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ESTIMATION DE L'ERREUR
COMMISE DANS LA MÉTHODE DE M. W. E. MILNE

POUR L'INTÉGRATION D'UN SYSTÈME

DE n ÉQUATIONS DIFFÉRENTIELLES
DU PREMIER ORDRE

par

WILLY RICHTER
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INTRODUCTION

M. W. E. Milne (1949)1 a donné une méthode très commode
d'intégration numérique de l'équation différentielle du premier ordre 2. Ce

procédé s'étend immédiatement au système de re équations différentielles

du premier ordre 3. Nous nous proposons ici de déterminer une
borne supérieure de l'erreur commise dans ce dernier cas.

La méthode de Milne, que nous exposons au chapitre premier (§1
à § 4), fournit une solution approchée du problème suivant : Etant donné
le système

dx
calculer

en connaissant

Désignant par

fx(x, yt(x), y2(x),...,yn(x)\,X =1,2, ...,n, (1)

yA(X), X>0,
Ja(0). (2)

h=-, (3)
r

r, entier, positif, le pas d'intégration, l'auteur calcule tout d'abord, par
itération, des valeurs approchées de yx(— re), yx(h) et de yi(2h).

En les joignant à yx (0), nous les appelons les valeurs de départ et
nous distinguons les premières ordonnées, calculées pour les valeurs

k ± h (4)

de l'argument, de la seconde ordonnée, calculée pour la valeur x 2re.
En possession de ces quatre valeurs pour chaque fonction yx, l'auteur

continue l'intégration « pas à pas 4 », dans l'esprit de la méthode
d'ADAMS. Nous nommons continuation du réseau cette seconde partie du
calcul qui conduit aux valeurs approchées de

ya (eh) ¦> q 3,4,, ...,r.
Nous précisons aussi au chapitre premier (§1) les hypothèses faites

sur les fonctions fK et leurs dérivées partielles jusqu'au quatrième ordre
y compris, dans un certain domaine E. Nous suivons ici Bieberbach
(1951, hyp. (1) à (4)) en introduisant les hypothèses B. Une des consé-

1 Les millésimes indiqués entre parenthèses renvoient à la BIBLIOGRAPHIE, p. 43.
2 L'auteur a publié sa méthode sous une première forme (1926), puis lui a apporté des

modifications (1941) reprises en (1949).
3 Milne (1949, art. 41, p. 141) : « The extension of the foregoing methods to the case of

simultaneous equations is almost obvious. Each step in the process of integration is carried
out independently for each equation just as though it were a single equation except for the
substitution into the equations. »

4 « Step-by-step ». Milne, op. cit., p. 131.



quences (1,6) de ces dernières est que chaque fonction fK satisfait une
condition de Lipschitz d'exposant 1 dans E :

\Â(x,yi,y2, •¦¦,y„) — fi(x,y{, yï, ...,yn) | ^ Mremax | yß — y; |

f
où M est une constante dont le sens est précisé par (1,5). L'intérêt des
hypothèses B réside en particuher dans le fait qu'elles permettent
d'estimer l'erreur de quadrature de chaque formule d'intégration utilisée.

Le chapitre II est consacré, pour les premières ordonnées d'une part,
pour la seconde ordonnée d'autre part, à rechercher :

a) une condition suffisante de convergence des itérations qui
permettent de calculer ces ordonnées,

b) une borne supérieure de l'erreur commise dans le calcul de la
v-ième valeur approchée.

Des considérations, valables aussi bien pour les premières ordonnées
que pour la seconde, conduisent au résultat suivant (théorème I du § 5

et théorème III du § 9) :

La convergence des itérations est assurée 1 dans les deux cas dès que
l'on a :

reMre

En désignant au § 7 par r/p l'erreur absolue maximum 2 commise
dans le calcul de la v-ième valeur approchée des premières ordonnées,
nous constatons (7,4) qu'elle satisfait une inégalité aux différences de la
forme :

Vv Ss c1ï]v_1 + c2, cl5 c2, constantes (5)

La solution générale de l'équation

u„ ^u^! + c2

nous fournit (théorème II) l'estimation désirée de r\v ; nous montrons
alors au § 8, par la relation (8,6), que

rjv < aq5, (v ^ 3, a a0 + axq + + a^q» +
Ceci nous permet de conclure, d'une manière un peu vague, que pour
re « petit », il suffit de s'arrêter, dans les applications, à la quatrième
valeur approchée dans le calcul des premières ordonnées.

Quant à l'erreur absolue maximum3 C» commise dans le calcul de la
seconde ordonnée, nous voyons au § 11 qu'elle satisfait une inégalité
(11,3) de structure identique à celle de (5). Le théorème IV fournit alors,
comme précédemment le théorème II, la borne supérieure cherchée.

1 En réahté, notre condition suffisante de convergence peut être obtenue, pour n 1, en
spécialisant celle que donne M. J. L. Massera (1942, p. 127), dans l'étude d'une classe très
générale de formules d'intégration.

2 Nous la définissons en (6,1).
3 Cf. déf. (10,3).
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Nous donnons au théorème V une estimation un peu plus grossière que
celle du théorème IV mais plus commode pour les applications. Ici aussi,
les relations (10,2) et (11,5) nous montrent que

t, ^ ßq>, V^l,
ß étant de la même forme que a, ce qui nous permet de dire qu'une
approximation « suffisante » est obtenue, pour h « petit », lorsqu'on se

contente de calculer deux valeurs approchées de la seconde ordonnée.
L'erreur commise dans la continuation du réseau est étudiée au

chapitre III. Ainsi que le montrent les formules (4,1) et (4,2) du chapitre
premier, Milne se contente de calculer une première valeur de

Ja ieh), Q ;> 3

qu'il appelle « predictor » et de la corriger (« corrector ») au moyen de la
formule de Simpson. En ce qui concerne l'erreur commise, l'auteur
forme x la différence D des deux valeurs ainsi calculées. En examinant
le reste des deux formules d'intégration utilisées, il conclut en admettant

que si — est négligeable, la valeur « corrigée » est correcte.

Nous appelons valeur définitive de yx (gh), g ^> 3, la valeur corrigée et
nous désignons par me une certaine borne (valable pour X — 1, 2, n)
de l'erreur2 commise dans le calcul correspondant. Nous obtenons alors
au § 12 la relation (12,5) :

œe ^ 4g (1 + 2g) co^ + (1 + q + 4g2) œe_2 + 8g2û)e_3

+ ?<»8-4 + 2 (1 + 28g) R q ^ 3,

où 2R est une borne supérieure de l'erreur de quadrature de la formule
de Simpson. Von Mises et Massera entre autres, ont rencontré une
inégalité analogue en estimant l'erreur commise dans la méthode d'AüAMS.
Le premier de ces auteurs a montré (von Mises, 1930) que l'on obtient
une majorante d'une grandeur correspondant à notre cog en envisageant
une solution particulière de l'équation aux différences tirée de (12,5).
En appliquant sa méthode dans notre cas, nous obtenons en (15,2) une
borne que nous pouvons quelque peu améhorer ainsi que nous le
montrons au théorème VI du § 15. Nous l'appelons Q"e Mais auparavant,
au § 14, une variante de la méthode de von Mises due à Massera
(1942, p. 130) nous fournit, appliquée à notre a>e, une autre borne que
nous désignons par Q'e

L'expression de Q'g n'étant pas identique à celle de Q"e, nous précisons

par le théorème VII du § 16 dans quel cas l'une des estimations
est plus fine que l'autre.

1 Milne, op. cit., p. 137-138, rem. 1 : « we note that the error of (1) is roughly 28 times
the error of (2) and in the opposite direction. So if E: is the error of (1), E2 the error of (2),

and D E2 — E,, we have E2 — approximately. so long as =q is not significant we

assume that the value given by (2) is correct. »
2 Cf. déf. (12,2).
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Nous montrons enfin au § 17 qu'une borne de l'erreur commise dans
le calcul de yx (X) est donnée par :

œT < Ce4M"x - Q,

C et Q étant des expressions de la forme :

<f (co + «i? + c2g2 + + cß<f + ¦¦•)•
Nous en concluons que, pour h « petit », wr est grossièrement
proportionnelle à re4 et que, si le pas est réduit de moitié, la borne d'erreur est
divisée par 16 1.

Remarquons ici que dans toutes les estimations que nous donnons
interviennent les erreurs de quadrature des formules d'intégration. Elles
dépendent dans notre cas soit de | f"x |, soit de \ fil |. Pour donner une
borne supérieure de ces dernières grandeurs en É, il nous a suffi
d'appliquer les formules établies par Bieberbach (1951, form. (33)) dans
le cas où les hypothèses B sont satisfaites.

Nous envisageons au chapitre IV § 18) un exemple étudié par l'abbé
Moigno (1844), puis par A. N. Kryloff (1935), à savoir l'intégration de :

y' ]/x+]/y, y(0) 0,

sur le segment : 0 5^ x rg 1 X.
Cet exemple est intéressant pour deux raisons : Ici, en effet, y^ (0)

n'existe pas pour p 2ï 2 La méthode de Milne exigeant la connaissance
de y" (0), ainsi que le montrent les formules (2,1), (2,2) et (3,1), la
condition initiale (2) sera remplacée, par exemple, par la donnée de y (0,1)
supposée calculée par une autre méthode. D'autre part, l'application des
formules de Bieberbach nécessite quelques précautions si l'on veut éviter

d'obtenir des bornes d'erreur si grandes qu'elles en perdent leur sens.
Ceci dit, cet exemple se prête fort bien à l'intégration par la méthode

de Milne. Les résultats, affectés des bornes d'erreur commises en
arrondissant sont reportés dans les tableaux I à IV du § 18 (p. 31 et 32).
Nous appliquons ensuite notre estimation d'erreur à cet exemple.

Nous apportons quelques précisions en appendice et, en particulier,
nous comparons (app. III, p. 40) la méthode de Milne à celle de Kutta
pour n 1. Dans l'étude des premières ordonnées, nous concluons que,
si M est petit, la méthode de Milne donne vraisemblablement une
approximation meilleure que celle de Kutta tout en exigeant plus de
calculs. Au contraire, si M est grand, nous constatons que la méthode
de Kutta peut être plus avantageuse. Dans la continuation du réseau,
il est clair que la méthode de Milne demande moins de calculs que
celle de Kutta.

1 On trouve une indication de ce résultat dans : Marchant Methods (1944, p. 10, note 2) :

« Inasmuch as the error terms contain hs, the error of any increment in y will be proportional
to the 5th power of h, but as more increments are required to cover any interval in x, the
error of the complete integration varies according to the 4th power of h. From this, it is seen
that halving h reduces the error to 1/16, quartering... » Mais cette remarque n'a pas été reprise
par Milne qui écrit (1949, p. 138, rem. 2) : « Cutting the interval in half, will divide the error
by about 32. »
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chapitre premier

LA MÉTHODE DE MILNE

§ 1. Position du problème - Hypothèses de Bieberbach
Calculs préliminaires

Pour intégrer le système (1) avec les conditions initiales (2) de 0 à
X rre, nous admettons 1

que les hypothèses suivantes sont vérifiées :

Hypothèses B.

Dans le domaine fermé E défini par :

x <(<— re, rh X> |

Ja<<Ja(0)-«, ja(0) + «>, «>0,2|
les fonctions fx sont continues 3.

De plus (Bieberbach, 1951) :

N>0.I/aI^n
En outre, pour i et jß tels que :

tt=i
nous supposons que, dans E, les dérivées :

dx1 dy{' dy*

enfin, nous admettons que, dans E,

existent et sont continues :

h 2 if f.

dx1 dy1^ dyJ£

M
n

Hift-i
N"=1

M>0.

(14)

(1,2)

(1,3)

(1,4)

(1,5)

1 Milne (1949, p. 131) : « It is assumed that the function / satisfies all requirements
necessary to insure the existence of a unique, continuous, differentiable solution of the form
y function of x throughout the interval under consideration. »

2 Nous donnons en appendice (p. 38) une estimation de o.
3 Rappelons que, tout au long de ce travail, on a : A 1, 2, 3 n
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Il suit de (1,1), (1,2), (1,4) et (1,5) que les fonctions fx satisfont
chacune une condition de Lipschitz d'exposant 1, dans E, car :

I/a(*,Ji, ,y„) -fAx,yl, ,y„)|
^ \fx (*, ji,y», ,yn) — fx (x,yi, y2, ,yn)\
+ IA(*,JÏ,ya,ja, • •-.?«) -fx{x,yl,yl,y3, ••-,y„)\
+ •••

+ \fx(x,y{,..., fn-iiVn) — fx(x,yìi •••, Jn-l,yA)|
n

^M-V|j„-j;| <Mn.max|y^-y;|. (1,6)
"i *•

Calculs préliminaires

Dans la méthode de Milne, on calcule tout d'abord

y'x(0)=fx(o,y1(0),...,yn(0)),
puis on dérive les deux membres de (1), ce qui conduit à y\ (x) et à

y"x(0).

§ 2. Valeurs de départ - Calcul des premières ordonnées

Nous définissons par récurrence, pour fc + h :

YA„ (fc)

h2
yx(0) + ky'AO) + jyl(0),

9 fc2

yx(0) + lkyl(0) + --yl(0)

v=l.

+ 24 7Fw(*) + Fa..-i(-fc)

(2,1)

(2,2)

,v^2,
avec :

F,v(^)=fx{x,Ylv(x),...,Ynv(x)), x=±h, v^ 1.(2,3)

Il suit immédiatement de (2,3) et (1,6) que l'on a, pour x + fc :

I F*, (x) - F,, „_! (*) | ^ Mn • max | YAv (*) - YA> ,_, (x)\,v^2, (2,4)

et :

\y'x (x) - F„ (x) | ^ Mre.max|yA (x) - YA, (*) |, v ^ 1. (2,5)

Après avoir calculé YA1 (fc) à l'aide de (2,1), on poursuit l'itération
en utilisant (2,2) et (2,3) ; on s'arrête lorsque v a atteint une valeur p
telle que la différence

YA, p+i (k) - YA> p (fc)
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soit suffisamment petite pour ne pas affecter x la dernière décimale de
l'expression de YAp (fc). Supprimant l'indice p de la dernière itérée, nous
désignons par YA (fc) les valeurs définitives des premières ordonnées et
nous posons :

Fa (k) =h (fc, Y, (fc) Yn (fc)), fc ± h.

Il est clair que nous avons alors, en vertu de (2,5) :

\yï (fc) - FA (fc) | S Mn.max|yA (fc) - YA (fc) |

Mre-max|yA(fc) - YAp (fc)

(2,6)

(2,7)

§ 3. Valeurs de départ - Calcul de la seconde ordonnée

Le calcul de la seconde ordonnée par approximations successives se
conduit en définissant, de nouveau par récurrence :

JAv

jA(0)-yyA(0)-2fc2jl(0) + ^ 5FA(re)-FA(-re)

yx (0) + y;(0)+4FA(re) + g
GA, ,_,

," 1, (3,1)

,v^2, (3,2)

avec
fx (2A, Zlv, Znv) v^l. (3,3)

En vertu de (1,6) et de (3,3), nous avons immédiatement :

Mre-: Z3„ - Z,| ^Xv "X r-l 1 «l» lUdA £JXv il, r_1
X

ainsi que :

|Ja(2A) - G„| S Mre-max|yA(2re) - ZA„ |,

v^2, (3,4)

v ^ 1. (3,5)

Le calcul de ZA1 effectué, on poursuit l'itération au moyen de (3,2)
et de (3,3) en s'arrêtant lorsque v a atteint une valeur s telle que la
différence

£*x, «j-î — ^js+l JA, s

soit assez petite pour ne pas affecter 2 la dernière décimale de ZAs En
supprimant l'indice s, nous désignerons par ZA la valeur définitive de la
seconde ordonnée et nous poserons :

GA=/A(2ft,Z1 ,zn) (3,6)

1 Milne, op. cit.. p. 135-136 : « The process is repeated until no change occurs. »
2 Milne, op. cit., p. 136 : « Next a trial value of y2 is calculated by and checked and

rechecked by Simpson's rule until no change occurs. »
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§ 4. Continuation du réseau

Pour g 3, 4, r, nous définissons par récurrence :

4A
WA(eA)=WA [is-4)h + 2HA fe-3)Ä -HA (e-2)&

et

wÄfeA) wJ(e-2)Ä +

+ 2Ha((e-i)&

h

(4,1)

Ha (e-2)Ä +4Ha fe-1)*

+ 3Hî(efc),

ha (Qh) =/A e«, w, (e*),..., wn (eh) g => -1,
puis :

h; (eA) =/a(e*. Wî feft),..., w; (<*)), e ^ 3.

Nous complétons ces définitions pour : — 1 < g <; 2 par :

WA (fc) YA (fc), WA (0) yA (0), WA (2 A) ZA,

de sorte que nous avons, par (2,6) et (3,6) :

HA (fc) FA (fc), HA (0) y\ (0), HA (2 A) GA.

Nous tirons immédiatement de (1,6) et (4,3) :

| y'x (gh) - HA (Qh) | S Mn • max | yx (oh) - WA (gh) |

A

et, en envisageant (4,4) :

| y'x (Qh) - Wx (eh) | ^ Mre • max | jA (gh) - WJ (gh) \

(4,2)

(4,3)

(4,4)

(4,5)

(4,6)

(4,7)

(4,8)

relations qui, selon (4,5) et (4,6), sont valables, la première pour
g ^ — 1, la seconde pour q j> 3. Nous appelons l WA (gh) la valeur
définitive de jA pour x gh; en particulier, à l'extrémité du segment,
la valeur définitive de yx (X) sera WA (X).

1 Milne, op. cit., p. 137 : « This is taken as the correct value of y„ (see Remark 1 below). »

Cf. notre note infrapaginale 1, p. 8, où nous citons l'essentiel de cette remarque.
Id : « getting yt which is taken, as correct. In this way, we proceed, using

to get the trial value of y, then calculating y'..., then obtaining the corrected y by »
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CHAPITRE II

VALEURS DE DÉPART

A. Premières ordonnées

§ 5. Convergence des itérations

En rappelant que, selon (4), fc + A, envisageons les 2n suites :

YA„(fc) (v>l,v-oo) (5,1)

hMn
et posons

(5,2)

Théorème I
Les hypothèses B étant satisfaites, si

q< l,
chacune des 2re suites (5,1) sera convergente.

(5,3)

Démonstration

Ecrivons en effet (2,2) pour (v + 1) et v. Soustrayant membre à

membre, nous obtenons en passant aux valeurs absolues :

|YA>„+1(fe)-YA,(fc)|^A 7|FA„(fc)-- Fa,,--i(*)l

+ |FA„(-fc)-Fw(-&)| 1 v^2.
Posons alors :

AT max | YA> ,+1 (+ fc) - YXv (±k)\,
x v^l,

puis :

A„ max (A+ Ar) 5 v>\.
Nous obtenons, en vertu de (2,4) et de (5,2)

^ A

24
7Mre A+_i + Mre Ar_! gA^^g"-^.

Dès que g <[ 1, on voit donc que la série V A„ est convergente.
"=l C.Q.F.D.
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§ 6. Erreur commise dans la première approximation

Dans les hypothèses (1,2) et (1,4), on a :

fc2 fc3

yx (k) yx (0) + AJa (0) + | Jl(0) + | /i' (*Afc), o < #A ^ 1.

de sorte que nous tirons immédiatement de (2,1) :

yA(fc)-YA1(fc) ~j7(#Afc).

Si nous posons :

ïjv max | yA (fc) — YA„ (fc) |, v ^ 1, (6,1)
A

nous pouvons écrire :

h3
%^--max|y7(0AA)|, O^|0A|^1,6 A,eA

ou encore, en vertu de (1) :

%^^.max|/l|. (6,2)
0 A,E

§ 7. Erreur commise dans la v-ième approximation

Supposons que les hypothèses (1,2) et (1,4) sont vérifiées. Selon deux
formules utilisées par Milne, op. cit., p. 135, form. (3) et (4), nous
pouvons écrire 1 :

9h fc2

yx(k)=yx(0)+ jy'x(0) + ^yl(0)

24
7Ja(k) +y'x(- k) -^-Qfx(dfk),0^\df\^l,

de sorte que nous aurons en vertu de la définition (2,2) et pour v^2l2

yx(k)-YXv(k) ~
fc5^

180

7(yl(fc) - F^ (fc)j + yx (- fc) - Fx^ (- fc)

fx(e1k). (7,1)

'Le reste s'obtient en apphquant la méthode exposée par Milne, op. cit., p. 108-116.
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Posons, pour tout £ <^ < — h, rh > :

"--«^WWI-^WI. C.2)

Théorème II
Si les hypothèses du théorème I sont satisfaites, on a :

T»

Vv^%-q""1 + ; (i - ?v_1), " ^ i•l-g
(7,3)

Démonstration

En prenant les valeurs absolues des deux membres de (7,1), nous
obtenons en vertu de (2,5) et de (7,2) :

|yA(fc)-YA„(fc)|^Mn 7max|yA(fc)-YA;r_1(fc)
A24

+ max | yx (— fc) — YA;V_1 (— fc) + R,*^2,
A

d'où, d'après nos définitions (5,2) et (6,1), pour fc + A :

^^g^-i + R, v^2. (7,4)

Envisageons alors l'équation aux différences :

u»+i — 1uv R, " ^ 1 • (7,5)

Le polynôme caractéristique z — g de l'équation homogène admet
l'unique racine z q où q est plus petit que 1, en vertu de (5,3).
D'autre part, l'équation complète (7,5) est satisfaite par la solution
particulière :

R
u l-g

La solution générale de (7,5) est par suite

uv coq" + - - v^l. (7,6)
1—g

Nous déterminerons m en posant

"i Vi (7,7)
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et faisant v 1 dans (7,6), soit :

fli 1 R
ca

g g 1 -g'
de sorte que

^ ril-q'-^ + -^—(l-q^), v\>l. (7,8)i -g
D'ailleurs, avec (7,7), il est clair que

r]v <j u, (v ^ 1) ;

car, si cette relation existe, (7,4) et (7,5) donnent successivement :

Vv+l £== 5»?v + R SÌ î"r + R "r+1 "^1'
En considérant (7,8), cette dernière remarque nous permet d'établir (7,3).

Le théorème II est démontré.

§ 8. Application pratique du théorème II
Dans (7,3) interviennent % q et R, soit par conséquent, selon (6,2)

et (7,2) :

max[/A| et max |/\v |

A,E A,E

En faisant les hypothèses B, en particulier (1,3) et (1,5), Bieberbach
(1951, 2e et 4e form. (33)) a donné une estimation de ces grandeurs :

\f"x | ^ MN (re + 1) (re + 1 + reM) S (8,1)

|/a I ^ MN(re + 1) [(re + l)3 + lire (re -f l)2 M + lire2 (n + 1) M2 + re3M3]

S [(re + l)2 + lOre (re + 1) M + re2M2] T. (8,2)

Nous pouvons alors écrire :

A3 Q S

«i<--S= g3-^-, (8,3)11 - 6 2 * M3re3
V ;

selon (6,2) et (5,2), puis, en vertu de (7,2) :

A5 27 T
R A_.T — .g5.^L_. (8,4)

180 20 * M5re6
v '

Ainsi, le théorème II s'exprimera par :

Q S 91 «s T
rtv < - • g"+2 • -?- + — • -? — (1 - g*"1), v > 1. (8,5)h - 2

H
M3re3 20 l-g M6re5

V " ' - V '
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Il suit immédiatement de cette dernière relation que, en général,
on n'améliorera pas sensiblement r]v en allant au delà de v 4. Si nous
posons enfin :

9 S 27 g5 T

nous aurons :

2 * M3re3 20 l-g M6re5'

Vv < V «g5, v S: 3, (8,7)

étant de la forme : a V a^g*1.
fi 0

B. Seconde ordonnée

§ 9. Convergence des itérations

Soit les re suites :

Théorème III
ZAr, j»>1,v-

Si les hypothèses du théorème I sont
satisfaites, les re suites (9,1) sont convergentes.

(9,1)

La démonstration est parfaitement analogue à celle du théorème I :

au lieu de (2,2), on envisage (3,2), puis (3,4) au heu de (2,4) en remarquant

que seul le terme GA„ dépend de v, puisque FA (A) est, pour un h

donné, une constante définie par (2,6).

§ 10. Erreur commise dans la première approximation

D'après une formule que donne Milne, op. cit., p. 135, form. (5),
on peut écrire, lorsque (1,2) et (1,4) sont satisfaites 1 :

yx (2A) yx (0) - ^ y'x (0) - 2Ky"x (0)

+
2A

5Ja (A) - y\ (- A) + — AM (£),!<<-A, 2A>,

1 Cf. aussi notre note infrapaginale, p. 15.
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de sorte que l'on conclut immédiatement de l'examen de (3,1) que

yx (2A) - ZA1 ^ [5 U (h) - FA (h)) - U (- A) - FA (- A)

On obtient alors, en vertu de (2,7) et de (7,2) :

| yx (2A) - ZA1 j ^ 4fcMn • max | yA (fc) - YA (fc) | + 28R
A

D'ailleurs, nous avons posé : YAp (fc) YA (fc), de sorte que :

max|yA (fc) - YA (fc) | max|yA(fc) - YAp (fc) | % < r,, p ^ 3, (10,1)
A A

en vertu de (6,1) et de (8,7)

Il vient donc en définitive par (5,2), pour/» S; 3

C1<12g^ + 28R,1
si nous posons :

C max|yA(2A) — ZA„ |,
A

1.

(10,2)

(10,3)

§ 11. Erreur commise dans la v-ième approximation

Si les hypothèses (1,2) et (1,4) sont satisfaites, on peut écrire la
formule de Simpson avec son reste, soit :

yA(2A)=yA(0) + y'x (0) + ly'x (A) + 3
y'x (2 A)

--hyx(2êxh), o^0A^i.

Il suit de cette relation et de la définition (3,2) que, pour v ^ 2

Ja (2 A) - ZA
4A

y
A5

90

yA(A)-FA(A)

fx W).

+ ; yA(2A)-GA>v_1

(H,l)

1 Les relations (10,2), (11,2), (11,4), (11,5) et (12,2) sont valables pour p < 3 à condition

d'entendre par r\ une majorante de r\ par exemple : r\x *qP—1 -f- ^
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Théorème IV

Les hypothèses du théorème I étant vérifiées, on a :

l-g (H,2)

La démonstration de cette proposition est analogue à celle du théorème

II :

De (11,1), nous tirons en effet par (2,7), (3,5) et (7,2) :

4fc
\yx (2A) - ZAv| ^ — Mn-max|yA (h) - Yx (h) \

+ ^Mre-max|yA(2A) -ZA>,_1| + 2R, v ^ 2

d'où, d'après (10,3), (10,1) et (5,2) :

C„<4gr? + gf,_1 + 2R, v^2.
Nous envisageons alors l'équation

uv+1-quv 2(2qrj + R), v^l,
dont la solution générale est :

i -g
En posant : u± Ci, nous déterminons co, soit :

(11,3)

et:

m
Ci _

2 (2qV + R)

g g (i - g)

i-»
Nous établissons ensuite, par induction complète, que :

Cv<uv, v^2.
Théorème V '

Les conditions du théorème I étant remplies, on a :

C„ < 2 (4qV + 13 R) g-i + IV<PL±JV^ v^11 - g
(11,4)
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Démonstration

En substituant à Ci, dans (11,2), sa borne (10,2), nous obtenons
successivement :

C, < (12qrj + 28R) fl +
2 £g? ± R)

(1 - q^)1 — g

(8g»? + 26R) j-i + 2 (2W + B)(1-TJ^ + q*-i
V 1 -g

2 (4g^ + 13 R) g-* +
2 (2y? + R)

(1 - g"), v^l,1 — g

et nous démontrons le théorème V.

Corollaire

Posons :

C 2(4g, + 13R)g + 2(2^ + R). (11,5)i -g
t] et R contenant g5, on a donc, en tenant compte de (10,2) :

CV<C (v^2); Cr^ß[f, (v^l), (11,6)
oo

/S étant de la forme : ß V fe^g''.
|U 0

.Re/nargue

Dans la pratique, on calculera successivement : S, T, rfa R, r) et Ci &

l'aide de : (8,1), (8,2), (8,3), (8,4), (8,6) et (11,5).

CHAPITRE III

CONTINUATION DU RÉSEAU

§ 12. Erreur wg commise dans la valeur définitive

Si les hypothèses (1,2) et (1,4) sont vérifiées, nous pouvons écrire
(Milne, op. cit., p. 135, form. (I))1:

1 II s'agit de celle des formules « ouvertes » qui correspond à la formule de Simpson. Le
reste s'obtient par exemple par la méthode citée plus haut (cf. note infrapaginale, p. 15) ou
encore par celle indiquée par Steffensen (1925).
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J, (Qh) yx [ (g - 4) h + ^ hyx [ (g - 3) h - y\ (g - 2) h

+ 2y'x (o - 1)A)| + jjjjtftf (|A), |A<<(e - 4)A, eA> (12,1)

d'où, en vertu de (4,1)

Ja (<?A) - Wx (Qh) yx (g - 4) A - WA (g - 4) A

4A
+ —2

3

+ HA (e-2)& +2

Ja (é?-3)A -HA (e-3)& yi fe-2)Ä

JA (ß-l)A -HA (e-l)A

+ |a5jI(Ia), e^3.
En posant :

(On

n q ± i,
0 ,o= 0,

-C 9= 2, <12'2)

max I Ja (Qh) — WA (cA) | g ;> 3

et rappelant, selon (4,5), que rj et C sont respectivement des majorantes
de:

|yA (fc) - YA (fc) | \yx (fc) - WA (fc) |, fc ± A,

et de :

|yA(2A)-ZA| |yA(2A)-WA(2A)|,

nous avons successivement par (4,7), (7,2) et (5,2) :

|yA(r3A)-W;(eA)|Scoe_4+y(2Mrecoe_3 + Mreß)e_2+2Mrecae_1i +56R

coe_4 + 8go>s_3 + 4gcoe_2 + 8qcoe_1 +56R, q^S. (12,3)

Dans les mêmes conditions, la formule de Simpson s'écrit avec son
reste :

Ja (gh) yx ((g - 2) h\ + * \y'x ((g - 2) h\ +4yA ((g - 1) h\ +y'x (gh)\

re5

-Ql*fx(Ìx)r $x{<(g-2)h,gh>.90
(12,4)
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Nous en tirons, en vertu de (4,2) :

Ja (Qh) - WA (eh) =yx ((g - 2) h\ - WA L - 2) h\ + ~ U (g - 2) h

HA (e-2)A +4 yx{(e-i)h)-nx((e-i)h

+ yx(Qh)-jîi(eh)\-~yi(èx), e^3,
soit, par (4,7), (4,3) et (7,2) :

A
coe <i coe_2 + - Mrewe_2 + 4Mreo)e_1 + Mre • max | yA (gh) — Wx (gh)

+ 2R, e ^ 3-

En remplaçant enfin | yx (gh) — WA (gh) | par sa majorante (12,3) et
AMre

rappelant que g, nous avons :

(oQ ^ (1 + g) (oe_2 + 4gwe_1 -f g («e_4 + 8gwe_3 + 4gcoe_2 -f 8ga)e_x

+ 56R) + 2R,
et finalement :

(oQ <; 4g (1 + 2g) cos_i + (1 + g + 4g2) o)e_2 + 8g2o)8_3 + gcoe_4

+ 2(l + 28g)R, g ^3. (12,5)

§ 13. Etude d'une équation aux différences

Envisageons l'équation

ue — 4g (1 + 2g) we_x — (1 + g + 4g2) us_2 — 8g2ue_3 — gue_4
2 (1 + 28g) R. (13,1)

Son polynôme caractéristique

P (*)=**— 4g (1 + 2g) z3 — (1 + g + 4g2) z2 - 8g2z - g (13,2)

admet, d'après la règle de Descartes, exactement une racine positive :

17 7 235
Zl l + 3g + yg2--g3 + — g4...

En substituant à z le trinôme : 1 -j- 3g -f- ag2 dans P (z), nous obtenons

:

P (1 + 3g + ag2) (2a - 17) g2 + (16 a - 129) g3 + (5a2 - 10a - 279) g4

+ (23a2 - 168a - 216) g5 + 2a (2a2 - 5a - 108) g6

+ 8a2 (a — 9) g7 + a3 (a - 8) g8.
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Selon que nous posons a 8 ou a 9 nous avons :

P (1 + 3g + 8g2) - g2 - g3 — 39g4 - 88g5 — 320g6 - 512g7 < 0

ou :

P (1 + 3g + 9g2) g2 + 15g3 + 36g4 + 135g5 + 162g6 + 729g«> 0,

ce qui nous permet d'écrire :

l + 3g + 8g2<z1<l + 3g + 9g2 Z. (13,3)

Il résulte d'ailleurs d'une proposition connue (cf. pai; exemple Perron,
1933), que :

H ^ | *j 1 (i 2,3,4).

La solution générale de (13,1) est de la forme :

ug V c,zf — Q, ct constante, i 1,2,3,4, (13,4)

en posant ;

Q=- 2 (1 + 28g) R _
2 (1 + 28g) R

P(l) 6g + 20g2
(13,5)

Ainsi que von Mises (1930) l'a montré, il nous suffira cependant
d'envisager une solution particuhère convenable de (13,1) pour obtenir
une majorante de cog Nous le ferons de deux manières, celle indiquée
par Massera et celle, originale, de von Mises.

§ 14. Majorante de a>e. Lemme. Méthode de Massera

En mettant dans (13,4) : cx K c2 c3 c4 0 envisageons la
solution particuhère

ue Kzf - Q, K const.,
de l'équation (13,1).

Lemme

Démonstration

Car, si nous posons :

(On — Ug

(14,1)

Si pour g v, v — 1

(Og ^
v —

Ug,

2,v -3, on a :

cette relation est valable pour tout Q ^" — 3.

(14,2)
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nous aurons, ae £S 0pour g v, v — 1, v — 2 v — 3, de sorte qu'en
vertu de (12,5) et de (13,1), nous obtiendrons :

°V+i (ov+i uv+l

^ 4g (1 + 2g) av + (1 + g + 4g2) av^ + 8g2c;,_2 + ga,_3 ^ 0.
C. Q. F. D.

Méthode de Massera

Massera (1942, p. 130) détermine K de façon que (14,2) soit satisfaite

pour les quatre valeurs de départ, c'est-à-dire que :

K
(O. CO, Q,

(o0 =0 <; K - Q,

(°i K.Z-J — Q

co2 ^ Kz2 - Q

Ces quatre inégalités se réduisent au système :

(Oi ^s — — o,

ß>2 ^ Kz2 - Q

puisque Zj > 1, système qui est satisfait par

(14,3)

K= max (^±^==m^((ah + Q)Zl,-^±^
6 0,-1,1,2 Z? \ Z?

Si donc nous posons :

| K + Q) *ï+1 -
1 K + Q) ezT2-

-Q,
Q,

si : o)2 + Q ^ K + Q) z?

si : œ2 + Q ^ («t + Q) *?

(14,4)

(14,5)

(14,6)

le lemme (14,2) est apphcable et :

(Og^Qg, g ^ — 1

le signe d'égalité se présentant pour g — 1 dans (14,5) et pour
g 2 dans (14,6). La majorante cherchée est donc donnée par (14,5)
et (14,6).

§ 15. Majorante de coe. Méthode de von Mises

Selon le procédé de von Mises (1930), nous poserons :

o max (<o1, a>2) (15,1)
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et nous satisferons les quatre relations (14,3) en donnant à K la valeur
(<o -f- Q) z1, de sorte que nous aurons, en vertu du lemme du § 14 :

(oe < ue (co + Q) zî+i - Q g ^ - 1. (15,2)

Mais la majorante que nous nous proposons de donner pour coe ne
sera utilisée que pour g î> 3 Aussi, nous pouvons améliorer ce résultat
en renonçant à satisfaire l'ensemble des inégahtés (14,3). L'exposant de

z1 est alors ramené de (g + 1) à (g — 1) ainsi que le montre la proposition

suivante :

Théorème VI

(15,3)

(15,4)

Démonstration

Il est en effet clair que nous ne pouvons conclure, ni pour g — 1

ni pour g 0 car :

- > ~[> 0, tandis que : Q fi - l) < Q (- - l) < 0

en

Si les hypothèses du théorème I sont vérifiées,

cog^ü'g, g ;> 1

posant :

ü'g cozf-i + Q (z?"1 - 1) •

on a :

Mais, pour q 1, nous avons : cox < oj Q"x et pour g 2 :

co2 < mz1 + Q (zx — 1) Q"2

Pour q 3, l'inégalité (12,5) devient par (13,5) et (15,1) :

co3 ^ 4g (1 + 2g) co2 + (1 + g + 4g2) Wl + g«, + Q (6g + 20g2)

^ w (1 + 6g + 12g2) + Q (1 + 6g + 20g2 - 1). (15,5)

Mais, selon (13,3), z\ > 1 -\- 6 g ¦+ 25 g2 -f- de sorte que :

co3 < co z\ + Q (z? - 1) ß3. (15,6)

Enfin, pour p =4, nous aurons d'une manière analogue en tenant
compte de (15,6) :

o)4 < 4g (1 + 2g) (coz2 + Q (z\ - 1)) + (1 + g + 4g2) o2 + SgH

+ Q (6g + 20g2) ^ co (4g (1 + 2g) z2 + 1 + g + 4g2 + 8g2)

+ Q(4g(l + 2g)z2 + 2g+12g2). (15,7)



— 27 —

Le coefficient de co donne successivement :

4g(l + 2g)z2+ 1 + g + 4g2 + 8g2

< 4g (1 + 2g) z\ + (1 + g + 4g2) zx + 8g2

<ifz4-P(2l)i z|, (15,8)

en vertu de (13,2), zx étant racine de P(z). D'autre part, le coefficient
de Q en (15,7) s'écrit :

4g(l+2g)zf + 2g + 12g2

4g (1 + 2g) z? + 1 + 2g + 4g2 + 8g2 - 1

< 4g (1 + 2g) z\ + (1 + g + 4g2) zx + 8g2 - 1 < z? - 1,

en vertu de (13,3) et de (15,8).

La relation annoncée est donc démontrée pour g 1,2, 3, 4.
Dès lors, nous pouvons considérer

Q'g cozf-1 + Q (4-1 - 1)

comme une solution particulière de (13,1) obtenue en faisant

K co + Q

*i
dans (14,1). Le lemme du § 14 est applicable et la relation (15,3) est
étabhe pour g j> 1, le signe d'égalité ne se présentant que pour g 1,
lorsque, de plus, cox |> co2.

Le théorème VI est démontré.

iîe/reargue

Il est naturel de se demander si l'exposant de zx en (15,4) ne peut
être encore diminué 1. Nous montrons (appendice II, p. 39) qu'il faut
alors remplacer z1 par une quantité plus grande. Plus exactement, nous
démontrons que :

(Og ^ a>W-> + Q (V^2 - 1), g ^ 2, (15,9)

en posant :

U 1 + 6g + 12g2, V 1 - P (1) 1 + 6g + 20g2. (15,10)

1 On trouve cette idée dans un mémoire de Weissinger (1950) ; en appliquant à notre
problème la formule (2,11) de cet auteur, nous obtenons: ct)g S coVe-2 + Q (Ve-2 — 1),
e S 2.



28

§ 16. Comparaison des majorantes obtenues au § 14 et au § 15

On ne peut affirmer, en général, que l'une des bornes Q'a Q'e' est
inférieure à l'autre ; on peut toutefois préciser les cas où l'on a :

Q'g ^ Q'g ou au contraire Q'g < Q'g

Théorème VII

Les hypothèses du théorème VI étant vérifiées,
on a, pour g > 1,

Q'g ^ Ug, si : co2 + Q ^ (cox + Q)*Î,

q;<q'ç, si : co2 + Q < (coj + Q)*ï,
les signes d'égalité allant ensemble.

(16,1)

(16,2)

Démorestratiore

Nous distinguons quatre cas :

2er cas. Supposons : œ2 -\- Q ^ (w-j, + Q) zf, d'où : o>2 > coj et, en
vertu de (15,4), puis de (14,6) :

q; k + Q) «r1 - q > k + Q) *r2 - q 0;.
2e cas. Supposons : (co1 + Q) zf > co2 -f- Q ^((«i + Q) zf, soit :

coa > mx et, par (15,4) et (14,5) :

Q", K + Q) 4'1 - Q ^ («»i + Q) *ï+1 - Q û;.
3e cas. Supposons : (a^ + Q) zf > m2 + Q > a^ + Q d'où :

<o2> (o1, soit, selon (15,4) et (14,5) :

q; (co2 + Q) zr1 - Q < K + Q) zf+1 - Q ûi.
4e cas. Supposons enfin eux Sì co2, soit : (coj + Q) zf > co2 -\- Q et,

d'après (15,4) et (14,5) :

Q"e H + Q) zf-i - Q < K + Q) zf+i - Q Q'g

C. Q. F. D.

§ 17. Application pratique du théorème VII
1. Dans Q'g comme dans Q'g, on pourra remplacer zx par sa majorante

Z l+3g + 9g2,

puisque l'on a g ^> 3 et que l'exposant minimum de Zj est alors : g — 2^1.
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2. Les bornes tirées de (14,5), (14,6) et (15,4) sont toutes de la forme :

CZe-Q, (17,1)

la constante C étant définie par :

max (K + Q)Z,C^±-^), si : co2 + Q ^ K + Q) Z2, (17,2)

max (^y^ C0^Y^\ si : co2 + Q < K + Q) Z2, (17,3)

d'après le théorème VIL
3. D'autre part,

Ze (1 + 3g + 9g2)e 1 + ^+9^gY < e <3« + **>',

de sorte que :

cog < Ce <3« + 9«2>e - Q. (17,4)

4. A l'extrémité de l'intervalle fermé, nous aurons donc :

cor < Ce <3« + 9«!>r - Q < Ce 12<r — Q Ceimnr - Q Ce 4M"X - Q, (17,5)

en vertu de (5,2) et dé (3).

5. Notons que si g < - la borne précédente peut être quelque peu
r

améliorée par :

cor < Ce <3« + »ï!> <• — Q < Ce 3«r + 9«v - Q Ce M"x d + MnX> — Q. (17,6)

6. Enfin, nous avons vu que si l'on calcule quatre valeurs approchées
des premières ordonnées et deux de la seconde, on peut écrire :

rjP <v cox aqn,p 4, Cs < C w2 ^ ß<f, s 2,

a et ß étant de la forme :

a0 + axg + + a„g" + (17,7)

D'autre part, en vertu de (8,4) et de (13,5), Q yg4 y étant aussi de
la forme (17,7). Il suit de là et de (17,2), (17,3), que C ôg4 ô étant
encore de la forme (17,7).

On peut donc dire que si A est « petit », l'erreur cor sera grossièrement

proportionnelle à A4, bien que l'erreur de quadrature des formules
d'intégration (12,1) et (12,4) soit de l'ordre de A5. Si il est nécessaire x de

remplacer le pas A par le pas - on diminue l'erreur, grossièrement, dans
le rapport de 16 à 1. ^

1 Milne, op. cit., p. 138, rem. 2 : « If the error E2 D/29 proves to be larger than desired
accuracy permits, it is necessary to shorten the interval h. Cutting the interval in half will
divide the error by about 32. »

Cf. à propos de cette dernière affirmation notre note infrapaginale, p. 9.
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CHAPITRE IV

EXEMPLE

§ 18. Etant donné :

y' / (x, y) ]ß+ 1/y, y (0) 0, (18,1)
calculer y (1).

On ne peut intégrer (18,1) au moyen des fonctions élémentaires ;
mais la solution particuhère cherchée est (Kryloff, 1935) :

2
2

4
y ¦= - x? A—J 3^7 /2*4 + i*2+l

3 7 49

9

1"-ss^-; <18-2>

d'autre part, on a (Moigno, 1844) :

x2 2 3

y & 1— x2 4- xJ 2 3
'p xl y.

2
# J, 0 ^ 0 ^ 1. (18,3)

Dès que ,a > 1, la dérivée y("> (x) n'existe que pour x > 0. Les
formules (2,1), (2,2) et (3,1) sont dès lors inapphcables si, partant de y (0),
on veut utiliser la méthode de Milne. Avec Kryloff, nous tirons
y (0,1) de (18,2) et nous partons de la nouvelle condition initiale :

y (0,1) 0,030 90 (18,4)

Un changement de variable évident : f x — 0,1 est alors à opérer
dans l'application des formules des § 2, § 3 et § 4. Nous utiliserons le
pas h 0,025 de x 0,1 à x 0,3 puis, de x 0,3 à x — 1 le pas
h' 2 A 0,05

Nous obtenons tout d'abord 1 :

y' (0,1) 0,492 011 72 (+ 0,5) ,y" (0,1) 2,980 617 28 (+ 0,4)

puis, en arrondissant systématiquement à la huitième décimale, les
valeurs portées dans les tableaux I à IV. Dans le calcul des valeurs de
départ, nous avons cessé les itérations lorsque la cinquième décimale
ne changeait plus.

Par (18,3), Moigno a obtenu :

1,188 79 <y(l) < 1,376 87,
et Kryloff :

y (1) 1,291 14, par la méthode de Runge et y (1) 1,291 37

par celle d'ADAMS.

1 Dans tous nos résultats, les nombres indiqués entre parenthèses donnent les bornes des
erreurs commises en arrondissant, exprimées en unités de la dernière décimale.

Ainsi, 2,136 423 23 (±2,8) signifie: 2,136 423 23 + 2,8 • 10~8 et 0,492 01172 (+0,5)
représente un nombre compris entre 0,492 011 720 et 0,492 011 725.



Integration de x 0,1 ài 0,3. Pas : re 0,025
Tableau I : Valeurs de départ

V Premières ordonnées Seconde ordonnée

Y„ (0,075) F„ (0,075) Y„ (0,125) F„ (0,125) Z„ (0,150) G„ (0,150)

1

2

3

0,019 531 15 (+ 0,4)
0,019 562 47 (- 0,3)
0,019 563 22 (±0,5)

0,413 615 17 (+ 2,4)
0,413 727 17 (+ 2,1)

0,413 729 85 (+ 2,8)

0,044 131 73 (+ 0,7)
0,044 106 55 (+ 1,2)
0,044 106 23 (+ 1,2)

0,563 628 93 (+ 1,2)

0,563 569 00 (+ 1,7)

0,563 568 22 (+ 3

0,059 042 55 (-0,1)
0,059 038 08 (+ 0,2)
0,059 038 00 (- 0,6)

0,630 285 06 (+ 0,4)
0,630 275 86 (+ 0,9)
0,630 275 69 (+ 1,2)

Les valeurs de départ définitives sont en italique.

Tableau II : Continuation du réseau

Valeurs définitives

X W* (x) H*(*) W(*) H(*) DIO8

0,175

0,200
0,225
0,250
0,275

0,300

0,075 596 77 (+ 1

0,093 679 68 (+ 0,7)
0,113 234 43 (± 1,9)
0,134 202 48 (- 0,9)
0,156 535 38 (+ 2,6)
0,180 191 42 (+ 1,6)

0,693 278 68 (+ 2,5)
0,753 284 95 (+ 2,2)
0,810 844 89 (+ 3,1)
0,866 336 56 (+ 0,8)
0,920 049 94 (+ 5,5)
0,972 212 15 (+ 2,3)

0,075 589 14 (+ 1,7)
0,093 676 50 (+ 0,9)
0,113 232 71 (+2,1)
0,134 201 38 (+ 1,1)
0,156 534 65 (+2,5)
0,180 190 91 (+ 1,6)

0,693 264 80 (+ 3,4)
0,753 279 76 (+ 2,2)
0,810 842 33 (+ 3,6)
0,866 335 07 (+ 2

0,920 049 02 (± 3,8)
0,972 211 55 (+ 2,4)

763

318

172

110

73

51



Integration de x
Tableau III :

Valeurs de départ
tirées des tableaux

I et II

0,3 à x 1. Pas : re' 0,05

X W(x) H(*)

0,15

0,20
0,25

0,30

0,059 038 00 (- 0,6)
0,093 676 50 (+ 0,9)
0,134 201 38 (+ 1,1)
0,180 190 91 (± 1,6)

0,630 275 69 (+ 1,2)
0,753 279 76 (± 2,2)
0,866 335 07 (+ 2

0,972 211 55 (+ 2,4)

Tableau IV : Continuation du réseau
Valeurs définitives

X W*(x) H*(«) W<«) HO) D'108

0,35 0,231 347 84 (± U) 1,072 594 30 (± 2,2) 0,231 330 97 (+ 1,7) 1.072 576 76 (± 2,3) 1687
0,40 0,287 383 97 (± 1,7) 1,168 537 59 (± 1,9) 0,287 375 18 (+ 1,9) 1,168 529 39 (± 1,9) 879
0,45 0,348 128 38 (± 1,9) 1,260 844 44 (± 2,1) 0,348 123 28 (+ 2,2) 1,260 840 12 (± 2,2) 510
0,50 0,413 411 20 (± 2,5) 1,350 077 39 (± 2,3) 0,413 407 97 (+ 2,4) 1,350 074 88 (± 2,4) 323
0,55 0,483 088 86 (± 2,9) 1,436 665 79 (± 2,2) 0,483 086 70 (+ 2,8) 1,436 664 24 (± 2,6) 216
0,60 0,557 037 44 (±3,1) 1,520 946 08 (± 2,3) 0,557 035 93 (+ 3,2) 1,520 945 07 (± 2,6) 151

0,65 0,635 148 32 (± 3,5) 1,603 187 70 (± 2,9) 0,635 147 24 (+ 3,4) 1,603 187 02 (±3,1) 108
0,70 0,717 325 13 (± 3,7) 1,683 610 52 (± 2,8) 0,717 324 32 (+4 1,683 610 04 (± 2,9) 81

0,75 0,803 481 58 (± 3,8) 1,762 396 74 (± 2,7) 0,803 480 97 (+ 3,8) 1,762 396 40 (± 2,6) 61

0,80 0,893 539 72 (± 4,5) 1,839 699 49 (±3 0,893 539 24 + 4,4) 1,839 699 24 (± 3,3) 48
0,85 0,987 428 72 (± 4,7) 1,915 648 93 (± 2,9) 0,987 428 34 (+ 4,3) 1,915 648 74 (± 2,8) 38
0,90 1,085 083 72 (± 5,3) 1,990 356 82 (± 2,9) 1,085 083 42 (+ 5,1) 1,990 356 67 (± 3,2) 30
0,95 1,186 445 18 (± 5,4) 2,063 920 07 (± 3,7) 1,186 444 93 + 4,8) 2,063 919 96 (± 2,9) 25
1,00 1,291 457 96 (± 5,9) 2,136 423 32 (± 2,7) 1,291 457 75 (+ 5,5) 2,136 423 23 (± 2,8) 21

teo
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Estimation de l'erreur commise

Détermination de M et Je N

Les dérivées partielles de y f (ux, u2) |/itx -f- \u2 sont en
valeur absolue :

àf
du„ i 2 d"f

du%

1 • 3 • 5 • • (2u - 3) T^tV ^ LuK2, x 1,2,jM>1,

d" + "f
dut du\

211

0, p, v 1.
(18,5)

La fonction y (x) croît avec x sur le segment < 0,075 1 > puisque
d"fy' (x) > 0 On aura donc des bornes supérieures de -+^ en mettant
du»

en (18,5) : ux x 0,075 et u2 y =y (0,075). Par (18,3), il vient:
y (0,075) > 0,013 693 6 et l'on peut déterminer M et N selon (1,5) par :

(18,6)

-£¦ < 1,830 < MN,
dx

d2f
dx2 < 12,22 <; MN,

^ < 244,8 < MN, d'f
dx* < 8172 ^MN,

d'une part, puis par

^ < 4,279 < M,
dy

â2f
ày2

M
< 156,3 < —- N

dH M
-yL < i 714 io* < _dy3 — W

à*f
ày*

M
< 3,129 • IO6 < —— N3

(18,7)

d'autre part, tandis que (18,3) donne enfin, par (1,3) :

/ (*, J) ^ J' (1)< 2,173 5 ^ N. (18,8)

Le système d'inégalités (18,6), 18,7), (18,8) est satisfait dès que :

N 2,174 M 3,129 • 106 (2,174)3 Il est clair que M est beaucoup
trop grand pour avoir une utilité pratique pour le calcul de h par (5,3)
ou pour celui de S et de T par (8,1) et (8,2) respectivement. Nous
évitons cette difficulté x en faisant les remarques suivantes :

1. Pour assurer la convergence des itérations (théorèmes I et III),
il suffit que :

dl
'dy

h • max
E

<1,
soit, d'après (18,7) : h < 0,7 Le pas 0,025 convient donc.

1 Une difficulté du même ordre se présente si l'on estime l'erreur de la méthode de Runge-
Kutta. Bieberbach, op. cit., (1) et (5), suppose en effet ; liM g 1



34 —

2. Quant au calcul de S et de T, les formules (8,1) et (8,2) de
Bieberbach se simpUfient dans notre cas, puisque, selon (18,5) :

d"+vf
dx"dy"

0. p,v^l.
Posons en effet :

ildx" dy;ivlt\ B"' p 1, 2, 3, 4, (18,9)

soit, selon Bieberbach (1951, form. (26) et (25), p. 240)

df
dx

*f
dx2

*f
dx?

dll
dx?

<kx + BlN r1,

^A2 + B2N2 + B1r1 r2,

^ A3 + B3N3 + 3BJ\N + Btr2 J1,,

^ a4 + Biw+6B3r1w+4B2r2N+ZB2r2+B1r^ri

(18,10)

Dans nos estimations, F2 et rt remplacent respectivement S et T et nous
évitons ainsi de passer par M.

dH
3. Nous avons vu que/croît avec x, au contraire des

d»f dx"
et des

—— (p 1, 2, 3, 4). Nous obtiendrons une estimation plus fine de

l'erreur commise en fractionnant le segment < 0,075, 1 > Pour les
premières ordonnées, seul le segment < 0,075 0,125 > entre en
considération.

Estimation de l'erreur commise dans le calcul des premières ordonnées

De (18,3), nous tirons pour x 0,125 : f(x, y) < 0,598 8 N, puis
de (18,6), (18,7) et (18,9), soit pour x 0,075 : A1 1,830 A2 12,22
A3 244,8 A4 8172 Bx 4,279 B2 156,3 B3 1,714 • 10*
B4 3,129 • IO6 d'où, par (18,10) :

\f"\ ^ ^2 87,06, |/IV| < r4 6,378 IO6.

Les formules (8,3) et (8,4) donnent alors : i\x ;g 2,269 • 10~4 et
B 3,462 • IO"5 D'ailleurs q 3,565 833 • 10~2, en vertu de (5,2),
ce qui nous permet enfin d'écrire, selon (7,3) :

% < »?i92 +
B

< 0,029 • IO"5 + 3,590 • 10~5 3,619 • IO"5.
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Cette première estimation peut être améliorée. Nous avons, en effet
(tableau I, p. 31) :

Y (0,075) 0,019 563 22 ± 0,5 • IO"8,
Y (0,125) 0,044 106 23 + 1,2 • IO""8,

soit : y (0,075) > 0,019 527 y (0,125) < 0,044 143

Par (18,5), nous obtenons alors de nouvelles valeurs des B,, :

Bj 3,579 B2 91,65 B3 7043 B4 9,014 • IO5

et nous prenons pour les A^ des valeurs plus fines :

Ax 1,826 A2 12,18 A3 243,6 A4 8116 (18,11)

avec N 0,563 67. Nous tirons alors de (18,10) : |/"| <; T2 55,07
|/'v| -^4 1,745 • 105, puis, de la même façon que précédemment

(p. 34):

r\x ^ 1,435 • IO"4, B 9,477 • 10 6, q 0,029 825

% < nif + -^— < 0>012 8 ¦ 10-5 + 0,976 2 • IO""5 0,989 0 • 10~5.
l-g

Nous poserons :

v 0,989 • IO"5 (18,12)

L'erreur commise dans le calcul des premières ordonnées

: Y (0,075), Y (0,125) est inférieure à 10~5

On a donc, en tenant compte des erreurs faites en arrondissant :

y (0,075) 0,019 563 22 ± 989,5 • IO"8,

y (0,125) 0,044 106 23 ± 990,2 • IO"8

d'où, pour les Bß :

Bj 3,577 B2 91,46 B3 7018 B4 8,971 • 105 (18,13)

Estimation de l'erreur commise
dans le calcul de la seconde ordonnée

Nous envisageons maintenant le segment < 0,075 0,15 > Tandis

que les à"f
dx"

à"f
dy"

prennent leur plus grande valeur en x 0,075

f(x,y) sera maximum en x 0,15 De (18,3), nous tirons:

f(x,y) < 0,672 93 N.
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Mettant cette valeur en (18,10), ainsi que les valeurs des A^ et des B^
données respectivement par (18,11) et (18,13), nous avons :

|/lv| ^ A 3,069 ¦ IO5, puis, par (8,4) : B 1,666 • IO"5.

Quant à rj nous le trouvons en (18,12) et nous obtenons :

q
*?* 0,029 808 33 (18,14)

L'estimation désirée nous est alors fournie par (11,4) :

C3<2(4„ + 13B)g2+2iM±-R),
1 -ïsoit :

C3 < 0,038 7 • IO"5 + 3,555 7 • IO"5 3,594 4 • 10~5.

Cette première estimation peut être améliorée. Nous avons en effet :

Z (0,15) 0,059 038 00 - 0,6 • 10"8, soit : y (0,15) < 0,059 074, d'où
N 0,630 36, |/IV | <; r4 2,476 87 • IO5, B 1,344 7 • IO"5, puis :

C3 < 0,031 3 • IO-6 + 2,893 8 • IO5 2,925 1 • IO"5 C • (18,15)

L'erreur commise dans le calcul de la seconde
ordonnée Z (0,15) est inférieure à 3 • 10-5

On a donc, en tenant compte des erreurs d'arrondissement :

y (0,15) 0,059 038 00 ± 2925,1 • 10~8 - 0,6 • IO"8 > 0,059 008. (18,16)

Ce résultat sera utilisé plus loin.

Estimation de l'erreur commise dans la continuation du réseau,
de x — 0,175 à x 0,3

Nous utiliserons ici (17,1) avec, selon le cas, (17,2) ou (17,3)
Commençons par calculer une valeur de B valable sur le

segment < 0,075 0,3 > Les A„ sont donnés par (18,11), les B„ par (18,13)
et N s'obtient en envisageant (18,3), soit : y (0,3) < 0,209 35

/ (x,y) < 1,005 31 N de sorte que |/lv | ^ T4 1,242 43 • IO6 et
B 6,7438 IO-5. De (13,5) et (18,14), nous tirons ensuite
Q 1,258 7 • IO"3. Il s'agit alors de comparer (Wl + Q) Z2 à (co2 + Q).
Z est une majorante de zx donnée par (13,3) : Z 1,097 421 831
D'ailleurs, co1 r\ et a>2 C que nous trouvons respectivement en
(18,12) et (18,15). Il vient alors :

(«i + Q) Z2 126,86 ¦ 10"5 (1,097 421 831)2 > û>, + Q 128,80 • 10~5.
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Il convient donc d'utiliser ici Q'e' en posant, selon (17,3) :

co2 + Q 128,80 IO'5
L —— — dans (17,1), ce qui conduit a :

cog < 128,80 • IO"5 (1,097 421 831)«"1 - 1,258 7 • 10"3.

Pour x 0,3 g 8 soit : co8 < 1,210 6 • IO"3
Cette première estimation peut être améborée. Nous avons en

effet : W (0,3) 0,180 190 91 + 1,6 • IO"8, soit : y (0,3) < 0,181 402
d'où N 0,973 637, |/IV | <; T4 1,106 53 • IO6, B 6,006 21 • 10~5,
Q 1,121 02 • 10"3 et enfin :

(Og < 115,028 • IO"5 (1,097 421 831)8-1 — 1,121 02 • 10~3. (18,17)

Pour x 0,3 ,.o=8, soit :

a>8 < 1,084 04 • 10-3. (18,18)

L'erreur commise dans le calcul de W (0,3) est
inférieure à 1,1 • 10"3

On a donc, en tenant compte des erreurs faites en arrondissant :

y (0,3) 0,180 190 91 + 108 404 • 10"8 + 1,6 • IO"8.
D'ailleurs, l'estimation de coe (g 3, 4, 8) peut être améliorée

en procédant de proche en proche, soit en calculant N, Ap, B^, rß, B et
q tout d'abord pour le segment < 0,075 1,75 > (g 3), puis pour le
segment < 0,1, 0,2 > (g 4) et ainsi de suite et en substituant en (12,5).

Estimation de l'erreur commise pour x 1

Partant des valeurs : W (0,15) W (0,2) W (0,25) et W (0,3) du
tableau III, p. 32, nous avons continué l'intégration avec le pas
h' 0,05 Ces valeurs de départ sont affectées d'erreurs bornées
respectivement par co2, wi, ci)6, <w8. Nous poserons maintenant :

co2g (o'gi puis : œ' max (o'ei ; la relation (18,17) montre immédia-
e' =1,2,3,4

tement que a>' <oB Désignons par q', Z', B' et Q' les valeurs que
prennent q, Z, B et Q calculées sur le segment <0,15 1>, lorsqu'on
remplace dans leurs expressions respectives le pas h 0,025 par le
nouveau pas h' 2 h 0,05

En appliquant maintenant la méthode de la solution particulière
majorante de von Mises à (12,5), nous obtenons x :

(o'g, < (co' + Q') Z' - Q', q' ^ 1 (18,19)

1 Ce résultat n'est pas susceptible d'une amélioration analogue à celle qui conduit au
théorème VI.
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Nous calculons successivement :

Ax 1,292 A2 4,306 A3 43,07 A4 717,3 valeurs obtenues
par (18,5) pour x 0,15, Bt 2,058 8 B2 17,45 B3 443,7
B4 1,878 9 104, tirées de (18,5) pour y (0,15) > 0,059 008,
selon (18,16) ; puis, en tenant compte de (18,8) et (18,10) :
| f" | < r4 5,206 • IO5, B' 9,040 7 • 10~4, q' 0,034 313 333
Q' 1,545 7 IO"2, Z' 1,113 542. Nous avons d'ailleurs en vertu
de (18,18) : co' co8< 1,085 ¦ IO"3, d'où: co' + Q' < 1,654 2 • 10~2.

Pour x 1, g' 18, (18,19) donne enfin :

(o'13 < 1,654 2 • IO-2 (1,113 542)18 - 1,545 • 10~2

< 0,114 65 - 0,015 45 0,09920.

Il nous faut bien reconnaître que cette borne est grande. Interprété
à la lettre, ce résultat signifierait que la valeur calculée pour x 1 par
la méthode de Milne n'est pas plus précise que celle donnée par l'abbé
Moigno. Mais, ici de nouveau, nous aurions pu calculer (o's, co'6, etc.,
de proche en proche à l'aide de (12,5) et améliorer ainsi cette estimation.

Par exemple, le fractionnement de la fin du réseau en deux segments :

< 0,15 0,6 > et < 0,45 1 > conduit, par des calculs analogues, à :

(o\ < 0,007 369, y (0,45) > 0,340 754,

œ'10 < 0,011 892, y (0,6) < 0,568 928,

puis: œ[3 < 0,024 311,

soit : y (1) 1,291457 75 ± 0,024 311 + 5,5 • IO"8,

d'où : 1,267 14 < y (1) < 1,315 77.

Il convient de dire que d'autres exemples se prêtent beaucoup mieux
à l'estimation que le nôtre 1. Si nous ne les avons pas développés ici,
c'est précisément parce que l'application de nos formules ne présente
alors aucune difficulté.

APPENDICE I

Estimation de a (1,1)

Afin que les hypothèses B soient vérifiées dans le domaine E, il
suffit de prendre a égal à :

max(|Y,r(fc)-v,(0)|,|Z,v-jA(0)[,|W,(oA)-jA(0)|,|Wl(oA)-jA(0)|),
fc + h, v ^ 1, g 3,4, r.

1 Cf. par exemple : Milne (1926), (1949, p. 136-138) et Marchant Methods (1944, p. 3-6).
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A cet effet, nous voyons immédiatement que :

\YxAk) -yx(0)\^Vr +hN, v^l,
\Zx* -yx(0)\^C. + 2ÄN, v^l,
|WA (gh) -yx(Q)\^(Og + ghN, g -> 3,4, r,
|WÎ (Qh) - yx (0) | ^ | W; (e&) - y, fefc) |+ ghN, g 3,4, r.

D'ailleurs, en vertu de (12,3), on a :

W (Qh) - yA (gfc) | ^ (1 + 20g) œa + 56B, g 3,4, r.
Si nous posons :

£ max())„ Cv, 21(Og), v^>l, g — 3,4,..., r,
nous aurons une borne inférieure de a en :

e + 56B + rAN e + 56B + XN < a.

Les quantités q, s, B s'expriment en fonction de h, M, N et n au
moyen de (5,2), (8,3), (8,6), (8,4)

APPENDICE II

Démonstration de la relation (15,9)

Nous démontrons ici que l'on a :

(Og ^ (oW-> + Q (V*"2 - 1) Q'g", 0^2, (15,9)
avec :

U 1 +6q + 12g2, V l+6g + 20g2, m max (cot, co2)

En effet, pour g — 1, 0, 1, nous ne pouvons rien dire de la validité

de (15,9), puisque alors : coUe"2 > 0, Q (Ve"2 — 1) < 0.
Mais pour g 2, nous avons : co2 fS a» ß2" et pour o 3 : a>3 ïï i33",

en vertu de (15,5).

Quant à g 4 l'inégalité (12,5) devient, par (13,5) et (15,1) :

co4 ^ 4g (1+2g) (coU + Q(V-l))
+ (1 + g + 4g2 + 8g2) co + Q (6g + 20g2)

< co (4 g (1 + 2 g) U + U) + Q (4 g (1 + 2 g) (V - 1) + V - l)
< coU2 + Q (V - 1) (V + 1) Q':
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Enfin, pour g 5 nous obtenons de façon analogue :

co5 < 4g (1 + 2g) (coU2 + Q (V2 - 1))

+ (1 + g + 4g2) (coU + Q (V - 1)) + (8g2 + g) œ + Q (V - 1)

(o (4g (1 + 2g) U2 + (1 + g + 4g2) U + g + 8g2)

+ Q (4g (1 + 2g) (V2 - 1) + (1 + g + 4g2) (V - 1) + V - l)
< coU (4g (1 + 2g) U + 1 + 2g + 12g2i

+ Q (V - 1) (4g (1 + 2g) V + 1 + 5g + 12g2 + l)
< coU2 (1 + 4g + 8g2) + Q (V - 1) (V2 + V + 1)

< coU3 + Q(V3-l) =Q£.

En admettant que la relation annoncée est vraie pour g v v — 1

v — 2, v — 3, on démontre immédiatement par induction complète
qu'elle est vraie pour tout o ^> v — 3

Il suffit à cet effet de rappeler que, pour z > z1 le polynôme P (z)
défini en (13,2) est positif et que l'on a : V > U > 1 + 3g + 9g2 > z,
selon (15,10) et (13,3)

Le signe d'égalité ne peut jamais se présenter pour g > 3

APPENDICE III

Comparaison des méthodes de Milne et de Kutta pour n 1

Premières ordonnées. Si yh désigne la valeur approchée de y (h) obtenue
dans l'intégration de y' / (x, y) — en connaissant y (0) — par la
méthode de Kutta, on sait (Bieberbach, 1951, form. (35)) que :

A5MN /\y(h)~ yh | ^ ^-.^l (31800,75 + 46326 M

+ 10548 M2 + 144 M3) (111,1)

si : AM < 1. (111,2)

En faisant l'hypothèse (111,2), c'est-à-dire :
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en (7,3), nous obtenons pour la méthode de Milne, si p 3 :

ASMN / \
\y (k) —Y, (fc) | ^ — 1024 + 5632 M + 3456 M2 + 448 M3 (111,3)

où tous les termes entre crochets sont inférieurs à ceux de (III, 1), à

l'exception du terme en M3.

Comparons, d'autre part, le travail nécessité par le calcul de yh et
par celui de Y3 (fc).

A cet effet, nous utilisons la notion de Horner, introduite par M. le
professeur A. Ostrowski (1940) de la façon suivante : Le travail nécessaire

pour le calcul de f (x, y) ou def (x, y) sera l'unité de travail calcu-
latoire, ou un Horner.

Alors que le calcul de yh exige 4 Horners, celui de Y3 (fc) en nécessite
6, mais la méthode de Kutta fournit une ordonnée, tandis que celle de
Milne en donne 2, car fc + h

Donc, si M est petit, la méthode de Milne donnera vraisemblablement
de meilleurs résultats que celle de Kutta, pour un travail un peu

plus grand, mais fournira deux ordonnées.
Au contraire, si M croît, le terme en M3 devenant prédominant, il

se pourra que la borne (III, 1) soit inférieure à celle que donne (III, 3).

De plus, q — croîtra avec M et cela augmentera le nombre des ité-
o

rations à effectuer dans le calcul des premières ordonnées 1. La méthode
de Milne perdra vraisemblablement ici son avantage lorsque M sera
grand.

Seconde ordonnée. On ne possède pas d'estimation pour la
continuation du réseau dans la méthode de Kutta. D'autre part, on a
coutume de dire que cette méthode est préférable à celles qui s'apparentent
à la méthode d'ADAMS lorsque le pas est grand, sans l'être cependant
trop (cf. par exemple Collatz, 1951).

Nous comparons donc à (III, 1) la borne obtenue en prenant un pas

- dans la méthode de Milne. Le tableau ci-dessous montre que, dès

que p -|- s ^ 4, la borne que nous avons pour la méthode de Milne est
inférieure à celle donnée par Bieberbach pour la méthode de Kutta,
quel que soit M.

1 Milne (1950) a montré que dans l'exemple suivant :

rfy= 5y y(0)=l,dx 1 + x ' J v '
sa méthode donne une approximation meilleure que celle de Kutta. Mais on a ici : M -Q-

et il faut calculer 5 valeurs approchées des premières ordonnées, soit 10 Horners pour obtenir
le résultat indiqué par l'auteur : Y (0,1) 1,6105 avec quatre décimales exactes.
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V h fi Coefficients de
O

-a n
S 3
S S

>9 a
a s

*j m u
fa 8

S 3 OT3
S fc P s cq M» M M2 M3 o M fc s

Kutta h — — — 31800,75 46326 10548 144 4 1

h 3 — % 1024 5632 3456 448 6 2

H
Za

h

2
2 1 f! tVMN 540 3960 2220 210 6 3

540-16
S 2

2 2 C2 184 1012 626 83 7 3

h

2
3 1 fl 728 4004 4062 111 8 3

Nous nous bornerons à ajouter que dans la continuation du réseau le
calcul de la valeur approchée de y (gh) exige 4 Horners dans la méthode
de Kutta et 2 seulement dans celle de Milne.
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