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Sur les nombres hypercomplexes de Clifford et leurs applications

à l'analyse vectorielle ordinaire, à l'électromagnétisme

de Minkowski et à la théorie de Dirac

PAR

G. JUVET (Lausanne) et A. SCHIDLOF (Genève)

INTRODUCTION

1. Clifford a défini un système de nombres complexes au moyen
duquel il est très facile de représenter les substitutions linéaires
à n variables qui laissent invariante la somme des carrés de ces
variablesl. Ils permettent par conséquent de faire une étude de la
géométrie de l'espace euclidien à n dimensions; de plus, des
travaux récents ont montré leur utilité dans la physique mathématique.
Notre but est de faire voir avec quelle aisance ces nombres permettent

d'obtenir les principales formules du calcul vectoriel ordinaire
(n — 3), de quelle manière élégante, on arrive, par leur moyen, à
écrire les équations de l'électromagnétisme classique (n=4) et même
à les généraliser formellement, enfin nous rappellerons comment la
théorie de Dirac en peut faire un heureux usage.

2. On définit les nombres de Clifford de la façon suivante, pour
n quelconque. Soient Ji, Fi,...Fn n unités fondamentales dont
les produits deux à deux satisfont aux conditions suivantes :

(i) rf=i, rirk=-rkri, (i^ky,

on forme avec elles les unités dérivées suivantes parfaitement bien
définies par (1) et par l'hypothèse de l'associativité du produit des
Pi qui entraîne alors l'associativité du produit des nombres du
système :

Jd-1 Ii, Ts\ T%,... Fn—\ Fn, Fi Fi F3 ,-¦•»•••» F\ Fi ¦ ¦ ¦ Fn ¦

1 Voir Encyclopédie des sciences mathématiques, t. I, vol. I, fascicule 3 (1908),
article de MM. Cartan et Study, p. 463-466.
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Avec l'unité ordinaire 1, les unités fondamentales et les unités
dérivées forment un ensemble de 2W symboles entre lesquels n'existe
aucune relation linéaire à coefficients numériques ordinaires.

Un nombre de Clifford est à 2" coordonnées: ao,#i, #2, ••• «n,
#12, #13, • • • #«-1,«, #123, #12...«, Ü S'édït

C= «o

+ ai Fi + ai 1\ + a3 T3 + • • • + #« Fn

+ #12 -Tl J2 + ai3 Fi F3 + + a«-_l, n Fn—l Fn

+ «123 F1 "2 JtS + • • ¦ + #«—1,n—\,n 1 n—11 n—1 Fn

+
+ #12...« F\Fl- ¦ ¦ Fn

ou C a0 + JS #i Ti +S aik Ft Fk + 2 aikl rt Fk Ft

+ + #12...«-Tl2...n,

où les sommes portent sur les combinaisons i, ik, ikl,... des n
indices 1,2,... n.

3. Les nombres de la forme

V=Oi Ti + ...-\-anFn 2alFi

représenteront les vecteurs de l'espace euclidien E„ à n dimensions
dont les composantes dans un système rectangulaire sont «i, a2, • • • #«•
Une rotation du corps des vecteurs de En — ou peut-être, si n est
pair, une symétrie relativement à un hyperplan à n — 1 dimensions,
ou une combinaison de l'une et de l'autre — fait passer le vecteur V
dont les composantes sont les ai aux vecteurs V' dont les composantes

sont les nombres a\ définis par l'équation cliffordienne :

(2) 2alri B~1VB,

où B est un nombre de Clifford qui est un produit de vecteurs
dont aucun n'est nul (ou si l'on admet que les coordonnées d'un
nombre de Clifford peuvent être des nombres de Gauss, dont aucun
n'est diviseur de zéro), B~l est son inverse facile à obtenir.

Si on applique la transformation (2), non plus à un vecteur,
mais à un nombre de Clifford quelconque C, les diverses parties
de C que nous avons écrites sur des lignes différentes se comportent

respectivement comme un invariant, un vecteur, un bivecteur,
un n-vecteur. Nous le verrons mieux en étudiant les deux cas

particuliers w 3 et n 4.
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CHAPITRE PREMIER

Le calcul vectoriel classique, 22=3.

4. Un nombre de Clifford général est, dans ce cas, de la forme

(3) C= a0

+ ai Fi + a-i Fi + a3 l'a

+ <Xi2 Fi Fi+ Ü23 Fl F3 + #31 F3 Fi
+ ai23 Fi Fi F3 ;

«o est un invariant, Sai Fi est un vecteur, Sa^Ti I7* est un bivec-
teur et 0123-^123 est un trivecteur. La transformation (2) ne change
pas l'orientation d'un trièdre si on l'applique aux trois vecteurs qui
le forment, car X123 commute avec tous les Fi, dès lors #123 est
aussi un invariant. Si on pose P0 J123, on aura

(3') C= a0-\-airi-\-a^r%-\-a3r3
+r0(50+fe1r1 + &2r2+&3Jr3)

avec bn am, bt ai3, b2=a31, fr3 a12, et SbiTi est un vecteur;
on a ainsi la justification la plus claire de la correspondance qu'on
est accoutumé d'établir entre les bivecteurs et les vecteurs de
l'espace à trois dimensions, pour le cas où les seules transformations
permises sont des rotations.

5. Soient deux vecteurs

V=2viFi W=2wiFi,
leur produit cliffordien est

VW= vlwl-\-vîWa-\-v3w3
+ O2 uj3 — vs w2) r2 f3+(v3 w{—vi w3) rs ri

+(v1w2 — v2w))j'1r2

ce qui peut s'écrire avec les notations vectorielles ordinaires, le
point désignant le produit scalaire et la croix, le produit vectoriel :

VW=V-W+F0VXW;
dou V-W=\(VW+WV)

vx w=—- r0 vw— wv)
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car -To — — 1- Ces formules donnent donc les deux produits du
calcul vectoriel ordinaire en fonction des produits cliffordiens
VW et WV.

Si Y est un troisième nombre de Clifford représentant le

vecteur Y, on a

vwy=^wy}f0+(w-y} v— (v-y) w+(v-w) y
mais le premier membre peut s'écrire aussi

[?• w-\- r0 vx w] y= (v- w) F+ r0 { vwy)— (vxw)xy,
et l'identification donne la formule connue et importante du double
produit vectoriel :

VX W) X Y= [ V- YJ W- W- Yj V;

l'accolade indique le produit mixte qui est un nombre mesurant le

volume du parallélépipède construit sur V, W, Y comme il est bien
connu.

Ces calculs ressemblent très nettement à ceux que l'on fait avec
les quaternions.

6. Pour l'analyse vectorielle, on introduit le nombre de Clifford
symbolique

ê d d
v=r,—+ra—+iw,dx{ dXr, dx3

considéré comme un opérateur portant sur des nombres de Clifford
variables, dont les coordonnées sont fonctions des variables xv x%, x3,
coordonnées rectangulaires du point où l'on considère le champ
cliffordien 67. On aura

V C grad a0 -f- div a + rot a I\
+ ^grad b0 + div b + rot b roJ P0,

en prenant pour C la forme (3') et en reprenant les notations
courantes du calcul vectoriel. Ce sera un nombre de Clifford dont

l'invariant est div a, le vecteur grad a0 — rot b, le bivecteur
>- y -y

(rot a + grad b0) F0 et le trivecteur div b P0.
On peut aussi considérer l'opérateur

dxi
d

dx%
2

dx3V'=^A+ 3-A+3^3
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et l'on aura à former le produit symbolique CV; V est un opérateur

qui agit à droite alors que V agit à gauche. Il est préférable
d'utiliser une autre typographie

V» V «?7=V;
on a

CA/ div a + grad a0 + rot b

+ P0 (divfe + grad &0 + rot bj.

V et V sont des opérateurs linéaires; appliqués à une somme
ou à une différence, ils donnent des expressions faciles à écrire.
Appliqués à des produits de champs clitïordiens U et V, ils conduisent

aux formules bien connues

Vï(UV)= V>(UV)+ Sh(UV)
t t

(UV)<A=c(UV) <A +(UV)A
t t

où les flèches indiquent que la quantité mise en vedette est seule
variable dans la parenthèse où elle se trouve. La démonstration de
ces formules est immédiate.

7. Il est utile de donner une définition directe des opérateurs
V et V, puisqu'aussi bien leur utilité provient de leurs propriétés
intrinsèques et non pas de celles qu'on déduit du fait qu'ils sont
des sommes de termes contenant des dérivées partielles en facteurs
symboliques. On arrive à cette définition par des passages à la
limite. Il faut remarquer qu'un bivecteur représente un parallélogramme

orienté; plus généralement, on peut représenter tout
élément de surface orientée par un bivecteur

où il faut entendre comme d'habitude que dxidxk —— dxk dxi. On
peut écrire

a a ——- t a je » axa -*- q i axa ax3 j. t axr, ajt * j. a) a. n

—>
=do r0

—y

où da est la représentation vectorielle ordinaire des éléments de
surface, par le moyen de la normale orientée.

On montre dès lors, tout à fait comme dans les traités d'analyse
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vectorielle où l'on respecte l'esprit du calcul géométrique (ils ne
sont pas légion), quel

ffdaC
(4) V->Cr0 lim — ;

T 0 %

c'est-à-dire qu'autour du point P où l'on veut «.dérivers> le champ C,
on construit une surface fermée, dont la face positive est la face
extérieure, limitant un volume %\ on fait le rapport de l'intégrale
de surface indiquée ci-dessus au volume % et on fait tendre % vers
zéro dans toutes ses dimensions, P restant toujours intérieur à % ;
si la limite existe quelle que soit la manière dont % s'évanouit, elle
est justement V>CP0.

On a aussi jj^
(4') r0c«y=iim —

T=o %

8. Soit T un volume compris dans la région où le champ C est
défini et où il admet un dh C, soit S la surface qui le limite, sa face
positive étant la face extérieure, la définition précédente conduit à
la formule

fffoCd*=fSd*C

où d% est le trivecteur dxl dx% dx3 F0 qui représente l'élément de
volume de T. Si C est le vecteur V=ÈvìFì, cette formule donne
les deux relations

fffdiv V\ d% | =ffda ¦ V
T S

flTrot V\d%\ CÇdaX V

qui sont bien connues, la première est celle d'Ostrogradzky.
Les formules (4) et (4') permettent de donner une interprétation

géométrique de la dérivée des formes quadratiques extérieures à

trois variables. Une telle forme pourra s'écrire comme une combinaison

linéaire de C da et de C da, C et C" étant deux nombres de
Clifford, la dérivée sera alors une combinaison de A-C et de C'A
au facteur dx près.

1 Cf. p. ex. W.-V. Ignatowsky, Die Vektoranalysis, Bd. I, p. 15 (Edition de 1909,
Leipzig, Teubner, éd.) ou G. Juvet, Leçons d'analyse vectorielle, Cours de l'Ecole
d'ingénieurs de Lausanne, vol. I, Lausanne, Rouge, éd., chap. IV.
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9. La formule de Stokes va se déduire sans peine des relations
précédentes.

Soit un volume élémentaire dont le trivecteur est dx{ dxi dx3 F0

et soit P son centre ; désignons par a le vecteur unité perpendiculaire
à la face dx{ dx^ et par a le nombre de Clifford correspondant.

On aura /y»
(5) V»(a C)dxl dxç dx3r0=i i doaC
où l'intégrale de surface doit être étendue aux 6 faces du parallélé-

dC
pipède. Si l'on définit la dérivée —- par la limite du rapport de

(XQj —y

l'accroissement de C dans la direction a à la distance parcourue
dans ce champ dans le sens a, on trouve que

(6) I I da a C FA #xd dx% dx3 — _ro dx3 I dr C

y
où dr est le nombre de Clifford qui représente le vecteur élémentaire

du contour y limitant la base dxt ax2 du parallélépipède.

Par conséquent, si n est le vecteur unité normal à un élément
de surface, n le nombre de Clifford correspondant, on aura en
tenant compte de (5), de (6) et après division par dx3 et par
intégration sur toute une portion S d'une surface dont da est le bivecteur

élémentaire :

jjv n C n da=JJ^- n da +Cdl C,

où r est le contour de S, dl le nombre de Clifford qui représente
l'élément d'arc dirigé, le sens du parcours étant déterminé par la

—v

règle ordinaire : un observateur dirigé le long de n vers le bord rvoit r parcouru dans le sens positif.
On peut écrire cela de la manière suivante :

//(v"c-^) **"*$* c-

Il faut remarquer que V n est un opérateur qui porte sur C, et dont

la forme est, si V est l'opérateur connu du calcul vectoriel :

2ni — + 2rirk(nk- m—) =— — F0îiX V
i dxi i,k \ dxi axkJ an

En particulier, pour C 2vìFì, d a n F0 \ da \, dl 2dxiri,
il vient, en rappelant que rm l, (#X bj -c a- IbXcj:

-JJr0 p • v xF+ (Tax v) x ur0] r0 =idi ¦ v+fdix vr(0
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et en identifiant :

r
fdi-v=ffTo.(vxv)
r s

Jdl X v=fffâx v) X V;

r s
la première de ces relations est la formule de Stokes, la seconde
moins connue est cependant une formule intéressante.

10. On a ainsi obtenu toutes les formules de l'analyse vectorielle

où intervient une fois le symbole V ; on remarquera avec quelle
aisance elles s'écrivent et avec quelle élégance elles s'enchaînent.

Pour les formules qui font intervenir l'opérateur V itéré, il faut
remarquer que l'itération de l'opérateur cliffordien V donne :

d2

V V V =2 —g laplacien lap.
i dxi

Si l'on considère, par exemple,

VU=V- F+r0VxU=div V+rorotV,
on aura en itérant :

lap 7= grad div F+ r0div rot U—rot rot V,

en identifiant les parties différentes de chacun des nombres de
Clifford qui sont dans chaque membre, on trouve

div rot 7=0
rot rot V grad div V—lap V.

Pour un scalaire, on aurait

rot grad C 0, lap C div grad C.
11. Il est possible — et il est utile — d'introduire un opérateur

nouveau. Si U et V sont deux nombres de Clifford quelconques, on
a appris à prendre le V> ou le «V du produit UV; on applique les
formules (4) et (4'), ce qui fait considérer des intégrales

J J da UV et ÇÇuVda.
Si l'on part d'une intégrale de la forme

ÇfudaV
on voit que la limite /v»ßl

um -

r 0

UdoV
~2

ne sera ni l'une ni l'autre des expressions P0 V> UV, F0 UV<A/.
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Nous poserons ffuäa V
lim ^ r0L7<V»F

T 0 T

ce qui n'est pas autre chose, comme on le voit sans peine, que
l'expression

r0[(ff<V)F+tf(V>7)].
On voit donc que U^A>Vd% est la dérivée extérieure1 de UdaV.

On peut appeler ce curieux symbole en nœud de cravate, le V
médian d'un produit ; on en verra la signification dans le cas n 4
et son utilité pour l'électromagnétisme.

Nous nous arrêtons ici pour n 3; nous sommes bien persuadés
qu'un lecteur averti aura pu constater par ce bref exposé que

de toutes les méthodes au moyen desquelles on établit les formules
du calcul vectoriel, celle qui est fondée sur la considération des
nombres de Clifford ne le cède à aucune autre pour la simplicité,
la rapidité et l'élégance.

CHAPITRE II
L'univers minkowskien et l'électromagnétisme (n 4).2

12. La forme quadratique qui définit la métrique de l'univers
minkowskien peut se ramener, en choisissant des axes convenables,
à la forme

dx\+ dx\ + dx\ — c2 df ;

il serait probablement plus naturel de modifier un peu les définitions

du système de Clifford et de prendre à côté des trois unités
1^, Jj, r3 une quatrième 2\ dont le carré fût égal à —c2. Pour
ne pas trop modifier ce que nous avons dit dans le cas n 3, nous
poserons xk ict et F\ — l comme dans la définition générale donnée

au début de ce mémoire.
On posera I7, F^ P3 Fk P5, mais il faut remarquer que r5 ne

commute plus avec les autres unités T*. On a

rir5 -F5Fl (i l,2,3,4)
et

Zl l
1 Une forme à multiplication extérieure étant l'élément sous le signe / relatif à une

intégration sur une variété fermée à k dimensions, sa dérivée extérieure sera l'élément
différentiel de l'intégrale étendue à une région à k +1 dimensions dont cette variété
fermée est la frontiere; cf. p. ex. E. Cartan, Leçons sur les Invariants intégraux.
Paris, Hermann, 1922, chap. VII.

2 Cf. 6. Juvet, Opérateurs de Dirac et équations de Maxwell, Commentarti Mathe-
matici Helvetici, vol. 2, p. 225-235, et une note aux Actes du Congrès international des
mathématiciens de Zurich (1932).
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Un nombre de Clifford — dans le mémoire cité des Commentarii
Mathematici Helvetici (vol. II), nous avons appelé nombres de Lorentz,
les nombres de Clifford pour n A — s'écrira

C aö-\-2a4ri-\-2aiMFiFk+ 2ct4kiFiFkFi-\-aimFs,
les sommes portant sur les combinaisons des indices; mais parfois,
il sera utile d'introduire auFiTi au lieu de a^riTi, par exemple;
il sera entendu que #12 — #21 et d'une manière générale, si l'on
considère tous les arrangements d'indices, le signe du coefficient
correspondant sera bien déterminé par la forme du produit des Fi
auquel il correspond.

Dans l'équation (2) qui exprime une rotation d'axes ou une
symétrie, on se bornera à prendre pour B un produit d'un nombre
pair de vecteurs afin de n'avoir à traiter que des rotations. Dès
lors, le nombre C peut s'écrire

c^+ ^ + r+r^+i,)
où II et i2 sont deux invariants, deux scalaires ; \\ et F2 sont deux
vecteurs, Fh F2 est un trivecteur correspondant au vecteur Vt, on
a pour les composantes de F2

bf #123, etc. ;

enfin T=SaikFiFk est un bivecteur, ou comme on dit aussi, un
tenseur antisymétrique du second ordre. Il faut remarquer que les
tenseurs symétriques et les tenseurs quelconques n'ont pas droit
de cité dans le système cliffordien; on verra cependant que ceux
qui ont quelque utilité en physique mathématique s'introduisent
naturellement dans les calculs par quelques-unes de leurs
combinaisons utiles — opérateurs différentiels contractés — puisqu'ils ne
peuvent le faire directement.

Il est parfois commode de décomposer T en deux parties

r=r,+r5ra,
cette décomposition n'est pas univoque en général, mais comme le
calcul peut la présenter, il convenait de la signaler [cf. chap. III].

D'autre part, les nombres de la forme

où Vt et F2 sont des vecteurs, jouent un rôle remarquable dans les
applications, nous les appellerons des survecteurs. Ils jouissent de
la propriété suivante :

Le produit d'un survecteur S (qui peut dégénérer en un vecteur
ou un trivecteur) par un tenseur T est un survecteur

ST=S', TS S";
la somme et la différence de S' et de S" fournissent un vecteur et
un trivecteur.
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13. A des nombres de Clifford variables, définissant un certain
champ, on peut appliquer Tun ou l'autre des opérateurs

d d
v=2ris— et v=2—r,dxi dxi

qui sont des vecteurs symboliques, l'un s'applique à gauche, l'autre
à droite et pour éviter les chances d'erreur, on écrira

VC v^c qui est 2Fd-±
dXi

CS/'. CA qui est 2^-Ti

Les résultats de ces deux opérations sont des nombres de
Clifford, c'est-à-dire que ces opérations sont invariantes par les
transformations (2); la démonstration de ce fait résultera de la
définition intrinsèque que nous donnerons plus bas de V et V.

Pour écrire ces résultats, il est commode d'introduire quelques
abréviations; nous renonçons d'ailleurs à mettre des flèches aux
vecteurs et à distinguer les tenseurs par des signes spéciaux. Les
lettres I, V et T sont suffisamment claires. On sait ce qu'est le
gradient d'un scalaire, la divergence et le rotationnel d'un vecteur:

di di
grad i=2—-ri=sri—-.dxi dx, '

div V=2p;
dXj

fdvk dVi\
rot v=2{~-1A)rirk.

i,k \dXi dxk/

On appellera divergence vectorielle d'un tenseur T et l'on écrira
DIV T le vecteur suivant :

divt=
k̂

Enfin nous poserons

les termes non écrits s'obtenant par permutation circulaire des
indices 1, 2, 3, 4; on obtient ainsi un vecteur que nous avons
appelé le maxwellien de T.
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Dès lors

\AC div K,

et

+ grad Jt + DIV T
-j-rot-r, — r5rotF2
+1\ (— grad 12 + max
-r5divu2,

T)

(7') CA div V,

+ grad/, —DIV T
— rot Vt — r3 rot F2

+ r5 (grad i2 + max

+ r5divF2,
T)

où l'on a écrit les différentes parties de ces nombres dérivés sur
des lignes différentes.

14. Les définitions intrinsèques se fondent sur un passage
à la limite. Soit P un point du champ, entourons-le d'une
hypersurface L limitant un hypervolume de mesure q ; soit
d% dxidxidx3FiFiFi-\-..., le trivecteur élémentaire représentant

l'élément de l'hypersurface, on a

fffdTC
(8) —FÒ\AC= lim 1

ç 0

fffCd*
(S') CA/r5= lim

ç 0

et par suite pour un hypervolume quelconque H limité par une
hypersurface G, on a, si

dç r5\ dç>| quadrivecteur élémentaire de H,

xoor«»v»c—jjjr*c
H G

ffffcwç-fffcd.
H

15. On n'aura pas à s'intéresser au V d'un produit UV, mais il
faut définir le V médian d'un tel produit. On y arrivera de la façon
suivante, qui permet de préciser ce que nous avons esquissé pour
le cas de n 3.
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Dans les passages à la limite précédents, on peut supprimer le
signe lim, remplacer ç par \dç\ et les intégrales des numérateurs
seront étendues à l'hypersurface infiniment petite que limite dç.
Désignons alors par un indice zéro les valeurs de U et de V au point
P fixe dans l'hypervolume évanouissant, et posons pour U sur la
frontière

U=U0-\-dU.
On calculera la limite du rapport d'une intégrale portant sur

Ud%V à l'hypervolume évanouissant; on aura

EdAlJlddAlJlddAddi
\dç\ \dq\ \do\

\dq\ \d$\ '

mais ill rfi; 0 puisque l'hypersurface est fermée; de plus, le

dernier terme est un infiniment petit d'ordre supérieur à l'ordre
des deux premiers, et par suite

fffUd' V

(9) lim —k —UrjV>V)A(U<A)F5V.
ç 0 Q

On peut définir un opérateur légèrement différent de V, ce serait
un opérateur trivectoriel

v=vr5=-r5v
alors le second membre de (9) s'écrira

UÇdAV) + (U<A)V=UAAV.
On voit dès lors que

UA^V\dç\ est la dérivée extérieure de UdrV.

16. On peut introduire aussi la notion d'opérateur adjoint d'un
opérateur donné. Soit M(U) un opérateur agissant sur U, 9ÎI- sera
l'adjoint de M si l'intégrale

fÇffM(U)dQV—Udç?}\l(V)
H



— 140 —

est égale à une intégrale étendue à la frontière G de H. La
formule (9) donne immédiatement

fffudt F=j7ÌT(EM7)dQ V— Udg(A V);

de ce point de vue
A est l'adjoint de A

17. L'opérateur itéré VV V2 est le laplacien de l'espace à
4 dimensions

V2 2-—2>
dx-,

on a de même

7 2 dx^-2-rdxi

Si on revient à la variable t — V2 se transforme en le dalem-
ic

bertien
d2 d2 d2 1 d2

2 1

-, 2 + "-, 1 1 râ'dx\ dx-i dx3 c dt

qui est l'opérateur bien connu de la théorie des ondes.

18. Il n'y aurait pas lieu de revenir sur les équations de
l'électromagnétisme dont on trouvera la forme cliffordienne dans le
mémoire cité plusieurs fois déjà, s'il ne nous était pas possible d'y
ajouter des résultats formels nouveaux. Ils concernent les équations
de conservation que l'opérateur en nœud de cravate permettra
d'écrire élégamment. Nous ajouterons quelques remarques propres
à rendre plausible une généralisation de la théorie de Maxwell.

19. Voici les hypothèses sur lesquelles se fondent la théorie de
Maxwell et les équations qui l'expriment réduites à leur forme la
plus simple.

a) Le champ électromagnétique est un bivecteur

f= Fììrir,+F,3r,r.i+F3iF3ri
+ fu rt r4+fu f% Fi+F3i f3 r4.

bj Le courant est un vecteur

s=sir1+s2r2+.s3r3+s4r4
et l'on a

VF=—S
ce qui prouve que

maxF=0
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et par suite — ce qu'une analyse cliffordienne montrerait sans
difficulté —:

c) Il existe un vecteur

(D cpi Fi + cp2 Fi + cp3 r3+ cpi. Fi
tel que

F=V#,
ce qui entraîne div $ 0, et V2 W — S.

dj Enfin puisque V2F est un bivecteur et que

V2F= — VS — div S — rotS,
il faut que

divS 0.

19. La force de Lorentz P est un vecteur dont les composantes
sont les nombres

Pi 2 Fik sk.
k

On voit sans peine que le nombre de Clifford

P^ZpiFii
1

est égal à

c'est-à-dire que

2(FS-SF),

Or

donc

ou encore

P^-[(y>F)F-FÇ7*F)],

V».F= — F<V

P= — | [(jFW) -F+ F(V>F)j

P= —^F<V>F.

1
La force de Lorentz est, au facteur — - près, le V médian du pro-

là

duit FF. Mais on sait1 aussi que P est la divergence vectorielle
d'un tenseur symétrique S représentant les tensions de Maxwell et
dont les composantes sont

Sifc S Fir Fkr — - Òik 22 F/s ¦

r 4
1 Pour tout ce qui concerne la forme tensorielle des équations de Maxwell, voir

H. Weyl, Raum, Zeit, Materie, 5. Aufl. Berlin, Springer, 1923.
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Or les tenseurs symétriques n'ont pas droit de cité dans
l'électromagnétisme cliff'ordien tout antisymétrique, mais en fait, ce n'est
pas S dont on a besoin, c'est le vecteur DIV S qui est nécessaire et
il est à un facteur près F<A^F; qu'on puisse précisément lui donner

la forme DIV S c'est fort intéressant du point de vue du calcul
tensoriel, mais il est bien plus intéressant de remarquer que le
tenseur $tk est une grandeur mathématique nullement indispensable,
c'est sa divergence vectorielle qui en a une véritable signification
physique et elle se trouve être justement un nombre de Clifford.

20. Les théorèmes de conservation pour un champ dans lequel
on ne considère que du rayonnement, et où par conséquent
C — —VF—0, se formulent par l'équation

F«V>F=0,
ou encore, sous une forme moins tautologique :

ßfn.F-0
pour toute hypersurface fermée G; on a bien là l'assurance la plus
précise de la conservation de quelque chose, qui n'est pas le carré
F mais le produit FF, si l'on veut distinguer.

Lorsqu'on considère des charges mobiles douées d'inertie, mais
dont l'effet sur le champ F est négligeable, les équations du
mouvement qui sont en même temps les équations de conservation de
l'énergie et de la quantité de mouvement s'écrivent synthétiquement
pour chaque charge

(10) ^+1^F=0,
/ dxA

où V— 2 Vt Fi est le vecteur unité 2 v\ 1, v% —J tangent à la
\ ds j

ligne d'univers de la particule considérée, ds est l'élément d'arc de
cette ligne, p0 la densité propre de la particule. On peut écrire
cette équation sous la forme

(10') /*0(IW»r) + F<V»F=0

car, comme le montre un calcul simple,

7^7=2^-
as

Or de même que F<Ad>F est à un facteur près la divergence
vectorielle d'un tenseur symétrique Sa-, de même VA/d-V est la
divergence vectorielle du tenseur symétrique

§îfc fK) Vi Vk
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et l'équation (10') s'écrira en notation tensorielle [Weyl, loc. cit.,
p. 197] :

(10„} ^(sk+sifc)_o (.=1;2)3j4)_
k dxk

Le tenseur Sïfe n'a pas droit de cité dans notre analyse, mais il
intervient dans les formules par sa divergence vectorielle qui est un
nombre de Clifford. Ce serait à une étude des milieux continus,
exposée dans le langage cliffordien, qu'il appartiendrait de préciser
la relation entre /i0(Vd\/>V) et la divergence vectorielle de 5", car
cette relation fait intervenir l'équation de continuité

d((ioVk)
Q

dxk
ou

V>0%F)+Oi0F)<V 0;

nous laissons cette étude de côté, elle allongerait démesurément ce
mémoire.

11 faut remarquer que l'équation (10) qui établit un lien entre
l'électromagnétisme et la mécanique n'est valable que pour autant
que la modification apportée au champ par la charge mobile est
négligeable ; de plus elle ne fait pas intervenir le tenseur S, mais le
vecteur FA/d>F qui est une combinaison bilinéaire des composantes
de F et de leurs dérivées, exprimable, en calcul tensoriel, par la
divergence vectorielle de S. La théorie de Maxwell n'est pas une
théorie fermée, car dire FA/>F=0 c'est dire que le courant est
nul et comme il est — VF, le théorème de conservation semble
être une tautologie, mais il n'en est rien si l'on a égard aux tensions
de Maxwell. S'il y a au contraire un courant, F«V>Fn'est pas nul,
il est compensé par la variation du vecteur V dans l'unité de temps
propre, mais ce vecteur V apporte avec lui toute la mécanique et
l'équation (10) marque, pourrait-on dire, le lieu d'intersection de la
mécanique et de l'électromagnétisme, car elle exprime un théorème
de conservation d'une somme de deux grandeurs, l'une « cinétique »,
l'autre « potentielle ».
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CHAPITRE III
Sur une généralisation de la théorie précédente.

21. L'hypothèse ò) que nous avons faite au § 19, revient à dire
qu'il n'existe pas de courant magnétique; elle est équivalente, en
effet, à

max F=0,
qui exprime l'inexistence d'un magnétisme vrai. Cela implique
alors que F est le rotationnel d'un vecteur. On peut se demander
quelles modifications apporte aux lois observables l'hypothèse plus
générale

maxF=^0.

Tout d'abord: a] le champ reste un bivecteur, mais il est
quelconque. Puisque

VF=DIVF+F5maxF,
on admettra que

bj le courant est un survecteur, c'est-à-dire la somme d'un
vecteur et d'un trivecteur

C^2SiFiAF52miFi SAF5M,
le trivecteur représentera le courant magnétique, et l'on remarquera

que si l'on peut donner à ce courant une représentation
purement vectorielle 2miFi, c'est par le trivecteur Ft,2miFi qu'il
intervient dans les formules. Il y a dans cette distinction formelle
le signe d'une différence de nature géométrique correspondant à la
différence physique entre l'électricité et le magnétisme. Grâce à

l'introduction du courant magnétique, une plus belle symétrie
régnera dans les équations, C sera dit le courant total. On posera
alors

VF= — C.

c] F étant quelconque, on n'a plus F= V $, mais il est possible
de trouver un survecteur 0 + F5 W, tel que l'on ait

F

0,

ou si C7=0 + r52r
v(<P+rBsr)=

(11) VC/=F,
ce qui implique
(12) div0= div W

et ensuite
V2[/=— C,
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d'où l'on tire U par les potentiels retardés. On voit que l'existence
du «potentiel survecteur)) U n'est pas la conséquence d'une
restriction faite sur F; dire qu'il existe un potentiel n'est plus un
théorème physique, c'est une évidence mathématique, on peut
toujours mettre F sous la forme (11) avec les deux conditions (12).

On voit enfin que div S div M=0.
22. Que devient dès lors la force de Lorentz? Il semblerait, à

première vue, que notre généralisation dût faire ajouter à la force
au sens ordinaire un trivecteur et alors, il serait bien difficile d'établir

un lien naturel entre la mécanique et notre théorie généralisée ;
mais il n'en est rien.

Formons encore F<A>F, on trouve

F«V> F= (F<A) F-\- F( V» F),
mais [cf. éq. (7')]

F«V — DIV F~\- r5 max F
et par suite

F^AF=(S — r5M)F—F(S~\-F;>M)
SF — FS — F5 (MF-A FM).

Or MF-\- MF est un trivecteur, son produit par F~0 donne un vecteur,
dès lors, puisque SF—FS est au facteur —2 près la force
ordinaire de Lorentz, on pourra prendre encore pour l'expression de
cette force dans notre nouvelle théorie,

P — \FAhF.

Mais il y a plus : le second membre s'exprime avec les Fik d'une
façon absolument indépendante du fait que F&- est un bivecteur
particulier (rot<P) ou un bivecteur quelconque. Dès lors, l'expression

de P au moyen des tensions de Maxwell reste la même, les
composantes du tenseur Sa ayant de plus la même forme.

Donc: si l'on admet que le champ électromagnétique est un
tenseur antisymétrique du second ordre absolument quelconque,
les expressions de l'énergie et de la quantité de mouvement du
champ sont exactement les mêmes que celles que donne la théorie
ordinaire.

On voit donc, et de la manière la plus simple, quelle faible
importance présente pour la théorie formelle l'hypothèse de l'inexistence

du courant magnétique.
Il nous paraît que ces considérations, toutes formelles à

première vue, acquièrent une signification physique si on les confronte
avec les hypothèses proposées récemment par M. P. A. M. Diraci.

1 Cf. P. A. M. Dirac, Proc. Roy. Soc. A. vol. 133, p. 60-72 (1931).

10
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CHAPITRE IV

Remarques sur les équations de Dirac.

23. On sait que M. P. A. M. Dirac1 a eu l'heureuse idée de
remplacer l'opérateur

d d" ¦ d d

dxi dxi dx3 dx'i.

qui se présente dans l'équation fondamentale de la mécanique
ondulatoire et qui porte sur le scalaire ip, par le produit yyou V'v'-
Dans l'expression de ces opérateurs les Fj sont des matrices. Il
remplace alors l'équation

(13) v2^-7nJf% 0
h

relative à l'électron dans l'espace privé de champ par l'équation

r-r mC
V-Î/J + —-tp 0

h

où ip n'est plus un scalaire, mais une grandeur d'un type qui a

paru d'abord tout à fait nouveau, et qui, dans la théorie des matrices,
a 4 composantes distinctes. En itérant V, on trouve

mc^. „2 w2c"2 A

h h

et chaque composante satisfait à l'équation (13).

24. M. A. Proca - a proposé de considérer tp comme un nombre
TYIC

de Clifford; en posant-— a, on aura l'équation
h

(14) V></> + a</> 0

qui en remplace 16, non indépendantes d'ailleurs.
On aurait pu aussi bien remplacer (14) par

(14') ^'<V +a^' 0

que nous appellerons l'équation associée de l'équation (14), ip' sera
le nombre de Clifford associé à ip dans le problème considéré.

1 Cf. p. ex. P. A. M. Dirac, Les Principes de la Mécanique quantique, trad, française

par A. Proca et J. Ullmo. Paris, Presses Universitaires de France, 1931, p. 281 et 59.
2 C. R. Paris (1930), tome 190, p. 1377 et tome 191, p. 26; /. de Phys. (VII), (1930),

tome I, p. 235-248.
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On tire de là
r5v>^+ar5^=o

<//^Vr5 + a<//F5 0.

On multiplie les deux membres de ces équations, pour la première
par ip' à gauche, pour la seconde par tp à droite, et on soustrait
membre à membre, il vient (cf. § 15):

(rp' A ip + ip' A ip) 0
soit
(15) y'<W*ip 0,
ce qui montre que

(16) ÇÇfrf/dz^ 0

pour toute hypersurface fermée G de l'espace EK.

25. Lorsqu'un champ électromagnétique règne dans l'espace
dont U est le potentiel (complet ou non), on peut remplacer (14) par

(17) (V» + /3F/)^ + a^ 0

et l'équation associée pourrait s'écrire

(17') y'(A— /?t/) + at// 0

afin qu'on puisse encore trouver une équation de conservation; les
mêmes combinaisons que celles qu'on a faites ci-dessus redonneront

les équations de conservation (15) et (16), si l'on a égard, en
faisant le calcul, à ce que F5 et U anticommutent.

Il serait intéressant d'interpréter avec précision ces théorèmes
de conservation; cela ne peut se faire que par l'étude approfondie
des solutions de (14) et (14') ou de (17) et (17'). Dans certains cas,
ip'Ad>ip est la divergence d'un vecteur qu'on a identifié au courant
créé par l'électron.

Nous nous bornons à ces remarques, en renvoyant le lecteur
à quelques mémoires récents de M. A. Proca1.

La théorie de Dirac pose des problèmes qui ne sont pas encore
résolus, il se pourrait que la théorie générale esquissée au
chapitre III de cette étude fût de quelque utilité pour l'interprétation
des résultats paradoxaux obtenus jusqu'ici, mais tant qu'on n'aura
pas formulé d'hypothèses précises et plausibles concernant l'action
exercée sur le champ par les particules et les ondes qui leur sont
associées, les difficultés rencontrées jusqu'ici resteront entières.

i /. de Phys. (VII), (1932), tome III, fascicule 4.

Manuscrit reçu le 22 octobre 1932.

Dernières épreuves corrigées le 20 mars 1933.
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