SuWA*h—hA+du®,

D

d’ou D [, h]=(y, h), pour tout helfl.
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Comme D [V, h]=0 si h est un champ harmonique, on voit que la
condition Cy=0 est nécessaire pour qu’il existe une solution.

¢) Si la pseudo-solution u® et la solution u'V existent, la différence
uW— 4 est égale a la forme pseudo-harmonique

Hy=(k(p. q), v(q)-

En effet C(u"V—u)=CHy=0.
D'autre part D (u®—u®)=D[u®, h(p, g)|=(v, h(p. 9))-
d’ou : D (W — @) =DHyp=Hyp.

d) Réciproquement, si la pseudo-solution y(” existe et si Cy=0, la
forme pu=u® |- Hy est solution de I’équation.

En effet D[Hy, h]=(y, h),
pour helf, quel que soit y et pour tout helJf si Cy=0.
Donc D[u, k]=D [y(o), h]+ D [Hy, h]=(yp, h), pour tout hell,

d’on f@y/\*h—h/\*d,u:(), pour tout helf.

@

Sil’on prend h= ¢, et h==* ¢, I'intégrale en @; £ P}, est automatiquement
nulle et la condition écrite entraine, comme au N° 1.3 que du et *du
sont réguliers au point @;. Ceci est valable pour tout point @;. Donc
u=u® 4+ Hy est une solution. _

Nous allons démontrer maintenant le résultat fondamental :

La condition nécessaire et suffisante pour que ’équation Au=vy
admette une solution est que C'q):O.

Nous avons vu déja sous b) que la condition est nécessaire. Pour
démontrer qu’elle est suffisante, nous allons prouver qu’elle entraine
Pexistence de la pseudo-solution u® en construisant explicitement celle-
ci. D’aprés d) D’existence d’une solution sera ainsi démontrée.

2.5 Construction de la pseudo-solution u© de équation Ap=1

Soit g (pp, ; 99,) la fonction harmonique en p pour p ¢, q,, admet-

; ) o o4 1 1
tant en ces points les singularités — 5z log qp et —|—2—— log q,p et
s’annulant pour p=p,. & i
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Constituons les formes doubles
k(p,9=1p-1,+ %(dzpalz'g + dz, dz,) + ; - dz, N\ dE, - %dzq/\dz'q,

Yroto (P> =8 (PPo 99) k(p. ) -

Soit I 4 Popérateur admettant y, 4 (p, ) pour noyau métrique,

Thy0,® =70y (P2 9)> #(9)).-

1) Pour tout pe&y, I, o @ est une forme C™° en tout point p ¢,

0%

présentant en ce point la partie singuliére — 2i~ log qop- (k (p.9.9 (q)) :
7T

En effet, les coefficients de la forme I}, , ¢ sont de la forme

fg(pp(,; q9,) - f (q) dt,\diy, ou f(q) est C7 et il est bien connu qu’il
s’agit de fonctions C™° de p, sauf en p=g,.
2) Pour tout pe&, I 4 (1—C)gp est une forme c™.

Cela tient au fait que k(p, ¢) est un champ harmonique en gq.

3) L’opérateur (1—-C) I’ o (1—C) ne dépend pas de py et qo.

En effet, nous avons
g(pp1; 99:) =8 (PPo 99)) + 8 (PPo3 90 %) — & (P1Po 491) 5
Lot
Ty g (1—C)p =Ty g (1—C)p +g(PPy3 9 - (K(P 9), (1— C) (),
— (8(P, P03 93)) - k(P 0)» 1—C) ()

Le deuxiéme terme est nul ; le troisi¢me est un champ harmonique en p.
Par conséquent

(1—C) I}, (1—C) o=(1—C) I}, 4, (1—-C) ¢.
Nous renoncerons donc 4 mentionner les indices p, et gq,.

4) L’opérateur (1—C) I'(1—C) est self-adjoint.
En effet, ’adjoint de cet opérateur est

(1— O I (1— 0= [1—08) I* (1—C)s
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Mais 1"} q, a pour noyau g(gpo; po) - k(9. P)=8(Pgo; 4p0) - k(p> 9) 2
cause de la propriété de symétrie de g(pp,qq,) qui s’exprime par la
formule

g(PPo 5 990) =2 (990 5 PPo) -
Fg

Par conséquent [’ .

roto—1 9, €t cette propriété résulte de la précédente.

5) Pour toute forme C™y a support compact sur Sg, on a
(1— C)PpgquV’:w—‘C';”‘
Par définition Iy g dy= (VPO (2. p), Ay (‘1)) .

En appliquant la formule de Green au domaine obtenu en excluant de la
surface deux petits cercles de rayon & centrés en p et ¢,, nous trouvons
a la limite, puisque 4y=0,

F’poq.,Aw=fw/\*dy~y/\*dw+6w/\*y—5w\*w-

Un calcul classique montre que la limite de I'intégrale existe et vaut
Ipy gy dp=1(p)—J'v(p),

J'y(p)=Ff(q). si p est de degré 0,
J"tp’(p)za(qo) dzp + a(qp) - dzp, si p est de degré 1,
J'y(p)=A(q) - dz, Ndz,, si y est de degré 2.

Dans les trois cas, J'p est donc un champ harmonique.

Par suite (1—=C) Iy, gy dy=9p—Cyp.

6) Pour toute forme pe &, on a sur S, ’égalité

P(]QO(]‘ C)p=¢—Cop.

Soit en effet y une forme C° quelconque & support compact sur
S . Nous pouvons écrire

(AT, (1= C) 3, 9) =(Tpy0, A=), Ap)=((A—C) . I"py4, 49),
:((p (]. C)FfPo’J(}A ) ((P-) (1—C)’lp),
(
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Cette relation prouve I’égalité des formes A, , (1—C)g et (1—C) g sur
la surface Sg.

Il résulte de cette derniére propriété que 1’équation Au=¢p—Cgp
admet toujours la pseudo-solution

p=(1—C) I'(1—C)g.

On vérifie immédiatement que Du=0. La pseudo-solution ainsi cons-
truite est donc u®. Ajoutons a u(© la forme pseudo-harmonique

H(1—C) ¢p=(1—C) H(1—C) .
On obtient uV, 'unique solution orthogonale aux champs harmoniques :
p=Go=1—C)(I'+ H)(1-C)¢.

Nous appellerons I'opérateur G ainsi construit opérateur de Green-
de Rahm (SORENSEN, BADER, 1957); nous allons en indiquer les pro-
priétés essentielles.

2.6 Propriéiés de l'opérateur de Green-de Rham

(pE RHAM, 1955)

a) L’opérateur G permute avec *: G*=+*G.

Partons de ’équation
AGop=p—Cop.

Prenons I’adjointe des deux membres et tenons compte des relations
A*=+*4 et C*=+C. 1l vient

A*Gop=+*p—C*g.
Par ailleurs C*Gp=+CGep=0.

Or la seule solution de I’'équation Ay=*@p—C*¢ qui soit orthogonale
aux champs harmoniques est G*¢. Donc *Go=0G *¢.

b) L’opérateur G permute avec d: Gd=dG.

Partons de I’équation 4G o=@ —Cq. Différentions les deux membres
et tenons compte des relations dAd=Ad=ddd et dC=0. 1l vient

AdGo=dg.

Par ailleurs CdGgp=0. Or la seule solution de I’équation Au=d¢ qui
soit orthogonale aux champs harmoniques est Gdg. Donc Gdp=dGg.
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Il résulte des propriétés a) et b) que I'opérateur G permute avec
tout symbole de différentiation, pour autant que les expressions
obtenues aient un sens. Notons en particulier :

GAdp=AGp=¢ —Cg, pour g@€&,,
dG,dgp,=0, 0G,09,=0, pour @eg&,,
dG,dp, =@, — Cop,, 0G,dpy=¢,— Co,, pour @€&,.
Démontrons par exemple ces derniéres formules

dG,0p,=6G,ddp, =G, Ap,= ¢, — Cg,,

CsGld% =Gy ddg, =G, Ag,= ¢, — Co,.

¢) L’opérateur G est son propre transposé métrique: G'=6G.

Car (A4Ge, Gy)=(p—Cqp, Gy)=(p, Gy),
et (AGy, Go)=(p—Cy, Gp)=(p, Gg).
Mais (4G, Gy)=(4Gy, Gg),

puisque G, Gye &, et que A est son propre transposé métrique sur &,.

Donc (@, Gy)=(Go,p).

e) L’opérateur G transforme une partie bornée de &, en une partie
bornée de &,.

On sait que si L(p, q) est une forme C>° sauf sur la diagonale p=g¢,
ou L(p, q) est le produit de log r par une forme C>, I’ensemble des
formes /I(p:(L (p-9)- gp(q)) est borné dans & s’il en est ainsi de ’en-
semble des formes ¢. (Pour la démonstration, voir DE RuAM, p. 138,
lemme 4.)

Il en résulte immédiatement que si I’ensemble des formes ¢ est
borné dans &, il en est de méme des formes Gg. Vérifions que Gope &, -Gg
est par construction une forme de &,; il ne reste qu’a constater que
ses différentielles secondes restent réguliéres. Pour le degré 0, il n’y a
que 0dGyp=AGp=gp—Cgp qui est C. Pour le degré 1, &,=&,. Pour
le degré 2, il n’y a que d6Gp=AGep=¢p—Cgp qui est C".
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2.7 Les courants CT et GT

La définition des opérateurs C et G peut étre étendue aux courants
si ’on pose
(CT, ¢)=(T, Cg),  (CT, ¢)=(T, Gg).
On notera que:

1) Le courant CT est un champ harmonique. En effet,
2p+2 ; 2p + 2
CT.9)=(T.) (a0 (@) a(p) ) =) () 9@)-(T. )
i=1 i=1
2p+ 2

p— Z(T, Ci) 'Ci(Q)a (P(Q) ’

i=1
2p+ 2

CT est donc identique au champ harmoniqueZ (T,e) ¢
i=1
Remarquons d’ailleurs que la définition de CT reste valable lorsque T,

sans étre un courant est une fonctionnelle de 9,, puisque le champ
harmonique Cg appartient a 9, pour tout n.

2) GT est un courant associé a toute fonctionnelle linéaire T de ;.
En effet, si ¢ reste dans une partie bornée de &,, G reste dans une
partie bornée de &, et la fonctionnelle T reste bornée sur un tel ensemble.
Donc GT reste borné sur toute partie bornée de &,.

Il en résulte en particulier que GAT est un courant si T est un courant,
ou que GdU ou GJU sont des courants si U est une fonctionnelle linéaire

de 9;.
En transposant les formules du N° 2.2, on obtient
C+T==CT, CdT=0, CAT=0,
tandis que dCT=0, 6CT=0,

puisque CT est un champ harmonique.
De méme, en transposant les formules du N° 2.6, on obtient

GAT=T—CT, dans 9, pour tout courant T,
AGT=T—CT, dans 9.,
dG,0U,=U,—CU, et 6G,dU,=U,—CU,, dans 9;.
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2.8 Le probléme de Cousin

(pE Ruam, KoDATRA, 1950 ; SCHWARTZ, 1953 ; BADER, SORENSEN, 1957)

Rappelons qu’il s’agit du probléme classique suivant :

On donne dans des ouverts V; formant un recouvrement de S des
formes méroharmoniques w;, vérifiant la condition de compatibilité
suivante : w;— w; est une forme harmonique dans V;NYV;.

On demande de trouver une forme méroharmonique  telle que
®— w; soit une forme harmonique dans V;. La solution étant déterminée
a un champ harmonique prés, on la rend unique en exigeant, par exemple,
qu’elle soit orthogonale (en valeur principale) aux champs harmoniques.

Soient T;= vpw; le courant associé dans V; & w;, T=vpw le courant
associé a la solution, si elle existe.

Formons dans V; la fonctionnelle U;=AT;, explicitement définie par

(Us, @) =f‘P/\*dwi—wi/\*d(p+ dpN*w;—dw; \*@,

%

pour tout pe &, ayant son support dans V;. Les U; définissent globa-
lement une fonctionnelle U de 9, et le probléme posé peut étre formulé
comme suit :

Résoudre I’équation AT=1U, avec la condition CT=0.

La condition nécessaire et suffisante pour que le probléme ait une

solution est que CU=0.

a) S’il existe une solution T, on a CU=CAT=0. La condition
est donc nécessaire.

b) Si CU=0, le courant T=GU est solution du probléme. En effet,
nous avons vu que AGU=U—CU dans 9; et de plus CGU=0. La
condition est donc suffisante.

Discutons maintenant la condition CU=0.

1) Degré 0. La condition CU=0 équivaut a

(U, 1) :Z f*dwi:O.

Si f; désigne la fonction analytique dans V; dont w; est la partie
réelle, cette condition exprime le résultat classique que la somme des
résidus des différentielles df; aux points singuliers ¢; doit étre nulle.
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2) Degré 2. La condition CU=0 équivaut a

(500) . [

C’est la condition du degré 0 pour *w.

Dans le cas du degré 1, le probléme se pose différemment du fait
que les formes w; données sont fermées et cofermées en dehors de la
singularité ¢; et qu’on exige alors que la solution soit fermée et cofermée
dans tout domaine de la surface S—(¢q;). Reprenons le probléme.

Envisageons dans V; les fonctionnelles dT; et 0T;, définies explici-
tement par

(dT;,tp):—~fwi/\*qv, (5Ti,99)=—|—f99/\*wi,
q;

9

pour tout g €&, dont le support est dans V;. Les dT; et 6T, définissent
globalement les fonctionnelles U, et U, respectivement. Il s’agit de
résoudre le systéme

dT=U,, 6T=U,,  CT=0.

La condition nécessaire et suffisante pour que le probléme soit pos-

sible est CU,=0 et CU,=0.
a) S’il existe une solution T, on a CU,=CdT=0 et CU,=CdT=0.

La condition est donc nécessaire.

b) Si CU;=0 et CU,=0, le courant T=G (dU,+ dU,) est solution
du probléme. Nous avons vu en effet au N© 2.7 que

dG,0U,—=U,—CU,=U, et  8G,dU,=U,—CU,=T,,
6G16U2:0 et dG‘ldUOZO,
Lot dT=U, et §T=U,,  dans 9.

Enfin, CT=CG (dU, 4 6U,)=0. La condition est donc suffisante.
Explicitons maintenant les conditions CU,=0 et CU,=0. Elles
s’écrivent

(Uz, Y dz \dz> wal_o (U, 1):+Zf*wi:0,

et expriment le fait que les différentielles analytiques ;= w; + ¢ *w; ont
aux points singuliers ¢; des résidus dont la somme est nulle.
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CHAPITRE III

ETUDE DE L’EQUATION Au=9 SUR UN DOMAINE
RELATIVEMENT COMPACT A FRONTIERE
TRES REGULIERE D’UNE SURFACE DE RIEMANN

3.1 Double de Schottky du domaine 2

Soit £ un domaine relativement compact d’une surface de Riemann,
de genre g et dont la frontiére, supposée trés réguliére (PARREAU, 1951),
comporte ¢ courbes fermées disjointes. Il est bien connu qu’on peut
souder A £ un symétrique 2 (BADER, 1954), de manidre a constituer
une surface close £, qu’on appelle le double de Schottky (AHLFORS, 1950 ;
DurF, 1952) de 2. 2 a pour genre § —2g +c—1.

Pour définir la métrique sur {2, nous prendrons une différentielle
abélienne @ de 9, symétrique en ce sens que si en p, @ =dz, alors
en p, ®=di. (P est donc réelle le long de la frontiére.) Les points
@ étant symétriques deux a deux sur 9, il s’n trouve § —1 sur Q;
nous supposerons, pour des raisons de simplicité que les zéros de @
sont d’ordre 1.

La correspondance involutive entre p et p sur £ permet d’accorder
les uniformisantes en p et p de telle maniére que si g, voisin de p, a, dans
le systéme attaché en p, les coordonnées dx, dy, le point q ait dans le
systéme attaché a p les coordonnées dx, —dy. En un point p de la fron-
tiére, on suppose en outre que dy >0 dans 2 et <0 dans 5 8

Deux formes ¢ et ¢ sont symétriques 'une de I’autre si la valeur de ¢
correspondant au déplacement infinitésimal pq est égale a la valeur de ¢
pour le déplacement symétrique pg. En coordonnées locales, nous
obtenons les formules explicites :

®o(P)=f(P)> @ (P)=1(P)>
¢, (p)=a(p)dx+ b(p)dy, #1(p)=a(p)dx—b(p)dy,

#2(p)=A(p) - dx A dy, G2 (p)=— A () dx A dy.

La correspondance entre ¢ et ¢ est involutive par définition ¢ =¢ .
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On vérifie par des calculs simples les propriétés suivantes de 1’opé-
rateur de symétrie ~ :

\-—\ - - —_— -
(1) pAhypy=pA yp. (2) dp=dg.

(3) F=—15. @ [#=—[

by
Il résulte de (2) et (3) que dp=20¢. Par suite: L opérateur ~ commute
avec tout opérateur de différentiation.

S——
Il résulte de (1) et (3) que ¢ N\ *yp=—F A *. Par suite, en vertu de (4)
Jonso=[ore5 et @z =6 1.
= p.

Une forme est symétrique (antisymétrique) sur 2 si p=¢ (resp.
¢p=—¢). Les différentielles d’une forme ¢ sont symétriques ou anti-
symétriques en méme temps que ¢. Par contre, ’adjointe d’une forme
symétrique est antisymétrique et inversement.

La restriction a {2 d’une forme antisymétrique est nulle le long de la
frontiére. (Il en est donc de méme des différentielles de cette forme.)
Démontrons que pour les formes pseudo-harmoniques, la réciproque
suivante est juste :

1) Une forme pseudo-harmonique sur 2 vérifiant sur ' les conditions
@=0¢=0 se prolonge par antisymétrie en une forme pseudo-harmonique

sur £2.
"Posons ¢=adx - bdy olL dx=2& (dz) et dy =3 (dz).
Si ¢ est pseudo-harmonique, a et b sont des fonctions harmoniques. Les
conditions p=090¢=0 sur " impliquent a=0 et g—b= 0 sur £’'. En vertu

Yy

du principe de symétrie, on peut prolonger a et b en posant

a(p)=—a(p),  b(p)=+b(p),
ce qui justifie I’affirmation. On démontre de maniére analogue :

2) Une forme pseudo-harmonique sur £ vérifiant sur 2’ les conditions
*@p=*dp=0 se prolonge par symétrie en une forme pseudo-harmonique
sur 0.
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3.2 Extensions syméirique et antisymétrique de C(p, I:Icp, I (7

A toute forme sur £, y, correspondent une extension antisymétrique
y, et une extension symétrique v, définies par

Ya=%p—%, =y Y.
Quand le support de y est dans (2, les extensions y, et yp, réalisent le
prolongement de y par antisymétrie ou par symeétrie.

A tout opérateur linéaire L sur {2 correspondent de méme des exten-
sions antisymétrique et symétrique définies par

Lyy=Ly—Ly,  Lyy=Ly+4Ly.
Si 1(p, q) est le noyau de I'opérateur L, ceux de L, et L, sont

S~——P S—— P
L(p, 9=Up. 9—Up. 9,  L(p,9=Ip, 9 +1p,9).
Nous allons exprimer ces noyaux en termes dont la définition ne fait
intervenir que le domaine (2, dans le cas oit L est I'un ou I'autre des
opérateurs C, H, I

1) On peut supposer que la base orthonormée des champs harmo-
niques sur {2 est formée de g+ 1 champs antisymétriques ¢; et de
g+ 1 champs symétriques ¢;. Les noyaux c.(p,q) et ¢, (p,q) sont.

alors
1

>
+

B+1
(P =) #(p) e, alp.) =) (p)-E(0)-

i=1 i=1

Introduisons les formes c?:l/Z-es‘ et cfZI/Qé‘f Elles constituent des
bases orthonormées sur {2 des champs prolongeables par antisymétrie
(c.-a-d. nuls sur ') et des champs prolongeables par symétrie (c.-a-d.
dont I’adjointe est nulle sur ). Nous avons

E4+1 £+1

ca(p. q) =ZC§‘(P)-C;-‘(9)7 ¢ (psq) =ZC$(p)-C§(q)-

i=1 i=1

2) Des considérations analogues pour H montrent que

-~ ~

g—1

ho(pod) =) B (P) B @, (P9 =) K(p)-Ki(o)-

i=1 i=1



32

3) Avant d’expliciter les noyaux de I, et de I, remarquons que
dans le noyau de I', il convient, sur la surface symétrique 2, de
remplacer la fonction g(pp,; q9,) par la fonction

) 1 ..
U (PPo s 9%) = 5|8 (PPo 5 990) +8(PPo 990) |-

qui jouit de la propriété de symétrie 622}’ (PP 990) = ey (PPo 5 990) -
Cela est possible, puisque le choix de p, et ¢, n’influe pas sur 1'opé-
rateur G.

Si I’on remarque que

9

2 ~ ~ P 9 N p
Y (PPo 3 99)= 2 (PPo 5 99) et k(p, q)=k(p,q) d’ot y(p,g)=y(p,q)

on obtient
— —
va(P> Q=7 (P> 9)—v(p- 9, vs(P- @=v(p- 9 +7(p>9)-

Les extensions antisymétrique et symétrique de G,EJ' (Ppo s 990)» soit

g(p> 4, 2)="Y (ppo; 99)— 2 (PPo 5 1%0)>

n(p. g, 2)=3f(ppo; 990) + f (PPo 5 990)

ont pour restrictions a £ les fonctions de Green et de Neumann de ce
domaine (SCHIFFER, SPENCER, 1954). Ce sont en effet des fonctions har-
moniques en p, ayant en p=gq la singularité voulue. Les propriétés a la
frontiére découlent des propriétés de symétrie

g(ﬁv q 'Q):_g(P9 q, 'Q)v n(ﬁ’ q, ‘Q):+n(P’ q, ‘Q)v

g(p.q, Q)=—g(p. ¢, 2), n(p, ¢, 2)=-+n(p, q, 2).

Les noyaux de I, et Iy prennent alors la forme

Ve (P q) :% g(k+1§)+n(k—fc)]a
ys(p,q):; g(k—ﬁ)+n-(k+7c)}-

Envisageons alors I’opérateur de Green-de Rham de Q

G=01—C)(I'+H) (1-C).
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On voit trés simplement que ses extensions antisymétrique et symé-
trique sont

Go=(1—Co) (Ia+ Ha) (1—Co), G, =(1—-0C) (I + H) (1-Cy),

ol les opérateurs successifs agissent sur les restrictions a 2 des formes
précédemment obtenues.

3.3 Champs harmoniques

Les champs harmoniques de degré 0 (dg,=0) sont les constantes.
Les champs harmoniques de degré 2 (§ ¢,— 0) sont les multiples constants
de dz/\dz. Pour les champs harmoniques de degré 1, de norme finie
par définition, nous pouvons énoncer la proposition suivante :

Tout champ harmonique se décompose orthogonalement en un
champ harmonique ¢, prolongeable par symétrie sur Q, et la différen-
tielle df d’une fonction harmonique a intégrale de Dirichlet bornée.

Soit en effet ¢ le champ symétrique sur 0 qui a les mémes périodes
que le champ donné ¢ sur les cycles d’une base de 2. Si ¢, désigne la
restriction de & a £2, le champ ¢— ¢, est une forme fermée dont toutes
les périodes sur Q sont nulles. Donc

c=c,+ df.

Comme ddf=0, f est une fonction harmonique et comme df est de
norme finie, I'intégrale de Dirichlet de f est finie. D’autre part, la
décomposition est orthogonale car

(cs,df):(écs,f)+jf/\*cs=0, puisque *c,=0 sur 2’1
7

La décomposition obtenue est évidemment unique. En ’appliquant
au champ harmonique ¢’=—*c, on obtient pour ¢ la décomposition duale

C—=2C,4 + 5(P2,

ol ¢, est un champ prolongeable sur 0O par antisymétrie.

On notera que la condition *¢=0 sur £’ entraine que c est prolongeable
sur  par symétrie. En effet, cette condition entraine *df=0 sur £, d’olt
(df, df )=0, c’est-a-dire df=0.

On voit de méme qu’un champ harmonique vérifiant sur ' la con-
dition ¢=0 est prolongeable sur 0 par antisymétrie. Par suite :

Un champ harmonique tel que ¢=0 et *¢=0 sur £’ est nul sur Q.

18i f n’est pas C°° sur ©’', on considére df comme limite en norme de df;,, ol f;, est C°°

sur Q. (SCHIFFER M. et SpEnceR D. C., 1954, p. 137.)

3
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Les champs harmoniques prolongeables par symétrie sur Q sont
reproduits par le noyau ¢, (p, ¢) introduit au N° 3.2.

Pour exprimer le noyau reproduisant des champs harmoniques
exacts df, examinons les produits scalaires (dg, df) et (dn, df), oiget n
sont les fonctions de Green et de Neumann du domaine £. On vérifie
immédiatement que

(dg» df)—= (g, bdf) + f g A df—0%,

(dn, df)=(f,0dn) 4 | f/A+dn=f(q)—f(q)=S(9)"

9.9~ o

puisqu’on peut supposer f(g,)=0. Par suite

(d(n—g). df)=£(9),

ce qui montre que les champs exacts df sont reproduits par la forme
double d,d; (n—g) qui est un champ en p et en q. Le noyau reproduisant
des champs harmoniques sur {2 est done, pour le degré 1

c(p, 9)=cs(p. q) +dpdy(n—g).

3.4 Formes pseudo-harmoniques et harmoniques

Précisons que dans le cas d’une surface non compacte, les formes
harmoniques et pseudo-harmoniques doivent appartenir a ¢l;, ce qui
implique que leurs norme et D-norme sont finies.

Envisageons les 2§ —2 formes oy et *o;, définies par

or=Rt +1d7) - dz+ (Rr,—id7) - dz,
o R1, est la fonction harmonique uniforme nulle sur Q’, ayant au
point @, (en lequel dz=t-dt) la singularité 5{(-}), tandis que J7; est

uniforme, nulle sur 2’ et admet en @, la singularité o (—)
t

Les formes o) et *o) sont C°° sur £ et vérifient sur 24 I’équation
Ap=0. Ce sont donc 23— 2 formes pseudo-harmoniques, nulles ainsi que
I’adjointe sur la frontiére 2’. Nous appellerons de telles formes stric-

tement pseudo-harmoniques, a cause de la propriété suivante :

1On a (dg, df)o,=0 pour tout domaine £2, limité par la ligne de niveau g=¢. La for-

mule est donc valable a la limite £=0 méme si f n’est pas C°° sur 2.
2 Voir la note p. 33.
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Une forme strictement pseudo-harmonique ne peut étre harmonique
que si elle est identiquement nulle.
En effet, on a pour toute forme de &,

D[q?»w]:(dqo,w)—fﬁqﬂ\*w—-w\*dw-

Ql

Une forme harmonique nulle ainsi que I’adjointe sur 2’ est donc un
champ harmonique. Mais un champ nul ainsi que I’adjointe sur Q' est
identiquement nul.

On démontre comme pour les formes ¢, et *¢, du N° 2.3, en exa-
minant les développements aux points @; que :

Les 23—2 formes o) et *o) sont linéairement indépendantes sur le
corps des réels.

On voit comme au N° 2.3 qu’étant donné une forme strictement
pseudo-harmonique quelconque o, il est possible, en lui soustrayant une
combinaison linéaire a coefficients réels des o, et *oy, d’annuler les
coefficients de la forme aux points @;. La formule et le raisonnement ci-
dessus montrent que la forme obtenue est identiquement nulle. Par
conséquent :

Les formes strictement pseudo-harmoniques forment un espace vec-
toriel de dimension 28—2 sur le corps des réels. Les formes o et *o;
en constituent une base.

Etablissons maintenant que :

Toute forme pseudo-harmonique se décompose D-orthogonalement
en une forme strictement pseudo-harmonique et une forme harmonique.

Soit ¢;(i=1, ...,2§—2) une base D-orthonormée de I'espace des
formes strictement pseudo-harmoniques. ¢ étant une forme pseudo-
harmonique quelconque, posons

2z 2
h=(p—ZD[fp,0'i]-0'i.
i=1

On a D[h, 6;]=0 pouri=1,...,2—2, et donc D [h, 6]=0 pour toute
forme strictement pseudo-harmonique ¢, ce qui entraine

fa/\*dh—éh/\*az().

D

En prenant pour o les formes o) et *oi, on voit que *dh et éh sont
réguliers au point @,. Par suite, h est une forme harmonique. Il est
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évident par construction que les deux composantes de ¢ sont D-ortho-
gonales, ce qui rend la décomposition unique.

On déduit de ce résultat le théoréme d’existence suivant relatif aux
formes harmoniques sur £ :

Etant donné une forme 6 & coeflicients continus au voisinage de 2", il
existe une forme harmonique et une seule telle que h=0 et *h=+*0 sur .

Soit h=a-dx 4 b-dy (ol dz=dx + i-dy) la forme harmonique cher-
chée. La donnée de h et *h sur 2’ fixe la valeur des coefficients a et b
sur £2. Soient a et § les fonctions harmoniques réguliéres sur le domaine
£ et prenant sur {2 les valeurs a=a et f=>. La forme y=a-dx 4 f-dy
est pseudo-harmonique sur 2, telle que p=10 et *9=+*0 sur 2. Décom-
posons alors y en y=o0+ h. La forme harmonique h a sur la frontiére
les valeurs imposées puisque o et *¢ sont nuls sur £’, L’unicité est im-
médiate, une forme harmonique nulle sur la frontiére ainsi que 1’ad-
jointe étant identiquement nulle.

3.5 Solution dans &, de léquation Au=vy

avec les conditions aux limites u=0 et *u=0 sur 2’

Des calculs analogues a4 ceux du N° 2.5 montrent que la forme

p=I0yp— [g (P. 9 2)-k(p, 9, v(9)],

vérifie, quelle que soit la forme C™ypeD I'équation Au=v. De plus,
pu=*u=0 sur Q'. Par contre u¢ &, et par conséquent 4 n’est qu’une
pseudo-solution.

Ajoutons a y la forme strictement pseudo-harmonique

2g—2

HOy =Z (0i, 9) - 0:,

i=1

ou les o; forment une base D-orthonormée des formes strictement
pseudo-harmoniques. Nous avons

D [u, a]=fy,/\*da—ag/\w:0,
D, 0

puisque u et *; sont nuls aux points @ et sur 2. De méme

D [H"y, o] =(y, o).

D[u+H%, o] =(y, a).

Donc



Or
D[u+HOy, 6]=(Apu, a)wfé(‘u, + H(b)y))/\ rg—aA*d(u-+-HOy).
@,
Donc

fé(/ﬂrH(“)w)/\*a—af\*d(u+H“”w):{)-

2]

Cette condition entraine que u® = (I'® + H®)ype &,. C’est donc la solu-
tion du probléme. L’unicité est immédiate. En résumé :

L’équation 4u=v admet, quel que soit €D, une solution unique
telle que u=*u=0 sur Q' : c’est = (1" - HO) .

3.6  Solution dans {1, des équations Apu=1vy avec les conditions
a) u=0et du=0 sur 2'; b) *u=0 et *du=20 sur &’

La condition nécessaire et suffisante pour que ’équation Au=vy
admette une solution telle que u=0J0u=0 sur 2’ est C,9=0. La solution
est unique si 'on exige Cou=0.

En effet, si u est solution, on a

(Wrca)=(Au, ca)= | —caA*du+0uN*c,=0.
o
La condition est donc nécessaire.

Si 1 et u’ sont deux solutions, la différence h—y—p’ est une forme
harmonique telle que h=3h=10 sur 2’ : ¢’est donc un champ harmonique
prolongeable sur 2 par antisymétrie. Par suite, la condition C,u=0
rend la solution unique.

Pour montrer que la condition est suffisante, partons de

Prenons I’extension antisymétrique des deux membres. Il vient
AGey=ya—Capp="1u.

Done sur Q
AG.y=1y,

et il est évident que C,G,y=0. En posant p=(1—C,)p, on voit en
résumé que :

L’équation 4 u=¢— C,¢p posséde pour tout p €D une solution unique
telle que pu=0u=0 sur 2" et C,u=0. Cest

Ha="Gap=(1—Co) (I + Ha) (1—-Co) ¢
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b) On démontre de maniére complétement analogue que:
L’équation A u=@p— C,p posséde pour tout €D une solution unique
telle que *pu=+*du=0 sur 2’ et C,u=0. C’est

ps=Gop=(1—C) (I + H) (1= C) 9.

3.7 Décomposition orthogonale de ¢ en une forme homologue a 0,
une forme cohomologue & 0 et un champ harmonique

KopaAirA a démontré (DE RuAM, 1955), dans des conditions bien
plus générales, I'existence et I'unicité d’une décomposition orthogonale

p=E¢p+ Fo+ Cop, pour e,

o E¢ est homologue & 0, F¢ cohomologue a 0, Cop fermé et cofermé.
Nous allons expliciter cette décomposition en prouvant que

E¢p=diG.qp, Fp=0dG,p.

Si nous substituons 4 E¢ et Fg les formes indiquées, les conditions
imposées 4 E¢ et Fg sont évidemment satisfaites, y compris ’orthogo-
nalité de Ep et Fg dont la vérification est immédiate :

(E(p,F(p)z(déGﬂqﬁ,adGstp):chGa(p/\*tSdGs(p:O.

QI
Posons donc g=E¢ 4 Fg -+ Lg et montrons que Lp=Cep.
1) dEp=0, 0Ep=04G.p=0d¢p.
2) 0Fp=0, dFp=dAG,p=d¢p.

Il résulte de 1a que dLg=0Lp=0. Lg est donc un champ harmonique.
3) (Eg,c)=(ddG,.q, c) :f&Gacp/\*c=0, pour tout champ c.
o
4) (Fg, c)=(6dG,p, c):—fc/\*dquo:O, pour tout champ c.
-

Il en résulte que (¢, c)=(Lg, ¢) pour tout champ c, ce qui justifie I’affir-
mation Lo=_Cg.
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3.8 Solution dans &, de I'équation Au=vy avec les conditions
aux limites du—=0 et *du=0 sur '.
Opérateur de Green-de Rham-Spencer (1953)

La condition nécessaire et suffisante pour que I’équation admette
une solution vérifiant les conditions du=*du=0 sur 2’ est Cy=0. La
solution est unique si ’on exige Cu=0.

Si u est une solution, on a en effet

(p,e)=(du,c) =f,u/\*dc——c/\*d,u—|—5,u/\*c-~66/\*,u:0.

Ql

La condition est donc nécessaire. D’autre part, si u et u’ sont deux
solutions, la différence h=p— ' est une forme harmonique telle que
0h=*dh=0 sur £': c¢’est donc un champ harmonique. La solution est
donc unique si I'on exige Cu=0.

- Pour prouver que la condition est suffisante, nous allons montrer
d’abord que la forme

p'=G(Ey+Fy)
est une solution de I’équation qui vérifie les conditions a la frontiére.

1) AG(Ey+Fy)=Eyp-+ Fy, puisque C(Ey + Fy)=0.
Or sur 2, on a Ey 4 Fy=y— Cy, et par suite du=yp.

2) En utilisant la relation dG=Gd du N° 2.6, il vient
du'=G(dEy+ dFy)=GdFy=dGFy.

Comme GFy est symétrique sur 2, on a *du’'=0 sur 2’

3) En utilisant la relation Gd=6G du N° 2.6, il vient
o' =G (bEy+ 6Fyp)=GoEyp=06GEy.

Comme GEy est antisymétrique sur 2, on a du'=0 sur '
I suffit alors d’orthogonaliser cette solution par rapport aux champs
harmoniques sur 2 pour obtenir la solution cherchée

p=G6y=(1—-C)G(Ey + Fy).

L’opérateur G ainsi défini a été envisagé dans le cas d’une variété
riemannienne par SPENCER. Nous allons, dans le cas qui nous occupe,
examiner la forme explicite du noyau de cet opérateur. Calculons

("+H) QA-C)(E+F)p=("+H)(E+F)y.



D PEp+F) =(j0+e) k(0. By Fy)

2

En décomposant le noyau de I"en ses parties antisymétrique et symé-
trique et en tenant compte des propriétés de symétrie de Ey et Fy,
il vient

PEp+Fy) =3 |5 6-+0) +nls— 0. Bp| 4 st B+ (et By, Py

=(g k. Eyp+Fy)o + ; [(n—g) (k—k), EwLJr;[(n—g) (k1 k), FwL-

2) En introduisant H, et H,, on obtient de méme

H(Ey -+ Fy)=(ha, Ev)o + (b, Fy)a.

Introduisons les opérateurs

IOy = (g-k, (1—C)p),,

Hy = |3 (o) () + hosEp | | (1) (e B P

La solution du probléme s’écrit, si I'on pose y=¢—Cop,
p=Gp—(1—C) (I + H) (1—C) p.

Démontrons maintenant que le noyau h(p, q) de I'opérateur H ci-
dessus introduit jouit de la propriété de reproduction suivante :

D [h(p, q), h’] =h'—Ch'

pour toute forme pseudo-harmonique h’.

a) D[p, K]=(p—Cq, k)= (g, K’ —Ch)
pour toute forme pseudo-harmonique b’ puisque €&, et du=*du=0
sur (2.

b) D[(I—C)F(O)(I—C)(p,h’]

:f]“"’(l-(])qp/\*dh’—éh’/\*ﬂ"’(l—C)zp:O
D, Q"



— 41 —

puisque F(O)(I—C)(p et *P(U)(I——C)qo sont nuls aux points @ comme
sur Q.

c) En soustrayant membre & membre, on obtient
D[H(1—C)¢, k'|=(p, h'—Ch),

c’est-a-dire (D [h(p, q), h’] ; qo) = (¢, —Ch’),

ce qu’il fallait établir.

3.9 Propriétés de U'opérateur G
L’opérateur G jouit, entre autres, des propriétés suivantes :

a) G est son propre transposé métrique.

Nous avons en effet, comme dans le cas compact
(4G, Gy)=(p, Gy),  (4Gy, Go)=(y. Gg).

Mais les membres de gauche sont égaux, comme le montre ’application
de la formule de Green

(AGyp, Gyp)=(Gg, 4Gy)

+qu9/\*dG'¢p—G1p/\*dG(p+ dGpN*Gypy—0GyA=Gg.
Q

Par conséquent (¢, Gy)= (G, p), ce qui justifie I'affirmation.

b) GAp=¢—Cgp, pour toute forme de 9D,.

Soit  une forme quelconque de 9,. Nous avons
(GAg, p)=(49, Gy),
=(p, AGy), puisque @ et y sont a support compact,
=@, y—Cy)=(9p—Co, y),
d’ou1 ’égalité annoncée en tout point du domaine .
c) G, vérifie pour toute forme de 9, les formules
(1) dG,dg,=0. (1) 6G,0¢p,=0.
(2) dG,dg=gp,. (2) 0Gidpy=g,.
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Pour démontrer la premiere, différentions les deux membres de
I’équation

4 Gld(PO:d(PO-_Cd(p():d(POv
dA Gld(pO:A dGld(PO:O,

dG,dg, est donc une forme harmonique de degré 2. Mais sur la frontiére
£, la forme et son adjointe sont nulles. Donc dG,dp,=0 identique-
ment. La démonstration de (1’) est analogue.

Pour démontrer la troisiéme, différentions les deux membres de
I’équation

AG0py=0dp,— Cop,=0p,,
dA Gl(SCPZZA dG16¢2=d6¢2:A¢29

La forme de degré 2 dG,d¢,— ¢, est donc harmonique. Mais sur la fron-
tiere ', *dG,0p,—0 et *@,=—0. Par suite dG,dp,—@,=0 identique-
ment. La démonstration de (2') est analogue.

d) G transforme toute partie bornée de {l, en une partie bornée
de &.,.

En effet, on voit comme dans le cas compact que ’ensemble des Gg
est borné dans &, si I’ensemble des ¢ est borné dans &,. De plus, le noyau
de G étant de carré sommable, I’ensemble des G est borné dans &
s’il en est ainsi de ’ensemble des ¢. Donc I’ensemble des G ¢ est borné
dans {,.

A cause des conditions satisfaites par G sur ', on a

(A6, dGg)+ (069, 6Gp)=(4Gy, Go)=(p, Gg).

ce qui prouve que I’ensemble des formes dG ¢ et §G ¢ est borné dans .
Donc I’ensemble des Gg est borné dans ;.
A cause de I'orthogonalité de d6G g et dGg, on a

(d6G g, d5Gg) + (0dCp, 8dG¢)=(d6G e+ 3dGyp, ddGp+ 8dGy),
=(p—Co¢, p—Cy),

ce qui prouve que I’ensemble des d6G ¢ et dG g est borné dans { . Donc
I’ensemble des G est borné dans &,.
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3.10 Courants continus en moyenne & 'infini.
Courants nuls & la frontiére. Les courants CT et GT

Les courants que nous considérons jouissent au voisinage de la fron-
tiére de propriétés de régularité qu’on peut caractériser avec précision
au moyen de notions introduites par G. pE Ruam (1955).

a) T est continu en moyenne a U'infini si | (T, ¢)| reste borné sur tout
ensemble de formes a support compact qui est borné dans {,. De méme,
TeD; est continu en moyenne & I'infini si (T, ¢)| reste borné sur toute
partie de D; bornée dans & et d.

(T, ) peut alors étre défini pour toute forme de DNl en posant
(T, ¢)=lim (T, @), ott {p,} est une suite de formes a support compact
telles que le support de ¢ — ¢, s’éloigne indéfiniment et que la norme de
@— @n tende vers 0. (T, ¢) reste borné sur tout ensemble de telles formes
qui est borné dans ¢,. (Voir bE REAM, 1955, p. 167, prop. 6.)

Si T est continu en moyenne a l'infini, on peut.définir les courants
CT et GT, comme dans le cas compact, en posant

(CT, ¢)=(T, Cq), (GT, )=(T, Gg),

les seconds membres étant bien définis. Ces définitions s’étendent natu-
rellement au cas de fonctionnelles linéaires continues de 9; ou 9, pour
peu qu’elles soient continues en moyenne a l'infini.

b) Un courant est dit nul a la frontiére (DE RuaM, 1954) si T et dT
sont continus en moyenne a l'infini et si de plus

(dT, g)=(T, d¢)

pour toute forme pe ;. (On voit immédiatement que si T est une forme a

a coefficients continus sur {2, ces conditions impliquent que a= 0 sur £'.)
Etablissons maintenant les propriétés suivantes de CT et GT.

1) SiT est continu en moyenne a Iinfini, on a dans 9Q);
AGT=T—CT.
En effet (AGT, ¢)=(GT, d¢)=(T, GAp)=(T, p—C¢)=(T—CT, ¢)

pour toute forme pe9D,.

2) Si T, et T, sont nuls a la frontiére, on a dans D;
(1) dG,dT,=0. (1) 6G,6T,=0.
(2) dG,0T,=T,. (2) 6G,dT,=T,.
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Ces formules s’obtiennent par transposition a partir de celles du
No 3.9 ¢). Nous nous bornons a vérifier la premiére :

(dG,dTy, ¢)=(G,dT,, d¢)=(dT,, G,d¢), si pe;.
Mais si T, est nul 4 la frontiére
(dT,y, G,0¢)=(T,, 6G,d¢)=0.
Donc (dG,dT,, ¢)=0 pour tout ¢peD,, d’ott dG,dT,=0 dans D;.
3) SiT,+*T,dT, T sont nuls a la frontiére, on a
GAT:T—CT.

Eneffet (GdoT, ¢)=(doT,Ge)=(T, Ge)=(T, déGy).

(GOdT, ¢)=(0dT, Gp)=(dT, dG¢p)=(T, §dGyg),
d’ou (GAT, ¢)=(T, 4G¢)=(T, p—C¢p)=(T—CT, ¢).

3.11 Application au probléme de Cousin

Bornons-nous ici au cas du degré 1, ou les parties singuliéres données
sont fermées et cofermées au voisinage des singularités et ot 'on exige
les mémes propriétés de la solution.

Dans le cas ot la surface n’est pas compacte, la forme méro-harmo-
nique o n’est pas caractérisée univoquement par ses parties singuliéres
et ses périodes (BADER, 1954 ; MYRBERG, 1955). Il faut lui imposer en
outre une condition de régularité a I'infini. Nous choisirons la suivante :
le courant T=wvpw doit étre continu en moyenne i linfini.

Soit, comme au N° 2.8, T;=vpw; le courant associé dans V; a la
forme méro-harmonique w;. Soient a nouveau U, et U, les fonctionnelles
linéaires de D, définies globalement par les 0T; et les dT;, vu les con-
ditions de compatibilité,

0(T; —Tx)=0, d(T; —Ty)=0, dans V;NV,.
Le courant cherché T doit satisfaire aux conditions suivantes :
1) dT=U,, 6T=1,.
2) T est continu en moyenne a Pinfini.

3) T est orthogonal aux champs harmoniques : CT=0.



45

Les conditions 1) et 2) déterminent la solution & un champ harmo-
nique prés. La condition 3) fixe celui-ci univoquement. La solution est
donc unique, si elle existe.

Nous allons démontrer que :

Pour que la solution existe, il suffit que les fonctionnelles U, et * U,
soient nulles a la frontiére. '

Formons le courant T=G,(dU, + 6U,), ce qui est possible puisque
I'hypothése faite implique que dU, et 4 U, sont continus en moyenne a
Pinfini. Vérifions qu’il satisfait aux conditions.

1) Les formules du N° 3.11 sont applicables
dT:dG'léUg:Ug, 6T:6G1dU0:U0, dans @;.

2) dU, et 60U, étant continus en moyenne a I'infini, il en est de méme

de G,dU, et G,0U, et par suite de T.
3) CT=CG,(dU,+0U,)=0. T est donc bien une solution.

Remarque : Si les singularités sont en nombre fini, 'hypotheése faite
sur Uj et * U, est automatiquement réalisée. Cette hypothése est de toute
maniére nécessaire si I’on exige que pour la solution T, les fonctionnelles
OT et dT soient nulles a la frontiére.
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