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POUR L’INTEGRATION D’'UN SYSTEME
DE n EQUATIONS DIFFERENTIELLES
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par
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INTRODUCTION

M. W. E. MiLNE (1949) ! a donné une méthode trés commode d’in-
tégration numérique de I’équation différentielle du premier ordre 2. Ce
procédé s’étend immédiatement au systéme de n équations différen-
tielles du premier ordre ®. Nous nous proposons ici de déterminer une
borne supérieure de ’erreur commise dans ce dernier cas.

La méthode de MILNE, que nous exposons au chapitre premier (§ 1
a §4), fournit une solution approchée du probléme suivant : Etant donné
le systéme

6_1_& =f; (x, Y1 (%), ¥a(x), .. 'vyn(x)>v A=12,...,m, (1)

dx

calculer
¥:(X), X>0,

en connaissant

| %,(0). (2)

Désignant par
B, (3)
r

r, entier, positif, le pas d’intégration, I’auteur calcule tout d’abord, par
itération, des valeurs approchées de y,(— h), y,(h) et de y,(2h).

En les joignant a y, (0), nous les appelons les valeurs de départ et
nous distinguons les premiéres ordonnées, calculées pour les valeurs

k=+h (4)

de I'argument, de la seconde ordonnée, calculée pour la valeur x = 2h.

En possession de ces quatre valeurs pour chaque fonction y,, ’au-
teur continue l'intégration « pas a pas*», dans I'esprit de la méthode
d’Apawms. Nous nommons continuation du réseau cette seconde partie du
calcul qui conduit aux valeurs approchées de

¥1 (oh) , ST 'R, N

Nous précisons aussi au chapitre premier (§ 1) les hypothéses faites
sur les fonctions f; et leurs dérivées partielles jusqu’au quatriéme ordre
y compris, dans un certain domaine E. Nous suivons ici BIEBERBACH
(1951, hyp. (1) a (4)) en introduisant les hypothéses B. Une des consé-

1 Les millésimes indiqués entre parenthéses renvoient 4 la BIBLIOGRAPHIE, p. 43.

2 L’auteur a publié sa méthode sous une premiére forme (1926), puis lui a apporté des modi-
fications (1941) reprises en (1949).

2 MiLNE (1949, art. 41, p. 141): « The extension of the foregoing methods to the case of
simultaneous equations is almost obvious. Each step in the process of integration is carried
out independently for each equation just as though it were a single equation except for the
substitution into the equations. »

4 ¢ Step-by-step ». MILNE, op. cit., p. 131.
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quences (1,6) de ces derniéres est que chaque fonction f, satisfait une
condition de LipscHITZ d’exposant 1 dans E :

|f}.(x9y1=y27 vers¥n) — f1(® ¥io Y2s < v 0 ¥n) l 12 Mn-mﬁlx ly# — Yau ]

ot M est une constante dont le sens est précisé par (1,5). L’intérét des
hypothéses B réside en particulier dans le fait qu’elles permettent d’es-
timer D’erreur de quadrature de chaque formule d’intégration utilisée.

Le chapitre II est consacré, pour les premiéres ordonnées d’une part,
pour la seconde ordonnée d’autre part, a rechercher:

a) une condition suffisante de convergence des itérations qui per-
mettent de calculer ces ordonnées,

b) une borne supérieure de l’erreur commise dans le calcul de la
v-itme valeur approchée. '

Des considérations, valables aussi bien pour les premiéres ordonnées
que pour la seconde, conduisent au résultat suivant (théoréme I du § 5

et théoréme III du § 9):

La convergence des itérations est assurée dans les deux cas dés que
Pon a:
hMn

q < 1.

En désignant au § 7 par 7, I'erreur absolue maximum ? commise
dans le calcul de la »-iéme valeur approchée des premiéres ordonnées,
nous constatons (7,4) qu’elle satisfait une inégalité aux différences de la
forme :

Ny = €1fy_1 + €25 ¢;, €3, constantes. (5)

La solution générale de I’équation

u,, = Cl u,,_l —l“ C2

nous fournit (théoréme II) I’estimation désirée de 7, ; nous montrons
alors au § 8, par la relation (8,6), que

n, < ag®, r=3a=a+aq+ ... +a,q¢*+ ...).

Ceci nous permet de conclure, d’une maniére un peu vague, que pour
h « petit », il suffit de s’arréter, dans les applications, a la quatriéme
valeur approchée dans le calcul des premiéres ordonnées.

Quant a I’erreur absolue maximum? {, commise dans le calcul de la
seconde ordonnée, nous voyons au § 11 qu’elle satisfait une inégalité
(11,3) de structure identique a celle de (5). Le théoréme IV fournit alors,
comme précédemment le théoréme II, la borne supérieure cherchée.

1 En réalité, notre condition suffisante de convergence peut étre obtenue, pour n = 1, en
spécialisant celle que donne M. J. L. MasseEra (1942, p. 127), dans I’étude d’une classe trés
générale de formules d’intégration.

2 Nous la définissons en (6,1).

3 Cf. déf. (10,3).
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Nous donnons au théoréme V une estimation un peu plus grossiére que
celle du théoréme IV mais plus commode pour les applications. Ici aussi,
les relations (10,2) et (11,5) nous montrent que

= f¢, =1,

p étant de la méme forme que a, ce qui nous permet de dire qu’une
approximation ¢ suffisante » est obtenue, pour h « petit », lorsqu’on se
contente de calculer deux valeurs approchées de la seconde ordonnée.
L’erreur commise dans la continuation du réseau est étudiée au cha-
pitre III. Ainsi que le montrent les formules (4,1) et (4,2) du chapitre
premier, MILNE se contente de calculer une premiére valeur de

A(Qh)a Qz39

qu’il appelle « predictor » et de la corriger (« corrector ») au moyen de la
formule de SimpsoN. En ce qui concerne l’erreur commise, ’auteur
forme ! la différence D des deux valeurs ainsi calculées. En examinant
le reste des deux formules d’intégration utilisées, il conclut en admet-

tant que si 29 est négligeable, la valeur « corrigée » est correcte.

Nous appelons valeur définitive de y, (oh), o = 3, la valeur corrigée et
nous désignons par w, une certaine borne (valablepour A =1,2, ..., n)
de I’erreur® commise dans le calcul correspondant. Nous obtenons alors

au § 12 la relation (12,5):

w, =491 + 29w,y + 1+ g+ 4q2) wo—p + 8¢%w,_3
+ quw, 4+ 21+ 28¢ R, 0 =3,

ou 2R est une borne supérieure de I’erreur de quadrature de la formule
de StmpsoN. Von MisEs et MASSERA entre autres, ont rencontré une iné-
galité analogue en estimant ’erreur commise dans la méthode d’Apams.
Le premier de ces auteurs a montré (von Misgs, 1930) que I'on obtient
une majorante d’une grandeur correspondant a notre , en envisageant
une solution particuliére de I’équation aux différences tirée de (12,5).
En appliquant sa méthode dans notre cas, nous obtenons en (15,2) une
borne que nous pouvons quelque peu améliorer ainsi que nous le mon-
trons au théoréme VI du § 15. Nous I'appelons (2, . Mais auparavant,
u § 14, une variante de la méthode de von Mises due & MAsSsSERA
(1942, p. 130) nous fournit, appliquée a notre w,, une autre borne que
nous désignons par (2, .
L’expression de (2, n’étant pas identique a celle de £2), nous préci-
sons par le théoréme VII du § 16 dans quel cas 'une des estimations
est plus fine que ’autre.

1 MILNE, op. cit., p. 137-138, rem. 1: «... we note that the error of (1) is roughly 28 times
the error of (2) and in the opposite direction. So if E,; is the error of (1), E, the error of (2),

and D = E, — E,, we have E, = 39

assume that the value given by (2) is correct. »

2 Cf. déf. (12,2).

approximately. ... so long as 79 is not significant we
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Nous montrons enfin au § 17 qu’une borne de I’erreur commise dans
le calcul de y, (X) est donnée par:

w, < CeMnX _ (),
C et Q étant des expressions de la forme :
g (co+ g+ g+ ... e+ ...).

Nous en concluons que, pour h « petit», ®, est grossiérement propor-
tionnelle a h! et que, si le pas est réduit de moitié, la borne d’erreur est
divisée par 16 1.

Remarquons ici que dans toutes les estimations que nous donnons
interviennent les erreurs de quadrature des formules d’intégration. Elles
dépendent dans notre cas soit de | f} |, soit de | f} |. Pour donner une
borne supérieure de ces derniéres grandeurs en E, il nous a suffi d’ap-
pliquer les formules établies par BieBerBAcH (1951, form. (33)) dans
le cas ou les hypothéses B sont satisfaites.

Nous envisageons au chapitre IV (§ 18) un exemple étudié par I’abbé
Moicno (1844), puis par A. N. KrYLOFF (1935), 4 savoir 'intégration de :

y=Va+ly,  y©0=0,
sur le segment: 0 = x =< 1 = X.

Cet exemple est intéressant pour deux raisons : Ici, en effet, y*) (0)
n’existe pas pour u = 2. La méthode de MiLNE exigeant la connaissance
de y” (0), ainsi que le montrent les formules (2,1), (2,2) et (3,1), la con-
dition initiale (2) sera remplacée, par exemple, par la donnée de y (0,1)
supposée calculée par une autre méthode. D’autre part, I’application des
formules de BIEBERBACH nécessite quelques précautions sil’on veut évi-
ter d’obtenir des bornes d’erreur si grandes qu’elles en perdent leur sens.

Ceci dit, cet exemple se préte fort bien a I'intégration par la méthode
de MILNE. Les résultats, affectés des bornes d’erreur commises en arron-
dissant sont reportés dans les tableaux I a IV du § 18 (p. 31 et 32).
Nous appliquons ensuite notre estimation d’erreur a cet exemple.

Nous apportons quelques précisions en appendice et, en particulier,
nous comparons (app. I1I, p. 40) la méthode de MILNE a celle de KuTTaA
pour n = 1. Dans I’étude des premiéres ordonnées, nous concluons que,
si M est petit, la méthode de MILNE donne vraisemblablement une
approximation meilleure que celle de KuTTA tout en exigeant plus de
calculs. Au contraire, si M est grand, nous constatons que la méthode
de KurTA peut étre plus avantageuse. Dans la coniinuation du réseau,
il est clair que la méthode de MILNE demande moins de calculs que
celle de Kurra.

1 On trouve une indication de ce résultat dans: Marchant Methods (1944, p. 10, note 2):
« Inasmuch as the error terms contain h®, the error of any increment in y will be proportional
to the 5th power of h, but as more increments are required to cover any interval in x, the
error of the complete integration varies according to the 4th power of k. From this, it is seen
that halving k reduces the error to 1/16, quartering... » Mais cette remarque n’a pas été reprise
par MILNE qui écrit (1949, p. 138, rem. 2): « Cutting the interval in half, will divide the error
by about 32.» »
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CHAPITRE PREMIER
LA METHODE DE MILNE

§ 1. Position du probléme - Hypothéses de BIEBERBACH
Calculs préliminaires

Pour intégrer le systéme (1) avec les conditions initiales (2) de 0 a
X =rh, nous admettons ! que les hypothéses suivantes sont vérifiées :

Hypothéses B.
Dans le domaine fermé E défini par:

x<<—h,rth>

(1.1)
y1<<yﬂ(0)—a9 y1(0)+a>’ a > 072
les fonctions f, sont continues 2. (1,2)
De plus (BieBerBACH, 1951):
|Ifi| =N, N>0. (1,3)
En outre, pour i et j, tels que :
1<i+) j.=4,
#=1
nous supposons que, dans E, les dérivées:
ot+ X iu
__ =l S _ existent et sont continues ; (1,4)
o' OVY vu e OYE
enfin, nous admettons que, dans E,
i l
ot + 2 iu |
CEMh My W)
oxt oyt ... dy’n .
Ju—1
N#=1

LMiLNE (1949, p. 131): ¢ It is assumed that the function f satisfies all requirements
necessary to insure the existence of a unique, continuous, differentiable solution of the form
y = function of x throughout the interval under consideration. »

2 Nous donnons en appendice (p. 38) une estimation de a.

® Rappelons que, tout au long de ce travail, ona: 1=1,2,3, ..., n.
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Il suit de (1,1), (1,2), (1,4) et (1,5) que les fonctions f;, satisfont cha-
cune une condition de LipscHiTz d’exposant 1, dans E, car:

i (X yis eeeeennnn s ¥n) — i (@ ¥l ceeennnn > ¥ |

R I PN, —— s ¥n) — i (% ¥is Yas connrn s ¥n) |
T fi @y Yas Yoo oo s ¥n) — [ (%215 Y3, Y30 <o+ » ¥n) |
4.,
—I_ |f1(x=y;1 ey y;l—layn) _fi. (xvyiv ve oo y;t—lvy;)|

n
=M-) |yu— il = Mn-max|y, — i (1,6)

=1

Calculs préliminaires

Dans la méthode de MiLNE, on calcule tout d’abord

¥ (0) =3 (0,51 (0)5 «.. ¥n (0))
puis on dérive les deux membres de (1), ce qui conduit a y; (x) et a

1 (0).
§ 2. Valeurs de départ - Calcul des premiéres ordonnées

Nous définissons par récurrence, pour k = + h:

' k2 n
=1(0) + ky; (0) + 9 i (0) . vr=1, (21)
Y, (k)
2 ! k2 I
=%1(0) + k2 (0) + 52 (0)
) 2.2)
-+ 2 [7F1, v1(E) + Fiva(—Fk)|[,v=2,
avec :

Flv(x)zf;-(x9Y1v(x)’""er(x))9 X“‘—“ih, ""zl-(zv?’)
Il suit immédiatement de (2,3) et (1,6) que I'on a, pour x = + k:

| Fo (%) — F;, i (2) | = Mn-max | Y, (x) — Y, ., (%) ], 7 = 2, (2:4)
et:
|y () — F,, (%) | = Mn-m?xlyﬁ (x) — Y, (x)]. y = 1. (2,5)

Apreés avoir calculé Y, (k) a I’aide de (2,1), on poursuit l'itération
en utilisant (2,2) et (2,3) ; on s’arréte lorsque v a atteint une valeur p
telle que la différence
Yo, pia (k) — Y5, (K)
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soit suffisamment petite pour ne pas affecter! la derniére décimale de
Pexpression de Y, (k). Supprimant I'indice p de la derniére itérée, nous
désignons par Y, (k) les valeurs définitives des premiéres ordonnées et
nous posons :

F,k)=fi (k, Y, (k), ..., Y, (k), k= +h. (2,6)
Il est clair que nous avons alors, en vertu de (2,5):
| ys (k) — Fy (k)| = Mn-mﬂax]yl (k) — Y, (k) |

(2,7)
= Mn-m?xlyl (k) — Y,, (k) |.

§ 3. Valeurs de départ - Calcul de la seconde ordonnée

Le calcul de la seconde ordonnée par approximations successives se
conduit en définissant, de nouveau par récurrence :

2h 5 2h
=3 0) =550 — 2 0+ [5E ) — B (= 0|y = 1, 3)
h| , h '
=¥, (0) —f—g [yz (0)‘|‘4'F/1(h)] +§Ga, r—1 v =2, (3,2)
avec
G,‘l,, =f)~ (2h, Zlv’ cees er) ’ v ::> 1. (3,3)

En vertu de (1,6) et de (3,3), nous avons immédiatement :
|Gy — Gy, a| = Mn-max|Z,, — 2, , |, v=2, (3.4)
ainsi que: '
55 @H) — G| < Mn-max |y, 2h) — Z,],  »=1. (3)
Le calcul de Z;, effectué, on poursuit I'itération au moyen de (3,2)

et de (3,3) en s’arrétant lorsque » a atteint une valeur s telle que la
différence

Zl, s+1 ZA, s

soit assez petite pour ne pas affecter 2 la derniére décimale de Z,, . En
supprimant I'indice s, nous désignerons par Z, la valeur définitive de la
seconde ordonnée et nous poserons :

G =f, @h, Zy, ..., Z,). (3.6)

1 MILNE, op. cit., p. 135-136 : « The process is repeated until no change occurs. »
2 MILNE, op. cit., p. 136: « Next a trial value of y, is calculated by ..., and checked and
rechecked by SimpsonN’s rule until no change occurs. »
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§ 4. Continuation du réseau

Pour 9 = 3,4, ..., r, nous définissons par récurrence :

Wil = W, (e~ k) + 5 [2H,1 (e—3h) — By —28)

) “

et

Wi (o) = Wa (e~ 2)4) + & [, (0~ 2)8) + 48, (€~ h)

- (,2)
+ 3 H; (oh)
avec ;
Hy(gh) = fi (oh Waeh)s o Wa(eh)) = =1, (83)
puis :
H ) = (b Wi @, - Wi ). @23, (44)
Nous complétons ces définitions pour: — 1 < o =< 2 par:

Wi (k) = Y, (k) , W, (0) = 5, (0), W, (2h) = Z;, (4.5)
de sorte que nous avons, par (2,6) et (3,6):
H, (k) = F, (k), H; (0) = v, (0), H, (2h) = G;. (4,6)
Nous tirons immédiatement de (1,6) et (4,3):
| %3 (eh) — H, (eh) | = Mn-max|y; (ch) — Wy (eh)|  (4,7)
et, en envisageant (4,4):
|73 (eh) — Hj (oh) | = Mn - max |y, (oh) — Wi (eh) | (4:8)

relations qui, selon (4,5) et (4.6), sont valables, la premiére pour
o = — 1, la seconde pour g = 3. Nous appelons* W, (¢h) la wvaleur
définitive de y, pour x = gh; en particulier, & ’extrémité du segment,
la valeur définitive de y, (X) sera W, (X).

1 MILNE, op. cit., p. 137 : « This is taken as the correct value of y; (see Remark 1 below). »
Cf. notre note infrapaginale 1, p. 8, olt nous citons I’essentiel de cette remarque.

ID: « ... getting y, ..., which is taken. as correct. In this way, we proceed, using ...
to get the trial value of y, then calculating y’..., then obtaining the corrected y by ... .»
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CHAPITRE 1I

VALEURS DE DEPART

A. Premiéres ordonnées

§ 5. Convergence des itérations
En rappelant que, selon (4), kK = + h, envisageons les 2n suites :

Y,, (k) (P>1,9— o) (5,1)
et posons:

hMn .

= 52

Théoréme I

Les hypothéses B étant satisfaites, si
¢<1, (53)

chacune des 2n suites (5,1) sera convergente.

Démonstration

Ecrivons en effet (2,2) pour (v + 1) et ». Soustrayant membre a
membre, nous obtenons en passant aux valeurs absolues :

Yiera6) = Yoo (8] = g | 712 () — B (8]

+wm—m—mwu—m¢ —

Posons alors:

A, =max|Y, ., (£ k) — Y, (£ k)], v=1,
2
puis :
A, = max (A7, A7), v=>1.
Nous obtenons, en vertu de (2,4) et de (5,2):
A, = ihz—j, TMn A, + Mn A;—l] = qA, 5 = ¢7A,.

o0
Dés que ¢ < 1, on voit donc que la série Z A, est convergente.

= C.Q.F.D.



§ 6. Erreur commise dans la premiére approximation

Dans les hypotheses (1,2) et (1,4), on a:

' B, K,
¥ (k) = y1(0) + ky; (0) + 9 ¥3(0) + Eyﬂ (9:k), 0=9H=1,

de sorte que nous tirons immédiatement de (2,1):

L3
i (k) — Yo (k) = '3 (93k).

Si nous posons :

h,=max|y, ) — Y, ()], vzl (6.)

nous pouvons écrire :
h3
— - max |y}’ (6;h) |, 0=|6,|]=1,

nm = ==
4,0,

ou encore, en vertu de (1):

m = ¢ -max|fi]. (6:2)

§ 7. Erreur commise dans la v-iéme approximation

Supposons que les hypothéses (1,2) et (1,4) sont vérifiées. Selon deux
formules utilisées par MILNE, op. cit., p. 135, form. (3) et (4), nous pou-
vons écrire ! :

2k , k*
¥ (k) =y:(0) + 32 (0) + Zyz(o)
k , , B, E3
+ﬂ, Ty; (k) + yi (— k) —anz(aak)a0§|ez|§_la
de sorte que nous aurons en vertu de la définition (2,2) et pour v = 2:
k : ,
718 =¥ ) = 5 |7(509) = Foea 0) 31 (- ) — Fis (D)
B Ok 7,1
- '1736301( 1K) (7.1)

1Le reste s’obtient en appliquant la méthode exposée par MILNE, op. cit., p. 108-116.
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Posons, pour tout E< {—h,Th> :

B B
R — max —— | y% (£) | = max ~ |f¥]. 7,2

Théoréme I1

Si les hypothéses du théoréme I sont satisfaites, on a:

R
N =10 1—a (1—q¢™, vz 1. (7,3)
—9q

Démonstration

En prenant les valeurs absolues des deux membres de (7,1), nous
obtenons en vertu de (2,5) et de (7,2):

hM
|ya () = Y (k) | =7, 7 | Tmax |y (B) — Y1 (B) |

+milx|yl(_k)_Yl,v—1(_k)|] + Ra v ; 27

d’ou, d’aprés nos définitions (5,2) et (6,1), pour k = + h:
nvéqnv—l_[_Ra’ 1"_%2- (7,4)
Envisagedns alors ’équation aux différences :

U, — qu, = R, v = 1. (7,9)
Le polynéme caractéristique z — q de l’équation homogéne admet
I'unique racine z = ¢, ou q est plus petit que 1, en vertu de (5,3).
D’autre part, I'équation compléte (7,5) est satisfaite par la solution par-
ticuliére :
. R

u —_—

= 1 . q “
La solution générale de (7,5) est par suite

u, = wg’ + l-R s v=1. (7,6)

Nous déterminerons w en posant

U =1 (7.7)
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et faisant » = 1 dans (7,6), soit :

w=— li,

9 q1l1—gq
de sorte que /
w, — g 1—R_“ (1— g1, y=>1. (7.8)

D’ailleurs, avec (7,7), il est clair que
y=u, (P =1);
car, si cette relation existe, (7,4) et (7,5) donnent successivement :
a=e +R=qu +R=u,,, v = 1.

En considérant (7,8), cette derniére remarque nous permet d’établir (7,3).

Le théoréme II est démontré.

§ 8. Application pratique du théoréme II

(?;;IS (7,3) interviennent %, , ¢ et R, soit par conséquent, selon (6,2)

et (7,2):

max | f; | et max |fY|.
ALE A

’

En faisant les hypothéses B, en particulier (1,3) et (1,5), BIEBERBACH
(1951, 2¢ et 4¢ form. (33)) a donné une estimation de ces grandeurs :

Ifil| =MN(+1)(n + 1+ nM) =8 8,1)
| fA|=MN(n+1) [(n+ 1)+ 11n (n + 1)2M + 11n2(n 4 1) M2 + n3M3]
=S|+ 12+ 10n(n+ )M 4 M| =T.  (82)

Nous pouvons alors écrire :

h3 9 S
L — S ="P.— 8,3
= 2T Mo (8:3)
selon (6,2) et (5,2), puis, en vertu de (7,2):
h3 27 T
R=_ . T="—.¢: . 8.4
180 20 T Mons (8:4)

Ainsi, le théoréme II s’exprimera par:

2-q"+2~—s 2—7 'S . T
2 M3nd 20 1 -—gq MdnS

B, = (1—¢g7, v = 1. (8,5)
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Il suit immédiatement de cette derniére relation que, en général,
on n’améliorera pas sensiblement 7, en allant au dela de v = 4. Si nous
posons enfin :

9 S 27 T T
—Z. . -1, e, 8.6
1= T o T 20 1 — g Mow (8.0)
nous aurons : '
7, <= og’, v=3, (8,7)
a étant de la forme: a = Z a,q".
u=0
B. Seconde ordonnée
§ 9. Convergence des itérations
Soit les n suites :
Z,,, y>1,v— oo, ' (991)

Théoréeme III1

Si les hypothéses du théoréme I sont satis-

faites, les n suites (9,1) sont convergentes.

La démonstration est parfaitement analogue a celle du théoréme I:
au lieu de (2,2), on envisage (3,2), puis (3,4) au lieu de (2,4) en remar-

quant que seul le terme g G,, dépend de v, puisque F, (h) est, pour un h

donné, une constante définie par (2,6).

§ 10. Erreur commise dans la premiére approximation

| D’aprés une formule que donne MILNE, op. cit., p. 135, form. (5),
on peut écrire, lorsque (1,2) et (1,4) sont satisfaites ! :

2h ! n
¥ (2h) = ¥y, (0) — el (0) — 2h%y; (0)
o2h | &

+ 5 |50 () — 3 (= B) | 4 2 By (E), E<<— b, 2R,

1 Cf. aussi notre note infrapaginale, p. 13.
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de sorte que l'on conclut immédiatement de I’examen de (3,1) que:

71 @8 = =[5 (50— ) — (i (— 1) — Fs (= )|

T ps
+45h ¥3 (8)-

On obtient alors, en vertu de (2,7) et de (7,2):
| v (2h) — Z,y | §4'th-me |y, (k) — Y, (k)| + 28R.
Dr’ailleurs, nous avons posé: Y, , (k) = Y, (k), de sorte que:
max|y; (k) — Y, () | = max|y, (b) — s, (B)| =1, <7 p =3, (10,1)

en vertu de (6,1) et de (8,7) .
Il vient donc en définitive par (5,2), pour p = 3,

¢, < 12qn 4+ 28R ,1 (10,2)

sl nous posons :

[, = max|y, (2h) — Z,, |, »=1. (10,3)
A

§ 11. Erreur commise dans la v-iéme approximation

Si les hypothéses (1,2) et (1,4) sont satisfaites, on peut écrire la
formule de SIMPSON avec son reste, soit : :

71 @8 =32 0) + £ |5 0) + 33 (8] + i 2B

— o hEs,  0=9, =1

Il suit de cette relation et de la définition (3,2) que, pour » = 2,

72 (28) = 2 = S5 )~ By )| + 3 |ya 2 — G
— oL (204). (1LY

1 Les relations (10,2), (11,2), (11,4), (11,5) et (12,2) sont valables pour p < 3 i condition

d’entendre par 7 une majorante de np, par exemple : #,-qP—! - T—%"
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Théoréme 1V

Les hypothéses du théoréme I étant vérifiées, on a:

2(2gn + R)

(]_ —_ q"_l)9 y>1. (11,2)
l1—g¢q

L =04+

La démonstration de cette proposition est analogue a celle du théo-
réme II:

De (11,1), nous tirons en effet par (2,7), (3,5) et (7,2):
4h
152 @0 — | = 2 Mo max |y, (B — Y, ()|

-{—gMn-maxlyl(Zh) —.ZA”_1|—}—2R, v=2,
)

d’ou, d’apres (10,3), (10,1) et (5,2):

&, <4qqn+ 9f,— + 2R, v=2. (11.3)
Nous envisageons alors I’équation

u, ., —qu, =2 2qy + R), v =1,
dont la solution générale est:
2 (2qn + R)

1—gq

En posant: u, = {;, nous déterminons w, soit :

_ & 229+ R)

u, = wq” + " vy = 1.

g q(l—y9
et :
u’, = C1'¢1”_1 _I_ 2 (2‘177 + R) (1 _ qv—l)’ » g 1.
I —q
Nous établissons ensuite, par induction compléte, que:
Gy L Ty v=2.

Théoréme V G Q. & D

Les conditions du théoréme I étant remplies, on a:

6, < 2 (dgn + 13R) g1 4 2 ‘2lq’j_+q' B y=1. | i
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Démonstration

En substituant a {,, dans (11,2), sa borne (10,2), nous obtenons
successivement :

2
¢, < (12qy + 28R) ¢ + 2 1q’7_*; R) 1 o

ry—1

1
= (8qn + 26R) ¢ ' + 2 (2qn + R) (_1_:9q

+ qv—1>

2 (2 R
=2 (4qq + 13R) ¢? +%—)(1 —¢q), v=1,

et nous démontrons le théoréme V.

Corollaire

Posons :

| b R |
£ =2 (dqn + 13R) g + 2 fm_: ). (11,5)

n et R contenant ¢°, on a donc, en tenant compte de (10,2) :
L<f (r=2); L, = B (v=1), (11,6)

f étant de la forme: § = Zb#q“ ‘
#=0

Remarque

Dans la pratique, on calculera successivement: S, T, n, R, net {, a
I’aide de: (8,1), (8,2), (8,3), (8,4), (8,6) et (11,5).

CHAPITRE 111
CONTINUATION DU RESEAU

§ 12. Erreur w, commise dans la valeur définitive

Si les hypotheéses (1,2) et (1,4) sont vérifiées, nous pouvons écrire
(MiLNE, op. cit., p. 135, form. (1))1:

111 s’agit de celle des formules « ouvertes » qui correspond i la formule de StMPsoN. Le
reste s’obtient par exemple par la méthode citée plus haut (cf. note infrapaginale, p. 15) ou
encore par celle indiquée par STEFFENSEN (1925).
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¥2(eh) =¥, ((g —4) h) + ‘%‘

253 ((e—9h) =3 (e —2)4)

28
—Wyy(£).  E<LLe—4)h, k>, (12,1)

+ 251 (=1 h)l + 2

d’ou1, en vertu de (4,1):

2(0h) = Wi (@h) = 5, (e —4) k) — Wy (e — 4]
+ ?—3@[2 [y; ((9—3)h> —T, ((9—3)’1)] ~5i(e—2)
HH, (e —2)h) +2 [ya (e=1h)—m, ((e——l)h)}

FBE),  e=3.
En posant:
=7 ’ e==+1,
ol 27 SR S AR LX)
= max | y; (gh) —W; (eh) |, e= 3,

et rappelant, selon (4,5), que 7 et { sont respectivement des majorantes
de :

|y2 (k) = Y, (k)| = |y, (k) — W, (B) |, k=+h,
et de:
| ¥2 (2R) — Z;| = [5:(2h) — W, (2h) |,

nous avons successivement par (4,7), (7,2) et (5,2):

. 4h
b’z (eh) —W; (Qh)f =5 Wt 3 (2 Mnw,_; + ane—-z 42 ang—l) + 56 R
= wo—y+ 89w, 5+ 4qw, »+ 8qw, ;+56R,0=3. (12,3)

Dans les mémes conditions, la formule de SiMmpsoN s’écrit avec son
reste :

¥a(eh) =y, ((Q —2) h) SE ;‘

hs
— a0 Y2 (&1 £<<le —2)k, oh>. (12,4)
920

i (e~ 2 k) +a; (€ - h) +3; (gh)]
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Nous en tirons, en vertu de (4,2):

71(eh = Wae) =: (e~ k) =Wy (@ —2)h) + 3 Iy; (e=25)

(e —2h)+ [y; (e=14)— (-1 h)]

5

/ 5 h
—f‘ya(Qh)_Hz(Qh)]—gﬁyﬁ(fa)a e =3,
soit, par (4,7), (4,8) et (7,2):
h .
00 Z 0y + 3 [Mrog s+ 4 Mo, s+ Mo max | 3, (eh) — Wi ()|
+ 2R, 0o =3.
En remplagant enfin |y, (oh) — W; (¢h) | par sa majorante (12,3) et

n
rappelant que 5 =, HOUS ZyoHE}

w, = (14 ¢q) Wyg + 49w,y + ¢q (CUQ—4 + 8qw,_3 + 4qw,_, + 8qw,_,
+ 56R) + 2R,

et finalement :

W, =49 (1 +29) wp 1 + (1 + 9+ 4¢°) 0,5 + 86w, 5 + g4
+2(1+28¢) R, 0=3. (12,5)

§ 13. Etude d’une équation aux différences

Envisageons I’'équation

u,—4q(1+2qu, ,— (14 q+4¢)u,_—8¢°u, 5 —qu,_,

=2(1+28q)R. (13,1)
Son polyndme caractéristique
P() = —4g(1+29) 2 —(L+q+4g)2 — 8¢z —gq  (13.2)
admet, d’apreés la régle de DESCARTES, exactement une racine positive :

17 7 235
z1=1+3q—l—?‘12—§‘13+—8—94---

En substituant a z le trinéme : 1 4 3q 4 a¢® dans P (z), nous obte-
nons : -

P(143q+ ag®) =(2a —17) g 4 (16 a — 129) ¢* + (50> — 10a — 279) ¢*
+ (2302 — 168a — 216) ¢° 4- 2a (20> — 5a — 108) ¢°

+ 80%(a — 9) ¢" + a®(a — 8) ¢8.



Selon que nous posons ¢ = 8 ou a = 9, nous avons:
P(1+3¢9q+8¢)=—¢*—¢—39¢ — 88¢°— 320¢° —512¢" <0
ou:

P(l+3q+9¢) =q*+ 15¢° + 36¢* + 135¢° + 162¢° + 729¢¢> 0,

ce qui nous permet d’écrire :

1+39+8¢ <% <1+3¢+9¢=2Z. (13,3)
Il résulte d’ailleurs d’une proposition connue (cf. par exemple PERRON,
1933), que:
n=|z| (=234).

La solution générale de (13,1) est de la forme :

4 .
u, = Y ezt — Q, ¢; = constante, i = 1,2,3,4, (13,4)
i=1

en posant:
2(1+28q R 2(1 4 289 R

U=TTTR) T egt 20

(13,5)

Ainsi que von Mises (1930) I’a montré, il nous suffira cependant
d’envisager une solution particuliére convenable de (13,1) pour obtenir
une majorante de w, . Nous le ferons de deux maniéres, celle indiquée
par MasseRrA et celle, originale, de von MisEs.

§ 14. Majorante de w,. Lemme. Méthode de MASSERA

En mettant dans (13,4): ¢; = K, ¢, = ¢; = ¢, = 0, envisageons la
solution particuliére
u, = Kz — Q, K = const., (14,1)
de I’équation (13,1).

Lemme
Si, pour g =v,»—1,»—2,» —3,0na:
Wy = Uy, (14,2)
cette relation est valable pour tout o =» — 3.
Démonstration

Car, si nous posons :

Oy = Wy — Uy,



95

nous aurons, ¢, = Opourp =v,» — 1,» — 2, » — 3, de sorte qu’en
vertu de (12,5) et de (13,1), nous obtiendrons :

Opy1 = Wypy — Uy yy
=491+ 29 o, + 1+ q+4¢) 0,1 + 8%, s+ g0, 3 = 0.
C.Q.F.D.
Méthode de MASSERA

MasseERA (1942, p. 130) détermine K de facon que (14,2) soit satis-
faite pour les quatre valeurs de départ, c’est-a-dire que:

w—lzwlzg —Q,
w, =0 =K —Q, (14,3)
Wy = Kz —Q,
Wy < Kzt — Q.

Ces quatre inégalités se réduisent au systéme :

puisque z; > 1, systéme qui est satisfait par

K — sax w, + Q

e=0,—-1,1,2 2§

— max ((ml + Q) z, 3’%—(3) (14,4)

Si donc nous posons :

o =@t QAT —Q, sie+ Q= (@ + Q4 | (145
) = (wy + Q) %72 — Q, si:wy + Q = (0w + Q) 23 (14,06)

le lemme (14,2) est applicable et :
Dy = 'Q; g o= —1,

le signe d’égalité se présentant pour ¢ = — 1 dans (14,5) et pour
0 = 2 dans (14,6). La majorante cherchée est donc donnée par (14,5)
et (14,6).

§ 15. Majorante de w,. Méthode de voN MISES

Selon le procédé de von Misgs (1930), nous poserons :

o = max (w;, w,) (15,1)
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et nous satisferons les quatre relations (14,3) en donnant & K la valeur
(w 4 Q) 7 , de sorte que nous aurons, en vertu du lemme du § 14 :

Wy = uy = (0 + Q) 24" — Q, o=—1. (15,2)

Mais la majorante que nous nous proposons de donner pour w, ne
sera utilisée que pour o == 3 . Aussi, nous pouvons améliorer ce résultat
en renoncant a satlsfalre I’ensemble des megahtes (14,3). L’exposant de
z, est alors ramené de (¢ + 1) a (o — 1) , ainsi que le montre la proposi-
tion swivante :

Théoréeme VI

Si les hypothéses du théoréme I sont vérifiées, on a:

w, = £, o=1, (15,3)

en posant :
=814+ Q1 —1). (15,4)

Démonstration
Il est en effet clair que nous ne pouvons conclure, ni pour p = — 1,

ni pour p = 0, car:
w_ : 1 ) 1
— > -, > 0, tandis que: Q ~—1)<Q ——1})<0.
% & B -8
Mais, pour ¢ = 1, nous avons : w; = w = ] et pour p = 2 :

oy < wm - Q (5 — 1) = 0.
Pour ¢ = 3, I'inégalité (12 5) devient par (13,5) et (15,1):

w; =4q (1 + 2q) w, + (1 + g+ 4¢%) o, + g, + Q (69 + 2047
<w(l4 6g+12¢) + Q (1 4 69+ 204 — 1). (15,5)
Mais, selon (13,3), 23 > 1 + 6¢ + 25¢> + ..., de sorte que:
oy < @+ Q& — 1) = 0. (15.6)

Enfin, pour ¢ = 4, nous aurons d’une maniére analogue en tenant

compte de (15,6) :
m<wqu+2@@ﬁ+Qu%—ny+u+q+4ﬁwr%%%l
+Q(6g+20¢) = o (4g (1 +2¢) 5 + 1+ g+ 4¢° + 8¢)
+Q(4q(1+2q) 73+2q+1292)- - (15,7)
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Le coeflicient de @ donne successivement :

4q(1+ 295+ 14 q+4¢ + 8¢
<4q(1+29 4 +(1+qg+4¢) s + 8¢
<! (zi - P(zl))—_— 2, (15,8)

%1

en vertu de (13,2), z; étant racine de P(z). D’autre part, le coeflicient
de Q en (15,7) s’écrit :

4q9(1 +2q) 21 + 2¢ + 12¢°
=4q(1+2¢q)22 +1+29+4¢4¢+8¢2 —1
<4q(l 42922+ (1+qg +4¢)z +8¢¢—1 <2 —1,
en vertu de (13,3) et de (15,8).

La relation annoncée est donc démontrée pour o =1, 2, 3, 4.
Deés lors, nous pouvons considérer

2 = o~ + Q (% — 1)
comme une solution particuliére de (13,1) obtenue en faisant

K:w+Q

Zy

dans (14,1). Le lemme du § 14 est applicable et la relation (15,3) est
établie pour p = 1, le signe d’égalité ne se présentant que pour p = 1,
lorsque, de plus, @, = w,.

Le théoréme VI est démontré.

Remarque

Il est naturel de se demander si I’exposant de z; en (15,4) ne peut
étre encore diminué !. Nous montrons (appendice II, p. 39) qu’il faut
alors remplacer z, par une quantité plus grande. Plus exactement, nous
démontrons que:

wy = wlU®72 + Q (V72 — 1), 0=2, (15,9)

en posant:

U=1-+ 6q+ 12¢, V=1—-P(l) =1+ 6q -+ 204. (15,10)

1 On trouve cette idée dans un mémoire de WEISSINGER (1950); en appliquant & notre
probléme la formule (2,11) de cet auteur, nous obtenons: we = wVe—%+ Q(Ve—2—1),
o=2.
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§ 16. Comparaison des majorantes obtenues au § 14 et au § 15

On ne peut affirmer, en général, que I'une des bornes 2, , 2, est
inférieure a l’autre; on peut toutefois préciser les cas ou l'on a:
Q, = 2, ou au contraire {2, < 2, .

Théoréme VII

Les hypothéses du théoréme VI étant vérifiées,
ona, pour g = 1,

X=0,  siteop+ Q= (0 + Q) (16,1)
—Qé' <‘Qé° si:wy + Q < (0 + Q) 2, (16,2)

les signes d’égalité allant ensemble.

Démonstration

Nous distinguons quatre cas:

I¢r cas. Supposons: w, + Q = (w; + Q) 2, d’otr: w, > w, et, en
vertu de (15,4), puis de (14,6):

Q=(0+QHAT—Q> (w0 +Q#A2—Q=10,.

2¢ cas. Supposons: (w; + Q) 22 > w, + Q =(w;, + Q) 2%, soit:
wy > o, et, par (15,4) et (14,5):

Qe=(0+ QA" —Q= (0 + QA" —Q=10.

3¢ cas. Supposons: (w, + Q)23 > w, + Q> w; + Q, dour:
wy > w, , soit, selon (15,4) et (14,5) :

Qo= (02 + Q™ — Q < (g + Q) ™ — Q = £4.

4¢ cas. Supposons enfin w, = w,, soit: (v; + Q) 22 > w, + Q et,
d’aprés (15,4) et (14,5) :

Q= (01 + Q) #™ — Q (o + Q) &4 — Q = £
C. Q. F. D.
§ 17. Application pratique du théoréme VII

1. Dans £, comme dans £2,, on pourra remplacer z, par sa majorante

Z=1+43q+9¢,

puisque ’on a p = 3 et que I'exposant minimum de z, est alors : p — 2 = 1.
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2. Les bornes tirées de (14,5), (14,6) et (15,4) sont toutes de la forme :
CZe — Q, (17,1)

la constante C étant définie par:

= max (0, + Q2,2 2). s 0+ Q= 01+ Q) 22, (172)

_ max (‘“1 ’ Q,“’“Z“Q), it oy Q < (0 + Q) 28, (17,3)

d’apres le théoréme VII.

3. D’autre part,
2) N\ ¢
728 =(143qg+9¢) = (1 + (ﬁ"i‘ 9‘.’1)9) < e Ba+oge
e

de sorte que:
w, < CeBatorle_ Q, (17,4)

4. A Vextrémité de I'intervalle fermé, nous aurons donc:
w, < CeGa1+9)r _ () < Cel2ar — Q) = CethMnr — () = Ce®™MX _ (), (17,5)
en vertu de (5,2) et de (3).

1
5. Notons que si ¢ < -, la borne précédente peut étre quelque peu
r ,
améliorée par:
o, < Ce (3g +9¢®) r __ Q < Ce 3ar + 9¢°r* _ Q — (e MnX (1+MnX) __ Q . (17,6)

6. Enfin, nous avons vu que sil’on calcule quatre valeurs approchées
des premiéres ordonnées et deux de la seconde, on peut écrire :

P <n=w=af,p=4%, e <= wy < PP, s=2,
a et § étant de la forme:
a+aqg+ ... +aqg"+ ... (17,7)

D’autre part, en vertu de (8,4) et de (13,5), Q = y¢*, y étant aussi de
la forme (17,7). Il suit de la et de (17,2), (17,3), que C = d¢*, J étant
encore de la forme (17,7).

On peut donc dire que si h est « petit », ’erreur w, sera grossiére-
ment proportionnelle & k%, bien que l’erreur de quadrature des formules
d’intégration (12,1) et (12,4) soit de I’ordre de h®. Si il est nécessaire 1 de

h . . e 4 bl
remplacer le pas h par le pas — , on diminue I’erreur, grossiérement, dans
P P 2 ? 2

le rapport de 16 a 1.

1 MILNE, op. cit., p. 138, rem. 2: « If the error E, = D/29 proves to be larger than desired
accuracy permits, it is necessary to shorten the interval h. Cutting the interval in half will
divide the error by about 32.»

Cf. a propos de cette derniére affirmation notre note infrapaginale, p. 9.
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CHAPITRE 1V

EXEMPLE
§ 18. Etant donné:

y=f®y=/z+ly, y(@©=0, (18,1)
calculer y (1).
On ne peut intégrer (18,1) au moyen des fonctions élémentaires ;
mais la solution particuliére cherchée est (KryLorr, 1935):

1123 2 @
T 2 e — x4 o e 2 T e e e ; 18,2
x t3 V 93" 1115 (18.2)

d’autre part, on a (Moicno, 1844)

_9® : e ® 4 242 0<#<1. (1

Dés que x> 1, la dérivée y{*) (x) n’existe que pour x > 0. Les for-
mules (2,1), (2,2) et (3,1) sont dés lors inapplicables si, partant de y (0),
on veut utiliser la méthode de MiLNE. Avec KRYLOFF, nous tirons
v (0,1) de (18,2) et nous partons de la nouvelle condition initiale :

y (0,1) = 0,030 90 . (18,4)

Un changement de variable évident: &£ = x — 0,1 est alors 4 opérer
dans I'application des formules des §2, § 3 et §4. Nous utiliserons le
pas h = 0,025 de x = 0,1 a x = 0,3, puis, de x = 0,3 4 x = 1, le pas
h" =2h =0,05.

Nous obtenons tout d’abord !:

¥ (0,1) = 0,492 011 72 (+ 0,5) ,y” (0,1) = 2,980 617 28 (+ 0,4)

puis, en arrondissant systématiquement & la huitieme décimale, les va-
leurs portées dans les tableaux I & IV. Dans le calcul des valeurs de
départ, nous avons cessé les itérations lorsque la cinqui¢me décimale
ne changeait plus.

Par (18,3), MoiecNo a obtenu:

1,188 79 <y (1) < 1,376 87,
et KRYLOFF:

y (1) = 1,291 14, par la méthode de RUNGE et y (1) = 1,291 37
par celle d’Apawms.

! Dans tous nos résultats, les nombres indiqués entre parenthéses donnent les bornes des
erreurs commises en arrcndlssant exprimées en unités de la derniére décimale.

Ainsi, 2,136 423 23 (4 2,8) mgmﬁe 2,136 423 23 + 2,8-10—% et 0,492 011 72 (4 0,5)
représente un nombre compris entre 0,492 011 720 et 0,492 011 725,
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Estimation de ’erreur commise

Détermination de M et de N

Les dérivées partielles de y = f (u;, u) = J/u; + [/u, sont en
valeur absolue :

0 1 s aﬂ _1.3.5-....2u—3 I-4p
.4

gary (18,5)

duf du}

=0, Ma")g]-'

La fonction y (x) croit avec x sur le segment < 0,075 1>, puisque

o i

¥ (x) > 0. On aura donc des bornes supérieures de — | en mettant

en (18,5): u; = x = 0,075 et u, = y = vy (0,075). Par (18 3), il vient:
¥ (0,075) > 0,013 693 6 et I’on peut determmer M et N selon (1,5) par:

2
ﬁ<1830<MN of

< 12,22 < MN,
ox o x?
o f | (18,6)
244,8 < MN, —~ | < 8172 < MN,
ox? < oxt = -
d’une part, puis par
2
Lif<4,279§M, f <1563<¥
“h (18,7)
'\3 4 ?
f<1714 104<£/I of < 3,129. IOGEM,
oy? N2 oyt -
d’autre part, tandis que (18,3) donne enfin, par (1,3):
flry) =y (1) <2135 =N. (188

Le systéme d’inégalités (18,6), 18,7), (18,8) est satisfait dés que:
N =2,174 , M = 3,129 - 10°(2,174)* . 11 est clair que M est beaucoup
trop grand pour avoir une utilité pratique pour le calcul de h par (5 3)
ou pour celui de S et de T par (8,1) et (8,2) respectivement. Nous évi-
tons cette difficulté! en faisant les remarques suivantes :

1. Pour assurer la convergence des itérations (théorémes I et III),
il suffit que:

of |

h maxi i
E

3
soit, d’aprés (18,7): h << 0,7 . Le pas 0,025 convient donc.

l<1,

1 Une difficulté du méme ordre se présente si I’on estime ’erreur de la méthode de RUuNGE-
Kurra. BIEBERBACH, op. cit., (1) et (5), suppose en effet: RM < 1.

3
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2. Quant au calcul de S et de T, les formules (8,1) et (8,2) de Big-
BERBACH se simplifient dans notre cas, puisque, selon (18,5):

Bxﬂay»:()’ Pa =1
Posons en effet:
Z Ef |
g;f# éAuv {g_y{:‘f gB#’ p=123,4, (18’9)
i i |

ll—dj: =A + BN=1I;,

|

I_f = A; + B,N* + B,I; =TI},
" (18,10)
S < A, + BN+ 3B,IIN £ B, = I,

vl
e o < A, + B,N* 4 6B,I\N2 L 4B,I,N +3B,I2 + B,[,=T,.

Dans nos estimations, I, et I', remplacent respectivement S et T et nous
évitons ainsi de passer par M.
o*f
™

3. Nous avons vu que f croit avec x, au contraire des et des

o)
oy"|
I’erreur commise en fractionnant le segment < 0,075, 1> . Pour les
premiéres ordonnées, seul le segment < 0,075, 0,125 > entre en con-
sidération.

! |
(0n =1,2,3,4). Nous obtiendrons une estimation plus fine de

Estimation de lerreur commise dans le calcul des premiéres ordonnées

De (18,3), nous tirons pour x = 0,125 : f(x, v) < 0,598 8 = N, puis
de (18,6), (18,7) et (18,9), soit pour x = 0,075: A; = 1,830, A, = 12,22,
A; =2448, A, =8172, B, =4,279, B, =156,3, B, = 1,714 - 10,
B, = 3,129 -10% d’ou, par (18,10):

|f"| =T, = 87006, |f'| < I, =16,378 . 10°.

Les formules (8,3) et (8,4) donnent alors: %, < 2,269-107* et
R = 3,462 .107%. D’ailleurs ¢ = 3,565 833 ... - 1072, en vertu de (5,2),
ce qui nous permet enfin d’écrire, selon (7,3) :

Ny < q* + li < 0,029.107° 4 3,590-107%=3,619-10-5.
=i
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Cette premiére estimation peut étre améliorée. Nous avons, en effet
(tableau I, p. 31):

Y (0,075) = 0,019 563 22 + 0,5-1078,

Y (0,125) = 0,044 106 23 4 1,2-10°8,
soit: ¥ (0,075) > 0,019 527, ¥y (0,125) << 0,044 143 .

Par (18,5), nous obtenons alors de nouvelles valeurs des B, :
B, =3,579, B, = 91,65, B; = 7043 , B, = 9,014 - 105
et nous prenons pour les A, des valeurs plus fines :
A, =1826,A,=12,18, A, =243,6 , A, = 8116, (18,11)

avec N = 0,563 67. Nous tirons alors de (18,10): || = I, = 55,07,
|fY| =1y =1,745-10°, puis, de la méme fagcon que précédem-
ment (p. 34):
n = 1,435-107¢, R =9,477-10"%, q = 0,029 825,

N << mq + I—R— < 0,0128-107% + 0,976 2-107% = 0,989 0-1075.
—q

Nous poserons:

n = 0,989 . 105 (18,12)

L’erreur commise dans le calcul des premiéres ordon-

nées: Y (0,075), Y (0,125) est inférieure a 1075,

On a donc, en tenant compte des erreurs faites en arrondissant :

y (0,075) = 0,019 563 22 + 989,5-10-8,
y (0,125) = 0,044 106 23 + 990,2 - 10~

d’ou, pour les B, :

B, — 3,577, B,=9146, B,—7018, B,=28971-106 (18,13)

Estimation de l'erreur commise
dans le calcul de la seconde ordonnée

Nous envisageons maintenant le segment < 0,075, 0,15 > . Tandis

@ I u
3 { l‘, g—": prennent leur plus grande valeur en x = 0,075
A B R 4

f(x,y) sera maximum en x = 0,15. De (18,3), nous tirons:

f(x,y) <0,67293 =N.

que les
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Mettant cette valeur en (18,10), ainsi que les valeurs des A, et des B,
données respectivement par (18,11) et (18,13), nous avons :

I < I'y =3,069-105, puis, par (8,4): R =1,666-1075.
Quant a 7, nous le trouvons en (18,12) et nous obtenons:

_ ’% — 0,02080833 ... . (18,14)

L’estimation désirée nous est alors fournie par (11,4) :

2 (2qn + R
& < 2 (4qn + 13R) ¢ + (lq” +R)

soit :
£3 << 0,0387-107% 4 3,555 7-1075 = 3,594 4 -1073.
Cette premiére estimation peut étre améliorée. Nous avons en effet :
Z (0,15) = 0,059 038 00 — 0,6 - 10—8, soit: y (0,15) < 0,059 074, d’ou
N =0,63036, |f' =1,=247687-10°, R = 1,344 71073, puis :

{3<<0,0313-1075 + 2,8938-107° = 2,9251-10"5= . (18,15)

L’erreur commise dans le calcul de la seconde
ordonnée Z (0,15) est inférieure a 3 -1072.

On a donc, en tenant compte des erreurs d’arrondissement :
¥ (0,15) = 0,059 038 00 + 2925,1-107% — 0,6 - 108 > 0,059 008. (18,16)

Ce résultat sera utilisé plus loin.

Estimation de Uerreur commise dans la continuation du réseau,

dex = 0,175 a x = 0,3

Nous utiliserons ici (17,1) avec, selon le cas, (17,2) ou (17,3) .

Commencons par calculer une valeur de R valable sur le seg-
ment < 0,075, 0,3> . Les A, sont donnés par (18,11), les B, par (18,13)
et N s’obtient en envisageant (18,3), soit: y (0,3) < 0,209 35,
f(x,y) < 1,00531 = N, de sorte que |f" | < I’y = 1,242 43 - 10° et
R = 6,7438-107%. De (13,5) et (18,14), nous tirons ensuite
Q= 1,258 7-1073. Il s’agit alors de comparer (w, + Q) Z2 & (w, + Q).
Z est une majorante de z, donnée par (13,3): Z = 1,097 421 831.

D’ailleurs, w; =% et w, = {, que nous trouvons respectivement en

(18,12) et (18,15). Il vient alors :
(0, + Q) Z2 = 126,86 - 105 (1,097 421 831)2 > o, + Q = 128,80 - 105,
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Il convient donc d’utiliser ici £, en posant, selon (17,3) :

0, +Q _ 128,80-10-3
Z Z

w, < 128,80 - 105 (1,097 421 831)e—* — 1,258 71073,

C = dans (17,1), ce qui conduit a:

Pour x = 0,3, p = 8, soit: wz << 1,2106-1073.

Cette premiére estimation peut é&tre améliorée. Nous avons en
effet: W (0,3) = 0,18019091 4 1,6-10-8, soit : v (0,3) << 0,181 402,
d’ou N = 0,973 637, |fV| = I',=1,10653-10°, R = 6,006 21-10~3,
Q=1,12102-10"3 et enfin:

w, < 115,028 - 105 (1,097 421 831)°* — 1,121 02.102. (18,17)
Pour x = 0,3, p =8, soit:
wg < 1,084 04.- 1073, (18,18)

L’erreur commise dans le calcul de W (0,3) est
inférieure a4 1,1-1073.

On a done, en tenant compte des erreurs faites en arrondissant :
y (0,3) = 0,180 190 91 - 108 404 -10—% 4 1,6-1078.

D’ailleurs, I’estimation de w, (9 = 3, 4, ..., 8) peut étre améliorée
en procédant de proche en proche, soit en calculant N, A,, B, I',, R et
q tout d’abord pour le segment < 0,075, 1,75> (¢ = 3), puis pour le
segment < 0,1, 0,2> (o = 4) et ainsi de suite et en substituant en (12,5).

Estimation de U'erreur commise pour x = 1.

Partant des valeurs: W (0,15), W (0,2), W (0,25) et W (0,3) du
tableau III, p. 32, nous avons continué l'intégration avec le pas
h" = 0,05. Ces valeurs de départ sont affectées d’erreurs bornées
respectivement par w,, ®;, Wz, ®g. Nous poserons maintenant :

Wy = Wyr , Puis : w' = max ,, ; larelation (18,17) montre immédia-
i e’ =1.2,3,4
tement que o' = wg. Désignons par ¢', Z’, R’ et Q' les valeurs que

prennent g, Z, R et Q calculées sur le segment <0,15, 1>, lorsqu’on
remplace dans leurs expressions respectives le pas h = 0,025 par le nou-
veau pas b’ = 2h = 0,05.

En appliquant maintenant la méthode de la solution particuliére
majorante de von Misgs a (12,5), nous obtenons!:

’

ol < (0 + Q)2 — Q' o =1. (18,19)

! Ce résultat n’est pas susceptible d’une amélioration analogue a celle qui conduit au
théoréme VI.
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Nous calculons successivement :
A, =1,292, A, =4,306, A, =43,07, A, = 717,3, valeurs obtenues
par (18,5) pour x = 0,15,B, =2,0588, B, =1745, B, =443,7,
B, = 1,8789.10*, tirées de (18,5) pour y (0,15) > 0,059 008,
selon (18,16); puis, en tenant compte de (18,8) et (18,10):

M =TI,=5206-105, R" = 9,040 7-107%, ¢' = 0,034313 333 ...,

Q = 1,5457-1072, Z’ = 1,113542. Nous avons d’ailleurs en vertu
de (18,18): o’ = wy < 1,085-1073, d’ot1: w’ + Q' < 1,6542-1072,

Pour x = 1, ¢’ = 18, (18,19) donne enfin:

wyg < 1,6542-1072 (1,113 542)® — 1,545-10~2
< 0,114 65 — 0,015 45 = 0,099 20.

Il nous faut bien reconnaitre que cette borne est grande. Interprété
a la lettre, ce résultat signifierait que la valeur calculée pour x = 1 par
la méthode de MILNE n’est pas plus précise que celle donnée par 1’abbé
Moieno. Mais, ici de nouveau, nous aurions pu calculer ws, wg, etec.,
de proche en proche a I’aide de (12,5) et améliorer ainsi cette estimation.

Par exemple, le fractionnement de la fin du réseau en deux segments :
<0,15, 0,6> et <0,45, 1>, conduit, par des calculs analogues, a:

w, < 0,007 369, y (0,45) > 0,340 754,
w}, < 0,011 892, y (0,6) < 0,568928,
puis : wly < 0,024 311,
soit : y (1) = 1,291 45775 + 0,024 311 + 5,5 - 10-%,
d’otr : 1,26714 <y (1) < 1,315 77.

Il convient de dire que d’autres exemples se prétent beaucoup mieux
a lestimation que le nétre!. Si nous ne les avons pas développés ici,
c’est précisément parce que l’application de nos formules ne présente
alors aucune difficulté.

APPENDICE 1

Estimation de a (1,1)

Afin que les hypothéses B soient vérifiées dans le domaine E, il
suffit de prendre a égal a:

ma (|, 6)— 3 (0) |+ Zsy =53 (0) |, Wi (eh) — 3,(0), [ W3 (eh) —, 0))
k= -4 h, v =1, D= 3y ssig b

1 Cf. par exemple : MILNE (1926), (1949, p. 136-138) et Marchant Methods (1944, p. 3-6).
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A cet effet, nous voyons immédiatement que :

lYlv(k) _yl(o)l—i;nv —I_hNo Véls
| Z;, — % (0)[={, + 2hN, y=>1,
W5 (oh) — ¥; (0) | = w, + ohN, 0o=34,...,r,

W3 (eh) — : (0) | = | W (h) — y2 (h) |+ 0hN, ¢ = 3.4, ..., T.
D’ailleurs, en vertu de (12,3), on a:
|Wi (eh) — y1 (eh) | = (1 + 209) w, + 56R, =~ o =34,...,r.
Si nous posons :
¢ = max (3,, ,, 21w,), v =1, o=34,...,r,
nous aurons une borne inférieure de a en:
e+ 56R +rhN —¢ +56R + XN < a.

Les quantités ¢, ¢, R s’expriment en fonction de h, M, N et n au
moyen de (5,2), (8,3), (8,6), (8.4) .

APPENDICE II

Démonstration de la relation (15,9)

Nous démontrons ici que l'on a:

w, = oUe2 L Q(Ve2— 1) =0/, o=2, (159

avec :
U=1+46q+12¢¢, V =1+ 6q+ 20¢*, w = max (w; , W) .

En effet, pour p = — 1, 0, 1, nous ne pouvons rien dire de la vali-
dité de (15,9), puisque alors: U2 > 0, Q (V72 — 1) < 0.

Mais pourp = 2, nous avons : w, = w = £2; et pourp =3 : w; = 25,
en vertu de (15,5). .

Quant & ¢ = 4 , I'inégalité (12,5) devient, par (13,5) et (15,1):
0, =4q (1 + 29) (0U + Q (V — 1))
+(1+q+4¢ +8¢) o + Q (69 + 20¢?)

<o(4g(l+29)U+U)+Q4g(1+29)(V—1)+V—1)
<oU24+Q(V—-1)(V41) =0.
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Enfin, pour ¢ = 5, nous obtenons de fagon analogue :
5 < 4q (1429) (0U2 +Q (V2 —1))
+ (1 +g+4¢) (@U+Q(V—1)) + B¢ + g) 0 +Q(V —1)
=w(4q(1 +2q) U2 + (1 +q+4q2)U+q+392)
+Q(4g (1 +29) (VP — 1) + (L +q+4¢) (V—1) +V—1)
<oU(4g(1 + 29U +1 +2q + 12¢°)
+Q(V—1)(4g(1+ 29V + 145+ 12¢° + 1
<oU2(1 +49+8¢) +Q(V—1)(V24+V+1)
<oUd4+Q(VE—1) =0,

En admettant que la relation annoncée est vraie pour p =»,» — 1,
v —2, v —3, on démontre immédiatement par induction compléte
qu’elle est vraie pour tout p = v — 3.

Il suffit a cet effet de rappeler que, pour z > z, le polynéme P (z)
défini en (13,2) est positif et que P'ona: V> U> 1+ 3¢ + 9¢>> z,,
selon (15,10) et (13,3).

Le signe d’égalité ne peut jamais se présenter pour p > 3.

APPENDICE III

Comparaison des méthodes de MiLNE et de KuTTA pour n = 1

Premiéres ordonnées. Si y, désigne la valeur approchée de y (h) obtenue
dans l'intégration de y' = f(x,y) — en connaissant y (0) — par la
méthode de KutTa, on sait (BIEBERBACH, 1951, form. (35)) que:

MN
B) — | = " (31800,75 + 46326 M
+ 10548 M2 + 144 M3) (IIL,1)
si: M < 1. (I11,2)

En faisant I’hypothése (III,2), c’est-a-dire :

q§1

2



en (7,3), nous obtenons pour la méthode de MILNE, si p = 3:

ly () —Y, (k)| = MN

— (1024 2M 3456 M2 - 448 M3 |, (IIL,3
_540,16(0 + 5632 M + + ) (ITL3)

olt tous les termes entre crochets sont inférieurs a ceux de (III, 1), a
Pexception du terme en M3,

Comparons, d’autre part, le travail nécessité par le calcul de y, et
par celui de Y, (k).

A cet effet, nous utilisons la notion de Horner, introduite par M. le
professeur A. OsTrowsKI (1940) de la fagon suivante : Le travail néces-
saire pour le calcul de f (x,y) ou de f' (x,y) sera Punité de travail calcu-
latoire, ou un Horner.

Alors que le calcul de y; exige 4 Horners, celui de Y, (k) en nécessite
6, mais la méthode de KurTA fournit une ordonnée, tandis que celle de
MiLNE en donne 2, car k = + h.

Donc, si M est petit, la méthode de MIiLNE donnera vraisemblable-
ment de meilleurs résultats que celle de KuTTA, pour un travail un peu
plus grand, mais fournira deux ordonnées.

Au contraire, si M croit, le terme en M? devenant prédominant, il
se pourra que la borne (III, 1) soit inférieure a celle que donne (111, 3).

M

De plus, ¢ = 3 croitra avec M et cela augmentera le nombre des ité-

rations a effectuer dans le calcul des premiéres ordonnées 1. La méthode
de MILNE perdra vraisemblablement ici son avantage lorsque M sera
grand.

Seconde ordonnée. On ne posséde pas d’estimation pour la conti-
nuation du réseau dans la méthode de Kurra. D’autre part, on a cou-
tume de dire que cette méthode est préférable a celles qui s’apparentent
a la méthode d’Apawms lorsque le pas est grand, sans ’étre cependant
trop (cf. par exemple CorraTz, 1951).

Nous comparons done a (111, 1) la borne obtenue en prenant un pas

5 dans la méthode de MiLNE. Le tableau ci-dessous montre que, dés

que p 4 s = 4, la borne que nous avons pour la méthode de MILNE est
inférieure a celle donnée par BIEBERBACH pour la méthode de Kurra,
quel que soit M.

! MiLNE (1950) a montré que dans ’exemple suivant :

17 o, 5% —
=Tt YO=1
sa méthode donne une approximation meilleure que celle de Kurra., Mais on a ici: M = 1590

et il faut calculer 5 valeurs approchées des premiéres ordonnées, soit 10 Horners pour obtenir
. le résultat indiqué par Pauteur: Y (0,1) = 1,6105 avec quatre décimales exactes.
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wm
= b g Coefficients de "§ E ® ‘3’5
=) © s =g H g = g
-3 £ = S E | §o
° | & g s & g | 8%
s |m|lpls|@Aa|l =8 Mo M Mz M3 ZOm 7z 3
=
Kurra|l b | —|—|— 31800,75 |46326 |10548 | 144 4 1
h|3|—|u, 1024 5632 | 3456 | 448 | 6 2
h
o |35]2|1]6]| wuN 540 3960 | 2220 | 210 | 6 3
g | & 540-16
S |[5]2]2]¢G 184 1012 | 626 | 83 7 3
g yiiflgl 728 4004 | 4062 | 111 | 8 3

Nous nous bornerons a ajouter que dans la continuation du réseau le
calcul de la valeur approchée de y (oh) exige 4 Horners dans la méthode
de KurTaA et 2 seulement dans celle de MILNE.
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