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Sur les nombres hypercomplexes de Glifford ef leurs applications
a I'analyse vectorielle ordinaire, 4 I'électromagnétisme
de Minkowski et & Ia théorie de Dirac

PAR

G. JUVET (Lausanne) et A. SCHIDLOF (Genéve)

INTRODUCTION

1. Clifford a défini un systéme de nombres complexes au moyen
duquel 1l est trés facile de représenter les substitutions linéaires
a n variables qui laissent invariante la somme des carrés de ces
variables!. Ils permettent par conséquent de faire une étude de la
géométrie de l'espace euclidien a » dimensions; de plus, des tra-
vaux récents ont montré leur utilité dans la physulue mathématique.
Notre but est de faire voir avec quelle aisance ces nombres permet-
tent d’obtenir les principales formules du calcul vectoriel ordinaire
(n~3), de quelle maniere élégante, on arrive, par leur moyen, a a
écrire les équations de I’électr omavnetlsme classique (n=4) et méme
a les généraliser formellement, enfin nous rappellerons comment la
théorie de Dirac en peut faire un heureux usage.

2. On définit les nombres de Clifford de la facon suivante, pour
n quelconque. Soient Iy, I%,...I% n unités fondamentales dont
les produits deux a deux satisfont aux conditions suivantes:

(1) IP=A1, LIi=—IT, (G#k);

on forme avec elles les unités derivées suivantes parfaitement bien
définies par (1) et par I'hypothése de 1’associativité du produit des

I; qui entraine alors l’associativité du produit des nombres du
systeme :

L% Loy LY Py wne gt Loy P Lo 55105 505 sy LA L8 5w L ko

1 Voir Encyclopédie des sciences mathématiques, t. I, vol, I, fascicule 3 (1908),
article de MM. CarTAN et Stupy, p. 463-466.
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Avec l'unité ordinaire 1, les unités fondamentales et les unités

dérivées forment un ensemble de 2" symboles entre lesquels n’existe
aucune relation linéaire a coefficients numériques ordinaires.

Un nombre de Clifford est a 2" coordonnées: ao, a1, ds, ... dx,
12, Q13 -« Oty QU235 <o oy -« .5 Q2. n, 1l S’€CTIL

C= a

—|—a11’1—]—a2 ’2—|—a31’3~|—...+an1’n
+a12P1F2+a13P1F3+---+an—1,nfn—1pn
G s W I s+ ...+ anonan -l Iy

4.
+a12...nf1fz---ﬂa

ou C:a0—|—2a@-1§—|—2aikI’il’k—l—Ea;kll’il’kl’l
—f---.—i—am...n Lha. .,

ou les sommes portent sur les combinaisons ¢, ik, ¢kl, ... des n in-
dices 1,2, ... n.

3. Les nombres de la forme
V=114 ...4a, I'n=2a; I;

représenteront les vecteurs de ’espace euclidien £, a n dimensions
dont les composantes dans un systéme rectangulaire sont aq, @, ... dy.
Une rotation du corps des vecteurs de E, — ou peut-étre, si n est
pair, une symétrie relativement a un hyperplan & n — 1 dimensions,
ou une combinaison de 1'une et de I’autre — fait passer le vecteur V
dont les composantes sont les a; aux vecteurs V' dont les compo-

santes sont les nombres a; définis par 1'équation cliffordienne :
(2) zaz =B'VB,

ou B est un nombre de Clifford qui est un produit de vecteurs
dont aucun n’est nul (ou si I’'on admet que les coordonnées d'un
nombre de Clifford peuvent étre des nombres de Gauss, dont aucun

n’est diviseur de zéro), B~ est son inverse facile a obtenir.

Si on applique la transformation (2), non plus a un vecteur,
mais & un nombre de Clifford quelconque C, les diverses partles
de C que nous avons écrites sur des lignes différentes se compor-
tent respectivement comme un invariant, un vecteur, un bivecteur,

., un n-vecteur. Nous le verrons mieux en étudiant les deux cas

=
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CHAPITRE PREMIER

Le calcul vectoriel classique, n —3.

4. Un nombre de Clifford général est, dans ce cas, de la forme

(3) G do

a4 as I2-}-as I

—|—a12P1 P2+a23112 113—{—61'34 I's Iy

—l— g Iy Iy T 3
ao est un invariant, X a; I'; est un vecteur, 3 ay I Iy est un bivec-
teur et aso3 o3 est un trivecteur. La transformation (2) ne change
pas l'orientation d’un triédre si on 'applique aux trois vecteurs qui

le forment, car I%ss commute avec tous les I, dés lors aqs est
aussi un invariant. Si on pose I, = I"s3, on aura

3) C=  aytaLy+ayLo+fa, I
+ Lo (by by Iy + by Ty by I)

avec by==dgq, by=(lg3, by=03,, by=1a,,, et I b; I'; est un vecteur;
on a ainsi la justification la plus claire de la correspondance qu’ on
est accoutumé d’établir entre les bivecteurs et les vecteurs de 1'es-
pace a trois dimensions, pour le cas ou les seules transformations
permises sont des rotations.

5. Soient deux vecteurs
V=3w T} W=3w; I},
leur produit cliffordien est
VW= v,w,+vywy—+v3ws
~+ (V2 wy — vgwy) Iy I'y - (vgwy — vy wy) Iy 'y
+ (v wg —vow) I' Iy
ce qui peut s'écrire avec les notations vectorielles ordinaires, le
point désignant le produit scalaire et la croix, le produit vectoriel :
VW=V W4T, VX W,
d’on =

V-W= %(VW—{— wWV)

— — 1
VX W=— T,(VW—WV)
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car I'=—1. Ces formules donnent donc les deux produits du

calcul vectoriel ordinaire en fonction des produits cliffordiens
VW et WV.

Si Y est un troisiéme nombre de Clifford représentant le vec-

teur i’: on a
YWY ={ VWY | I, + (ﬁ?-"ff) v—(V.Y) WV W)Y
mais le premier membre peut s’écrire aussi

[_I?- W4T, V< ﬁf] y— ('f?- ﬁ/) YT, | VWY | — (?x ﬁ'/) ¥,
et I'identification donne la formule connue et importante du double
produit vectoriel :

(T T (F) W (157 T

I'accolade indique le produit mixte qui est un nombre mesurant le

s e

volume du parallélépipéde construit sur V, W, ¥ comme il est bien
connu.

Ces calculs ressemblent trés nettement a ceux que 1’on fait avec
les quaternions.

6. Pour I'analyse vectorielle, on introduit le nombre de Clifford
symbolique
0

2
gty

0 0
= Pl Pl I
v 1ax1+I’.ax2-{_13

considéré comme un opérateur portant sur des nombres de Clifford
variables, dont les coordonnées sont fonctions des variables x,, «,, 5,
coordonnées rectangulaires du point ot 1'on considére le champ
cliffordien €. On aura

VC= grada,}divad-rota T,
+ (grad by +-divh-roth 1) T,

en prenant pour C la forme (3') et en reprenant les notations cou-
rantes du calcul vectoriel. Ce sera un nombre de Clifford dont

—_— —

— 3
I'invariant est div a, le vecteur grad a, — rot b, le bivecteur

(rot a 4~ grad b,) I') et le trivecteur div b I,
On peut aussi considérer 1'opérateur

o 8 E
v —a—%Fi—l—gazI’rl—&—%Fs




— 131 —

et I'on aura a former le produit symbolique GV’; V" est un opéra-
teur qui agit a droite alors que V agit a ﬂ‘auche Il est preferable
d’utiliser une autre typographie

Vore=Y S Y
on a

Gl = divg—i— grad a, +-rot b
41, (div§+grad b0+r_ot73).

V et V' sont des opérateurs linéaires; apphques 4 -une somme
ou a une différence, ils donnent des expressions faciles & écrire.
Appliqués a des prodmts de champs clitfordiens U et V, ils condui-
sent aux formules bien connues

B ON= U+ W TY)

(UV) < =(UV) <7 —HUF)%V
1

ou les fleches indiquent que la quantité mise en vedette est seule
variable dans la parenthése ou elle se trouve. La démonstration de
ces formules est immédiate.

. Il est uti]e de donner une définition directe des opérateurs
\Y et V', puisqu’aussi bien leur utilité provient de leurs propmetes
mtrmseques et non pas de celles qu'on déduit du fait qu’ils sont
des sommes de termes contenant des dérivées partielles en facteurs
symboliques. On arrive a cette définition par des passages a la
limite. 1l faut remarquer qu’un bivecteur représente un parallélo-
gramme orienté; plus généralement, on peut représenter tout élé-
ment de surface orientée par un bivecteur

do=dx, dzy I, Ty -1 day dzcy Ty T’y + docy da, Ty T,

ou il faut entendre comme d’habitude que dx; dz = — day da;. On
peut écrire

do=\dz, dzy I's+ dz, doxy I') 4 dzy doey I'y) T,
:Td; FO

—
ou do est la représentation vectorielle ordinaire des éléments de
surface, par le moyen de la normale orientée.

On montre dés lors, tout & fait comme dans les traités d’analyse
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vectorielle ou I'on respecte I'esprit du calcul géométrique (ils ne

sont pas légion), que!
f do G
(% 0T, =lim 2

=0 *

¢’est-a-dire qu’autour du point P ou I'on veut «dériver» le champ C,
on construit une surface fermée, dont la face positive est la face
extérieure, limitant un volume z; on fait le rapport de I'intégrale
de surface indiquée ci-dessus au volume 7 et on fait tendre z vers
zéro dans toutes ses dimensions, P restant toujours intérieur a z;
si la limite existe quelle que soit la maniére dont = s’évanouit, elle
est justement V~>C I,

On a aussi fdeU
Py

(&) I, <7 =lim

=0 t

8. Soit T un volume compris dans la régioh ou le champ C est
défini et ou il admet un V> (, soit S la surface qui le limite, sa face
positive étant la face extérieure, la définition précedente conduit a

la formule
ff %Cdz:ffdac
T ‘s

ou dt est le trivecteur dz, dz, dz, Iy qui représente I’élément de
volume de T. Si C est le vecteur V=2v; I;, cette formule donne

les deux relations
ff div17|d¢|=ff53-17
T . S
fffrotV[dﬂ:ffg;X?
9" S

qui sont bien connues, la premiére est celle d’Ostrogradzky.

Les formules (4) et (4") permettent de donner une interprétation
géométrique de la dérivee des formes quadratiques extérieures a
trois variables. Une telle forme pourra s’écrire comme une combi-
naison linéaire de Cdo et de €' do, C et ¢’ étant deux nombres de
Clifford, la dérivée sera alors une combinaison de V= C et de ('<V/
au facteur dv prés.

1 Cf. p. ex. W.-V. IeNATOWSKY, Die Vektoranalysis, Bd. I, p. 15 (Edition de 1909,
Leipzig, Teubner éd.) ou G. JUVET Lecons d’analyse vector zelle, Cours de I’Ecole d’in-
génieurs de Lausanne vol. I, Lausanne Rouge, éd., chap. IV.
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9. La formule de Stokes va se déduire sans peine des relations
précédentes.

Soit un volume élémentaire dont le trivecteur est dx, dx, dxy I,

et soit P son centre; désignons par a le vecteur unité perpendicu-

laire a la face dx, dxg, et par a le nombre de Clifford correspondant.
On aura

) V2 (a Q) dxy dxgdxgl‘e:ffdaac
ou l'intégrale de surface doit étre étendue aux 6 faces du parallélé-
pipeéde. Si 'on définit la dérivée %g par la limite du rapport de

==

l'accroissement de € dans la direction ¢ a la distance parcourue

—
dans ce champ dans le sens a, on tr ouve que

©) ffdaac r, | dx, dxgd%——f d.x-3fdrC]

ou dr est le nombre de Clifford qui représente le vecteur élémen-
taire du contour y hmltant la base dx, dx, du parallélépipéde.

Par conséquent, si n est le vecteur unité normal & un élément
de surface, » le nombre de Clifford correspondant, on aura en
tenant compte de (5), de (6) et aprés division par du, et par inté-
gration sur toute une portion S d’une surface dont do est le bivec-
teur élémentaire :

[TV%Cndaszd—Cnda—l— dl C,
S g dn T

ou I" est le contour de S, dl le nombre de Clifford qui représente
I'élément d’arc dirigé, le sens du parcours étant déterminé par la

regle ordinaire : un observateur dirigé le long de . vers le bord I'
voit I' parcouru dans le sens positif.
On peut écrire cela de la maniére suivante :

ﬂ(VozC—-—)7zda=szc.
dan
S I

I faut remarquer que V » est un opérateur qui porte sur C, et dont

la forme est, si V est I'opérateur connu du calcul vectoriel :

0 0 d * =

e iy —— —I''nxV
Ent oxi +12k Lals (nk ox; i dxk) n o

En partlcuher, pour C=3v; I, de=nTl,|de|, dl=2Zdx;TI},

il vient, en rappelant que nn =1, (EXZ) B - (b pd o) :

uffr |as- V<V 4 (dox V)<V 1, Ozféﬁ-'ﬁ-{-fo_ﬁx?l’o
S i I
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et en identifiant ; gl . -f;‘:f E;- (6 < f;)
r

S 2
= ()7
I S

la premiére de ces relations est la formule de Stokes, la seconde
moins connue est cependant une formule intéressante.

10. On a ainsi obtenu toutes les formules de I'analyse vectorielle

—
ou intervient une fois le symbole V ; on remarquera avec quelle
aisance elles s’écrivent et avec quelle élégance elles s’enchainent.

Pour les formules qui font intervenir 'opérateur V itéré, il faut
remarquer que l'itération de I'opérateur cliffordien V donne :
2
VV=V=3 9 5 = laplacien =lap.
i &x}-
Si I'on considére, par exemple,

VV=V. V4TI,V V—div V4 I, rot V,
on aura en itérant :
lap ?: grad div ?—l— I'ydiv rot V—rotrot V,

en identifiant les parties différentes de chacun des nombres de
Clifford qui sont dans chaque membre, on trouve

div rot V=0

— £ =B —
rot rotV =grad div V—lap V.
Pour un scalaire, on aurait

rot grad € —0, lap €= div grad C.

11. 11 est possible — et il est utile — d’introduire un opérateur
nouveau. Si U et V sont deux nombres de Clifford quelconques, on
a appris a prendre le V> ou le <V du produit UV; on applique les
formules (4) et (4), ce qui fait considérer des intégrales

[[aovv e [Jovao.

Si I'on part d’une intégrale de la forme

on voit que la limite ,
f UdeV

{51 'y R
=0 ¥

ne sera ni l'une ni 'autre des expressions F 48 UV, Iy UV<V.



Nous poserons fo deV
lim v — =T Us~RV

g==0 K
ce qui n’est pas autre chose, comme on le voit sans peine, que
I’expression
D [(U) VUG~ T)].

On voit donc que U<V> Vdr est la dérivée extérieure! de Udo V.

On peut appeler ce curieux symbole en nceud de cravate, le V
médian d’un produit; on en verra la signification dans le cas n—=4
et son utilité pour I’électromagnétisme. :

Nous nous arrétons ici pour n=3; nous sommes bien persua-
dés qu’un lecteur averti aura pu constater par ce bref exposé que
de toutes les méthodes au moyen desquelles on établit les formules
du calcul vectoriel, celle qui est fondée sur la considération des
nombres de Clifford ne le céde a4 aucune autre pour la simplicite,
la rapidité et I’élégance. '

CHAPITRE 11

L'univers minkowskien et I'électromagnétisme (n—=4).*

12. La forme quadratique qui définit la métrique de 1'univers
minkowskien peut se ramener, en choisissant des axes convenables,
a la forme

dacy 4 dacs -} dacs — ¢ dt’

il serait probablement plus naturel de modifier un peu les défini-
tions du systéme de Clifford et de prendre a co6té des trois unités

I, T, I'; une quatriéme I', dont le carré fut égal & —c”. Pour
ne pas trop modifier ce que nous avons dit dans le cas n=3, nous

poserons x;=ict et I';=1 comme dans la définition générale don-
née au début de ce mémoire.

On posera I'y I, I'y I', = I, mais il faut remarquer que Iy ne
commute plus avec les autres unités I';. On a

| Lyl I T t=1,2,3,4
et
I—1

1 Une forme a multiplication extérieure étant 1’élément sous le signe f relatif a une

intégration sur une variété fermée a k dimensions, sa dérivée extérieure sera 1’élément
différentiel de I'intégrale étendue & une région a k+1 dimensions dont cette variété
fermée est la frontiere; cf. p. ex. E. CARTAN, Legons sur les Invariants intégraux.
Paris, Hermann, 1922, chap. %II.

2 Cf. G. Juver, Opérateurs de Dirac et équations de Maxwell, Commentarii Mathe-
matici Helvetici, vol. 2, p. 225-235, et une note aux Actes du Congreés international des
mathématiciens de Zurich (1932).
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Un nombre de Clifford — dans le mémoire cité des Commentarii
Mathematici Helvetici (vol. I1), nous avons appelé nombres de Lorentz,
les nombres de Cliftord pour #=4 — s’écrira

C=a+Ja; i+ Zap i I+ 3 apg T Ty Iy agoss Is,

les sommes portant sur les combinaisons des indices: mais parfois,
il sera utile d’introduire a4, I'y I', au lieu de a,, I, T, par exemple;
il sera entendu que a,,=— @,, et d’une maniére générale, si I’on
considére tous les arrangements d’indices, le signe du coefficient
correspondant sera bien déterminé par la forme du produit des I7
auquel 1l correspond.

Dans 1'équation (2) qui exprime une rotation d’axes ou une
symétrie, on se bornera a prendre pour B un produit d’'un nombre
pair de vecteurs afin de n’avoir a traiter que des rotations. Dés
lors, le nombre C peut s’écrire

C=Li+ V4 T+ I;(V,+ 1)
ou I, et I, sont deux invariants, deux scalaires; V, et V, sont deux

vecteurs, Iy V, est un trivecteur correspondant au vecteur V,, on
a pour les composantes de V,

by == tyg3, etc.;

enfin T=2ay I'; I';; est un bivecteur, ou comme on dit aussi, un
tenseur antlisymétrique du second ordre. Il faut remarquer que les
tenseurs symétriques et les tenseurs quelconques n’ont pas droit
de cité dans le systéme cliffordien; on verra cependant que ceux
qui ont quelque utilité en physique mathématique s’introduisent
naturellement dans les calculs par quelques-unes de leurs combi-
naisons utiles — opérateurs différentiels contractés — puisqu’ils ne
peuvent le faire directement.
Il est parfois commode de décomposer T en deux parties

T'=T,+I;T,

cette décomposition n’est pas univoque en général, mais comme le
calcul peut la présenter, il convenait de la signaler [cf. chap. III].
D’autre part, les nombres de la forme

Vi1 Vs,

ou V, et V, sont des vecteurs, jouent un role remarquable dans les
applications, nous les appellerons des survecteurs. Ils jouissent de
la propriété suivante:

Le produit d’un survecteur S (qui peut dégénérer en un vecteur
ou un trivecteur) par un tenseur 7 est un survecteur -

ST=8, TS=5";

la somme et la différence de S’ et de S” fournissent un vecteur et
un trivecteur. :
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13. A des nombres de Clifford variables, définissant un certain
champ, on peut appliquer 1'un ou l'autre des opérateurs

0 0
R IYI
s et AV > o

V=3I

qui sont des vecteurs symboliques, I'un s’applique a gauche, 1’autre
a droite et pour éviter les chances d’erreur, on écrira

oC
(95091

VC =VVC quiest 21

oC
CV'=(C<V qui est 28—1’,-
Xi

Les résultats de ces deux opérations sont des nombres de
Clifford, c’est-a-dire que ces opérations sont invariantes par les
transformations (2); la démonstration de ce fait résultera de la défi-
nition intrinseque que nous donnerons plus bas de VV et V'.

Pour écrire ces résultats, il est commode d’introduire quelques
abréviations; nous renoncons d’ailleurs a mettre des fléches aux
vecteurs et a distinguer les tenseurs par des signes spéciaux. Les
lettres I, V et T sont suffisamment claires. On sait ce qu’est le
gradient d’un scalaire, la divergence et le rotationnel d’un vecteur:

ol ol
grad [=2% dmip by EPor
5’1);’
div V=3-——;
1v axi
] 6?)]‘7 81’1‘

On appellera divergence vectorielle d’un tenseur T et ’on écrira
DIV T le vecteur suivant :

DIV T—3 [2 Oa’ik] .
k|i ox;

IEnfin nous poserons
0l
0%y

max T:_—[ +

aa3e+aa94] I
e

ox, = Ox,

les termes non écrits s’obtenant par permutation circulaire des
indices 1, 2, 3, 4; on obtient ainsi un vecteur que nous avons
appelé le maxwellien de T.
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Dés lors _

(7) VW= divV,
~+grad I, +DIVT
~+rot V,— I'srot V,
+ Iy (— grad Iy + max T)
— I, div V,,

et

(7" C</= divV,

+grad I,—DIV T
—rotV, — I rotV,

+ I’ (gl ad I, —|— max 7T')
-+ I’ div V,,

ou l'on a écrit les différentes parties de ces nombres dérivés sur
des lignes différentes.

14. Les définitions intrinséques se fondent sur un passage
a la limite. Soit P un point du champ, entourons-le dune
hypersurface L limitant un hypervolume de mesure ¢; soit
dv=dx, dxodxs Iy Iy I's} ..., le trivecteur élémentaire représen-
tant 1’élément de ’hyper surface, on a

U

)] — D\ O= lim
Q ==

ff Cds

8" ' C</ I'y= lim
Q—O

et par suite pour un hypervolume quelconque H limité par une
hypersurface G, on a, si

do=1I';| do|= quadrivecteur élémentaire de H,

fffHdg%cz—ff!dw
[[{Je<vae= ] e

15. On n’aura pas a s’intéresser au V d’un produit UV, mais il
faut définir le V médian d’un tel produit. On y arrivera de’la facon
suivante, qui permet de préciser ce que nous avons esquissé pour
le cas de n—23.
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Dans les passages a la limite précédents, on peut supprimer le.
signe lim, remplacer ¢ par |de¢| et les intégrales des numérateurs
seront étendues a ’hypersurface infiniment petite que limite de.
Désignons alors par un indice zéro les valeurs de U et de V au point
P fixe dans 1'hypervolume évanouissant, et posons pour U sur la

frontiere
U=U,+dU.

On calculera la limite du rapport d’une intégrale portant sur
Ud+V a I’hypervolume évanouissant; on aura

ffodfv ffodrV ffodsz

|de] |de | |de]
Uo(ﬂ' ) V, ff dU dvdV
|de| |del ;

mais f f f dv=0 puisque ’hypersurface est fermée; de plus, le

dernier terme est un infiniment petit d’ordre supérieur a I’ordre
des deux premiers, et par suite

[{foacr

(9) lim — — UL, (V) (U IV.

On peut définir un opérateur légérement différent de V, ce serait
un opérateur trivectoriel

v — v Iys _ Pﬁv
alors le second membre de (9) s’écrira:
U V)UYWV =U<HV.

On voit dés lors que

U</ V|do| est la dérivée extérieure de Udz V.

16. On peut introduire aussi la notion d’opérateur- adwmt d’un
opérateur donné. Soit M (U) un opérateur agissant sur U, 9T sera
I'adjoint de M si I'intégrale

ffffM(U)dQVm Ude®T (1)
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est égale a4 une intégrale étendue a la frontiére G de H. La for-
mule (9) donne immédiatement

ff waszffJ(UéV)dQ V—Udo (% 1);

de ce point de vue ‘
</ est 'adjoint de V= .

17. L’opérateur itéré ¥V V="V" est le laplacien de I'espace
4 dimensions

82
2
:2 ?
. ¥ ox;
on a de méme
Ve 3o
&x?

Si on revient & la variable t="*, V* se transforme en le dalem-
ic

bertien

52+ a2'+ * 1 ¢°
0x;  Oad ' dx: ¢ of

qui est I’opérateur bien connu de la théorie des ondes.

18. Il n’y aurait pas lieu de revenir sur les équations de 1'élec-
tromagnétisme dont on trouvera la forme cliffordienne dans le
meémoire cité plusieurs fois déja, s’il ne nous était pas possible d’'y
ajouter des résultats formels nouveaux. Ils concernent les équations
de conservation que l'opérateur en nceud de cravate permettra
d’écrire élégamment. Nous ajouterons quelques remarques propres
a rendre plausible une généralisation de la théorie de Maxwell.

19. Voici les hypothéses sur lesquelles se fondent la théorie de
Maxwell et les équations qui I'expriment réduites a leur forme la
plus simple.

a) Le champ électromagnétique est un bivecteur

F= § Fio I r2+F23'r2113+F34113P1
FFu I Iy Fo Iy I'y+ F Iy T,

b) Le courant est un vecteur
S_S1P1—|—82F2+S3F3+84P4
VF=—8§

et 'on a

ce qui prouve que
max =0
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et par suite — ce qu'une analyse cliffordienne montrerait sans
difficulté —:

¢) Il existe un vecteur
=g '+ 2 o4 3 I's+ i I,
F=V o,

ce qui entraine div® =0, et V*@=—=— 8.
d) Enfin puisque V*F est un bivecteur et que

tel que

VPF=-—VS8S=—divS —rotS,
il faut que
divS=0.

19. La force de Lorentz P est un vecteur dont les composantes
sont les nombres

pPi— %’Fik Sk.

On voit sans peine que le nombre de Clifford
P=X3p, I}

est égal a :
%(FS — SF),

c’est-a-dire que
1
P=; [(#F)F—F(7F))

Or
B F=— F</
donc
/1 5
P=— |(F<7) F4-F (7 F)
ou encore

P:m—%F%F

. 1 _
La force de Lorentz est, au facteur —3 pres, le V médian du pro-

duit FF. Mais on sait! aussi que P est la divergence vectorielle
d'un tenseur symétrique 8§ représentant les tensions de Maxwell et
dont les composantes sont

1 2
Sikngir Fkr__ i.CsLLZE 1.':9-

»

! Pour tout ce qui concerne la forme tensorielle des équations de Maxwell, voir
H. WEvL, Rawm, Zeit, Materie, 5. Aufl. Berlin, Springer, 1923.
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Or les tenseurs symeétriques n’ont pas droit de cité dans 1'élec-
tromagnétisme cliffordien tout antisymétrique, mais en fait, ce n’est
pas & dont on a besoin, c¢’est le vecleur DIVS qui est nécessaire et
il est & un facteur prés F<\/>F; qu'on puisse précisément lui don-
ner la forme DIV § c’est fort intéressant du point de vue du calcul
tensoriel, mais il est bien plus intéressant de remarquer que le
tenseur &y est une grandeur mathématique nullement indispensable,
c’est sa diwwergence vectorielle qui en a une véritable signification
physique et elle se trouve étre justement un nombre de Clifford.

20. Les théorémes de conservation pour un champ dans lequel
on ne considere que du rayonnement, et ol par conséquent
((=— V F=0, se formulent par I’équation

F<iF=0,

ou encore, sous une forme moins tautologique :

ff FdvtF=0
G

pour toute hypersurface fermée G; on a bien la I'assurance la plus
préclse de la conservation de quelque chose, qui n’est pas le carré

F* mais le produit FF, si I'on veut distinguer.

Lorsqu on considére des charges mobiles douées d’ inertie, mais
dont effet sur le champ F est négligeable, les équations du mou-
vement qui sont en méme temps “les equatlom de conservation de
I’énergie et de la quantité de mouvement s’écrivent synthétiquement
pour chaque charge

av 1
10 — 4 —F&AF=0

ds
ligne d’univers de la particule considérée, ds est 1’élément d’arc de
cette ligne, u, la densité propre de la particule. On peut écrire
cette équation sous la forme

10" wy (V<75 VY- F < F =0

: da; ;
ot V=23, I} est le vecteur unité ( Jvj =1, v; = —3) tangent a la

car, comme le montre un calcul simple,
Vars V= Q@I
ds

Or de méme que F<\>F est a un facteur pres la_divergence
vectorielle d’'un tenseur symétrique S, de méme V<~V est la
divergence vectorielle du tenseur symétrique

Bire = po Vi Vi
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et li’équation (10’) s’écrira en notation tensorielle [WEyL, loc. cit.,
p. 197]:
A0 5 0 (ir + Su) _

k 6 X k

0 (i=1,2,34).

Le tenseur & n’a pas droit de cité dans notre analyse, mais il
intervient dans les formules par sa divergence vectorielle qui est un
nombre de Clifford. Ce serait & une étude des milieux continus,
exposée dans le langage cliffordien, qu’il appartiendrait de préciser
la relation entre u, (V<\~ V) et la divergence vectorielle de &, car
cette relation fait intervenir 1’équation de continuité

0 (w0 Vx)
TR
8:17]5

VE (g V) 4= (g V) <V =0

nous laissons cette étude de coté, elle allongerait démesurément ce
meémoire. ,

1l faut remarquer que I’équation (10) qui établit un lien entre
I'électromagnétisme et la mécanique n’est valable que pour autant
que la modification apportée au champ par la charge mobile est
negligeable ; de plus elle ne fait pas intervenir le tenseur $, mais le
vecteur F<\/> F' qui est une combinaison bilinéaire des composantes
de F et de leurs dérivées, exprimable, en calcul tensoriel, par la
divergence vectorielle de S. La théorie de Maxwell n’est pas une
théorie fermée, car dire F<V> F=0 c’est dire que le courant est
nul et comme il est —V F, le théoréme de conservation semble
étre une tautologie, mais il n’en est rien si I’on a égard aux tensions
de Maxwell. S’il y a au contraire un courant, <\~ F n’est pas nul,
il est compensé par la variation du vecteur V dans I'unité de temps
propre, mais ce vecteur V apporte avec lui toute la mécanique et
I’équation (10) marque, pourrait-on dire, le lieu d’intersection de la
mécanique et de 1’électromagnétisme, car elle exprime un théoréme
de conservation d’une somme de deux grandeurs, I'une « cinétique »,
I'autre « potentielle ».

ou
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CHAPITRE III

Sur une généralisation de la théorie précédente.

21. L’hypothése b) que nous avons faite au § 19, revient a dire
qu’il n’existe pas de courant magnétique; elle est équivalente, en
etfet, a

max F=0,

qui exprime l'inexistence d'un magnétisme vrai. Cela implique
alors que F est le rotationnel d’un vecteur. On peut se demander
quelles modifications apporte aux lois observables ’hypothése plus
générale

max F 0.

Tout d’abord: a) le champ reste un bivecteur, mais il est quel-
conque. Puisque
VF=DIVF+ I',max F,
on admettra que

b) le courant est un survecteur, ¢’est-a-dire la somme d’un vec-
teur et d’un trivecteur

02281P1+P52W@P¢:S+P5M,

le trivecteur représentera le courant magnétique, et 'on remar-
quera que si 'on peut donner & ce courant une représentation
purement vectorielle 3'm; I, c’est par le trivecteur I's 3m; I qu’il
intervient dans les formules. Il y a dabs cette distinction formelle
le signe d’une différence de nature géométrique correspondant a la
différence physique entre 'électricité et le magnétisme. Grice a
I'introduction du courant magnétique, une plus belle symétrie
régnera dans les équations, € sera dit le courant total. On posera
alors
VF=—C(.

¢) F étant quelconque, on n’a plus F=Y @, mais il est possible
de trouver un survecteur @ - I', &, tel que I’on ait

V(@4 I, )=F
ousi U=®+ I, @

(11) VU=F,

ce qui implique

12) divd= div&=0,
et ensuite

VPU=—C,
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d’ou l'on tire U par les potentlels retardés. On voit que I'existence
du «potentiel survecteur» U n’est pas la consequence d’une res-
triction faite sur F; dire qu’il existe un potentiel n’est plus un
théoréme physique, c’est une évidence mathématique, on peut tou-
jours mettre F sous la forme (11) avec les deux conditions (12).

On voit enfin que divS =divM=0.

22. Que devient dés lors la force de Lorentz? Il semblerait, a
- premiére vue, que notre généralisation dut faire ajouter a la force
au sens ordinaire un trivecteur et alors, il serait bien difficile d’éta-
blir un lien naturel entre la mécanique et notre théorie généralisée;
mais il n’en est rien.

Formons encore F<7> F, on trouve

Fap P=I</)F++ F(\~ L),
mais [cf. éq. (7")]
F<&/ =—DIVF+ I'ymax F
et par suite

F<7> F=(S — I, M) F— F(S—+I'. M)
— SF— FS— I',(MF- FM).

Or MF - MF est un trivecteur, son produit par I'; donne un vecteur,
des lors, puisque SF— FS est au facteur — 2 pres la force ordi-
naire de Lorentz, on pourra prendre encore pour l’expression de
cette force dans notre nouvelle théorie,

p—tranr

Mais il y a plus: le second membre s’exprime avec les Fj d’une
facon absolument indépendante du fait que Fjy est un bivecteur
particulier (rot®) ou un bivecteur quelconque. Dés lors, I'expres-
sion de P au moyen des tensions de Maxwell reste la méme, les
composantes du tenseur Sy ayant de plus la méme forme.

Donc: si 'on admet que le champ électromagnétique est un
tenseur antisymétrique du second ordre absolument quelconque,
les expressions de I'énergie et de la quantité de mouvement du
champ sont exactement les mémes que celles que donne la théorie
ordinaire.

On voit done, et de la maniére la plus simple, quelle faible
importance présente pour la théorie formelle I hypothéese de I'inexis-
tence du courant magnétique.

Il nous parait que ces considérations, toutes formelles a pre-
miere vue, acquiérent une signification physique si on les confronte
avec les hypothéses proposées récemment par M. P. A. M. Dirac?.

1 Cf. P. A. M. Dirac, Proe. Roy. Soc. A. vol. 133, p. 60-72 (1931).

10
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CHAPITRE IV

Remarques sur les équations de Dirac.

23. On sait que M. P. A. M. Dirac! a eu 'heureuse idée de rem-
placer I'opérateur

o o8 & &
oxs + o0xa + ows + oxs

qui se présente dans I’équation fondamentale de la mécanique ondu-
latoire et qui porte sur le scalaire v, par le produit v v ou v/ v/'.
Dans I’expression de ces opérateurs les I sont des matrices. Il

remplace alors I'équation

(13) szp—7n;;"1p:0
relative & 1’électron dans I’espace privé de champ par 1’équation

me
V’P‘F—h“@':()

ou ¢ n’est plus un scalaire, mais une grandeur d'un type qui a
paru d’abord tout a fait nouveau, et qui, dans la théorie des matrices,
a 4 composantes distinctes. En itérant V, on trouve

m2 c?
h2
et chaque composante satisfait a I’équation (13).

VY V=T — gy =0

24. M. A. Proca?® a proposé de considérer i comme un nombre

, me . )
de Clifford ; en posantT:a, on aura !’équation

(14) o ayp=0

qui en remplace 16, non indépendantes d’ailleurs.
On aurait pu aussi bien remplacer (14) par

(A4) WV fay —0

que nous appellerons I’équation associée de 1’'équation (14), ¢’ sera
le nombre de Clifford associé & ¢ dans le probléme considéré.

1 Cf. p. ex. P. A. M. Dirac, Les Principes de la Mécanique quantique, trad. fran-
¢aise par A. Proca et J. ULLmMo. Paris, Presses Universitaires de France, 1931, p. 281 et 59.

2 C. R. Paris (1930), tome 190, p. 1377 et tome 191, p. 26; J. de Phys. (VII), (1930),
tome I, p. 235-248.
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On tire de la
I, % g+ alsp=0
v I'y+ay I's=0.
On multiplie les deux membres de ces équations, pour la premiere

par ¢’ a gauche, pour la seconde par ¢ & droite, et on soustrait
membre a membre, il vient (cf. § 15):

, @ <)+ (F=y9)=0
soit

(15) P <=0,
ce qui montre (ue

(16) lﬂwwmwzo

pour toute hypersurface fermée G de 'espace E,.

25. Lorsqu’un champ électromagnétique régne dans l'espace
dont U est le potentiel (complet ou non), on peut remplacer (14) par

(17) (P A4BU)p+ap=0
et I’équation associée pourrait s’écrire
am P (< —BU)Fay'=0

alin qu’on puisse encore trouver une équation de conservation; les
mémes combinaisons que celles qu'on a faites ci-dessus redonne-
ront les équations de conservation (15) et (16), si 'on a égard, en
faisant le calcul, & ce que I'y et U anticommutent.

Il serait intéressant d’interpréter avec précision ces théorémes
de conservation; cela ne peut se faire que par 1’étude approfondie
des solutions de (14) et (14') ou de (17) et (17°). Dans certains cas,
@' <>y est la divergence d’un vecteur qu'on a identifié au courant
créé par 1'électron.

Nous nous bornons a ces remarques, en renvoyant le lecteur
a quelques mémoires récents de M. A. Proca’.

La théorie de Dirac pose des problémes qui ne sont pas encore
résolus, il se pourrait que la théorie générale esquissée au cha-
pitre I de cette étude fut de quelque utilité pour l'interprétation
des résultats paradoxaux obtenus jusqu’ici, mais tant qu’on n’aura
pas formulé d’hypothéses précises et plausibles concernant ’action
exercée sur le champ par les particules et les ondes qui leur sont
associées, les difficultés rencontrées jusqu’ici resteront entiéres.

1J. de Phys. (VII), (1932), tome III, fascicule 4.

Manuscrit recu le 22 octobre 1932.
Derniéres épreuves corrigées le 20 mars 1933.
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