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GComment tenir compte de la masse du ressort dans
quelques cas simples d’équilibre et de mouvement ?

PAR

S. GAGNEBIN
Professeur au Gymnase cantonal

(AVEC 6 FIGURES)

INTRODUCTION

La théorie classique de I’élasticité, grace a la forme analytique
a laquelle elle a pu parvenir dans la premiére moitié du 19™¢
siécle, reste d’'une grande importance dans 1’étude de la physique.

Elle traite des deux problémes suivants : 1° Connaissant les
déformations d’un corps solide, déterminées en fonction des coor-
données de ses points, calculer les tensions intérieures et les
forces appliquées a la surface. 2° Connaissant les forces exté-
rieures appliquées a un corps solide, calculer les déformations et
les tensions intérieures. Pour résoudre 1'un ou lautre de ces
problémes, il faut connaitre deux coefficients caractéristiques du
corps, si celui-ci est isotrope; s’il est anisotrope, au plus 36.
Les deux parameétres choisis par G. Lamé, I'un des principaux
créateurs de la théorie, sont désignés par les lettres grecques
A et u, et 'on définit sous le nom de module de Poisson la quan-

A
tite 6= _———— dont il est question a la fin de cette étude.
2(1+ ) ’

Les deux problémes mentionnés n’ont pas une importance
équivalente. Le second, qui se présente constamment dans la
pratique, est incomparablement plus difficile a résoudre que le
premier. I1 suppose généralement une étude expérimentale appro-
fondie qui permet, griace a des hypothéses, d’exprimer les défor-
mations en fonction des coordonnées ; on est alors ramené au
premier probléme. Jusqu'a présent le second probléme n’est
résolu que dans un nombre restreint de cas simples.

Dans le cas ou la théorie de 1’élasticité ne peut s’appliquer, le
physicien ne se tient pas pour battu. Il renonce sans doute a
résoudre complétement les problémes énoncés, mais, en généra-
lisant certains résultats de la théorie rigoureuse et en faisant
certaines hypothéses simplificatrices, il parvient & des solutions
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approximatives, parfois tout a fait suffisantes étant donnée 1la
précision des expériences. L’ensemble des méthodes appliquées
dans ces cas est désigné sous le nom de Résistance des maté-
riaux. Ces méthodes sont seules applicables au probléme de
I’équilibre des ressorts a boudin.

Un effet de la torsion du fil formant le ressort.

Supposons un ressort spiral cylindrique suspendu verticale-
ment. Nous utilisons pour cela un simple fil ciré attaché a deux
points diamétralement opposés de la spire supérieure, fil glissant
sur une tige horizontale *. Par un moyen analogue, nous suspen-
dons un poids & la spire inférieure. De cette facon, une force F
est appliquée au ressort suivant son axe vertical. La fig. I permet
de conclure qu’en un point A du ressort sont appliqués une force
F’ égale, paralléle a la force F, de méme sens qu’elle, et un couple
dont le moment est le produit de la distance ¢ du point 4 a
I’axe du ressort, et de la force F.

La force F’ est appelée effort tranchant et on en néglige les
effets, petits par rapport aux autres, lorsqu’on ne soumet pas le
ressort 4 des forces trop grandes. On réduit ainsi le probléme 2
Iétude des déformations d’une hélice, lieu des centres des sec-
tions droites du fil métallique qui forme le ressort. A sera un
point de cette hélice. Le couple de moment a F se décompose :
1° en un couple d’axe tangent a I'hélice Fasin®d qui tord la tige
et, 2° en un couple Fa cos ¢ dont ’axe est dirigé suivant la binor-
male et qui imprime & la tige une flexion dans le plan osculateur
de I'hélice en A. Ce couple, dit fléchissant, est d’autant plus petit
que la tangente a I’hélice fait, avec la verticale, un angle ¥ plus
voisiri de 90°, autrement dit qu’elle est plus prés d’étre hori-
zontale.

! Sur la suspension des ressorts voir: G. BROULHIET, La technique des ressorts d
boudin travaillant a la tension, dans « Produire», p. 66.
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Fig. 11.
AG=aF AH = Fa sin & AK=—Facos$

Nous allons faire voir que 1’écartement des spires est di au
premier de ces couples, c’est-a-dire a la torsion du fil. La fig. Illa
montre que, si 'on reléve une demi-spire d’'un plan horizontal
dans un plan vertical, en maintenant plane I'une des génératrices
AB, I'épingle B tourne de 180° en B’. La fig. III b montre que si
Pon maintient cette épingle paralléle a sa direction primitive B,
la génératrice AB devient une courbe gauche AB’ et que, en con-
séquence, la surface canal que forme la tige a subi une torsion
totale de 180°. La fig. IVa montre comment, pour relever dans un
plan vertical une spire compléte, on peut procéder par étapes en
relevant d’abord une demi-spire, puis I’autre moitié, de sorte que
la torsion totale de la spire entiére est 360°, quand on a maintenu
les épingles B et C dans leur direction primitive. Enfin, la fig. IV b
montre que, par une simple flexion, et par conséquent sans nou-
velle torsion de la surface, on peut amener I’épingle C” en C dans
sa position initiale. Il résulte de I’examen de ces figures que si
Pon fait exécuter & la spire entiére une rotation de 90°, de ma-
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niére a amener la spire d’un plan horizontal & un plan vertical,

en maintenant fixe les épingles A et C, la torsion totale du fil est
de 360°, soit 2 a.

Fig. 1L

Fig. IV.

Si, au lieu d’amener la spire dans le plan vertical, on ’amenait
dans un plan faisant un angle 9 avec celui-ci, la torsion totale de
la spire serait 2 a cos ¥. Enfin, si 'on divise cette torsion totale
par la longueur de la spire placée dans le plan d’angle 9, et qui
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2na
est — 3 on aura la torsion moyenne, qui se confond dans notre

sin
sind  cosd-sind

cas avec la torsion en un point, 27 cos ¥ - =
2ra a

Or, cette expression représente précisément la torsion géomé-
trique, ou seconde courbure de I’hélice dont la tangente fait un
angle ¢ avec la verticale. La torsion physique de la surface que
forme le fil du ressort est donc égale & la seconde courbure, ou
torsion géométrique, de 1’hélice.

De 13, on peut conclure que les variations de 1’angle ¢ sont
fonction du couple de torsion de moment Fa sin . D’ailleurs, le
pas de I'hélice est donné par I'expression 2z a cotang ¢; donc
nous avons établi que le pas de I’hélice, & savoir I’écartement des
spires, est dii a la torsion du fil dont est fait le ressort. Un petit
appareil, trés simple et ingénieux, décrit dans plusieurs ouvrages,
en particulier dans la Mécanique appliquée de John Perry (trad.
Davaux), permet de vérifier expérimentalement cette cobnclusion.
Je l'ai présenté, avec d’autres expériences sur les ressorts, a la

Société neuchéateloise des sciences naturelles (séance du 29 jan-
vier 1932).

Variations du rayon du cylindre
sur lequel s’enroule 'hélice.

La théorie de la résistance des matériaux admet qu'un couple
fléchissant a pour effet une variation de courbure, proportionnelle,
dans le plan du couple. La courbure de I’hélice en un de ses points

sin? &

a pour expression et Pon peut calculer l'effet du couple C

appliqué dans le plah osculateur de I’hélice.

G:B.d(‘f’ﬁlj)
a

ot B est une constante égale au produit du moment d’inertie de la
section droite du fil du ressort par rapport & un diametre contenu
dans le plan osculateur, et du module d’Young, E, relatif au fil
utilisé.

D’autre part, si I’on fait le développement de I’hélice sur un

plan paralléle a ’axe du cylindre (voir fig. V), on a facilement la
relation suivante :

) a
sin & = o

ou ! est la longueur du fil, ¢ le rayon du cylindre, ¢ ’angle total
des spires, de telle sorte qu'on a la relation ¢ =2z n, ot n est
le nombre (entier ou fractionnaire) des spires.



2
On tire de la: C:B-d(a-%)
et, en remarquant que da et dp sont de signes contraires,
[sin &
da:““—;g de,
on peut 8crire :
sin? 9 sin &
C:B(—— —— da+-2 = -d(p)-

Il résulte de cette équation que l’application d’un couple de
forces dans le plan osculateur de I'hélice donne lieu & une dimi-
nution du rayon @ du cylindre sur lequel est enroulée I’hélice,
diminution qui est proportionnelle au couple de forces et au carré
du rayon @ du cylindre. Cette variation augmente quand I’angle ¢
diminue, c’est-a-dire quand la tangente a ’hélice s’éloigne de I’ho-
rizontale.

L’application du méme couple donne encore lieu 4 une aug-
mentation du nombre des spires de 1’hélice qui est proportionnelle
a la longueur du fil formant le ressort.

En utilisant la relation qui existe dans une hélice enire la
longueur ! du fil, celle z du ressort, le rayon ¢ du cylindre et
Pangle ¢ donnant le nombre de spires, & savoir la relation :

2 2 2 2
oo =1—z2

on peut calculer la variation du rayon du cylindre en fonction de

I’allongement dz du ressort et de I’'augmentation dn du nombre
des spires :

La quantité — ?:Zgﬁ : ; peut se représenter par la courbe

& —z ‘
de la fig. VI. Pour obtenir cette courbe, on a fait: a = 1, I = 8.
On voit que la variation du rayon du cylindre est trés faible méme
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pour des allongements du ressort considérables. Le rayon diminue,
au contraire, trés rapidement quand la longueur du ressort devient
comparable a la longueur du fil.
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Fig. VI.

Equations d’équilibre.

On les obtient en faisant la somme des énergies de torsion et
de flexion. Nous désignerons par o le rayon de courbure de I’hélice
en un de ses points, et par » le rayon de seconde courbure.

L’énergie de torsion a pour expression :

A AL
2 \z fco) 2 l3(p oto

L’énergie de flexion a pour expression :

2 ' - —\ 2
g(g __4_> l:g-%(QQ’/lz-wZz—(pOV lz—za)

9 9

ou B a la signification qui lui a été donnée a la page 111 et A désigne
une constante, produit du moment d’inertie de la section droite du
fil par rapport au centre de cette section, par la constante u ;
% et @, désignent la longueur du ressort et ’angle proportionnel
au nombre des spires quand le ressort est dans sa position d’équi-
libre initiale. La somme de ces énergies reste constante si 1’on
laisse librement osciller le ressort et qu’on fasse abstraction des
amortissements. C’est ce que met en évidence 1’expérience de
Wilberforce (1894). On suspend au ressort une masse dont le

8
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moment d’inertie par rapport a I’axe du ressort est réglable, on
peut alors constater I’échange des énergies de torsion et de flexion.
Pour une valeur calculable du moment d’inertie, I'une des énergies
devient nulle lorsque I'autre est 4 son maximum.

L’énergie totale est égale au travail accompli par le poids sus-

pendu, lorsqu’on déplace celui-ci d’'une hauteur z — z,, soit f Fdz.

Ainsi la dérivée partlelle, par rapport a z, de l’energle totale
sera égale au poids F. C’est ainsi qu'on obtient lequatlon de I’équi-
libre du ressort sous le poids F :

A B/ 5
D F-——;S(tpz—%za)@—;g(M/lz—f—tpol/f—"zﬁ

Si c’est un couple de forces de moment N qu’on appllque a
Pextrémité du ressort et dans un plan perpendiculaire & I’axe,
1’energle sera égale au travail de ce couple tournant d’'un angle
@ — @, & partir de la position d’équilibre ¢,. En dérivant par rap-
port & ¢, on obtient 1’équation :

@>N~—(Vﬁ—«—%Vz )Vf—ﬁ =)

Les déterminations des constantes 4 et B des ressorts se font
au moyen de petites oscillations autour d’'une position définie, la
masse suspendue au ressort ayant un grand moment d’inertie par
rapport a 'axe de celui-ci. ag

L’angle ¢ variant au voisinage de 90°, sin 4 = = varie trés

<
peu, cos ¢ = 7 varie beaucoup, au contraire; on écrira donc

I'équation (1) en fonction de z :
A sin?d ( sin J,
it z —

3 F=

Y ing’ )Mm(smz&-—sm@&o)z.

Si l'oscillation est assez petite pour qu’on puisse écrire 9 = 9,.
on a simplement :
A sin?d
@ | F="—0—12)

et 'on voit qu’alors la force F est proportionnelle & I’allongement
z — ZO

Si T'oscillation est une torsion se produisant dans un plan per-
pendiculaire a I’axe, on a z = z, et ’équation (2) s’éerit :

Bsin? 9 A cos?d
® N= IR RO (g

ainsi le couple est proportionnel a4 I'angle de déviation.
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Ces équations ont été données par Thomson et Tait : Natural
Philosophy, vol. 1, part 11, p. 141. Dans I’exposé qui précéde, je
me suis principalement inspiré des ouvrages de H. Bouasse :
Mécanique physique, 1912, Résistance des matériaux, 2™ édi-
tion, 1931. Voir aussi: A. Boulanger, Les principes de la méca-
nique des ressorts, 1927.

Allongement d’un ressort spiral cylindrique
sous son propre poids.

Jusqu’a présent, nous n’avons pas tenu compte du poids du
ressort. Pour en calculer I’effet sur la longueur du ressort dans
I'état d’équilibre, nous nous placerons dans des conditions parti-
culiéerement simples. Nous admettrons que ce poids est faible par
rapport a la force appliquée a son extrémité, de sorte que ’allon-
gement qui en résulte est proportionnel au poids. En d’autres
termes, nous nous bornerons a appliquer la plus simple des équa-
tions qui précédent (4) et nous désignerons par k le module d’al-
longement défini par 1’équation :

_Asingﬁ
T a?l

Pour des ressorts de méme rayon a, de méme pas, de méme
fil, k est inversement proportionnel 4 la hauteur z, du ressort,
puisque 2, est alors proportionnel a la longueur ! du fil qui figure
au dénominateur de 1’expression qui définit k.

Considérons des tranches horizontales de méme hauteur infi-
niment petites dz ; la constante d’allongement est, pour chacune

(6)

Z
d’elles, & c_l% et, par conséquent, la variation de longueur d’'une de

ces tranches sous un poids 6 P est:

6dz_1-flf oP.
k 2

d P varie avec la cote z de la tranche considérée : pour 2z = 2,,
c’est-d-dire au bas du ressort, 4 P =0; pour la plus haute

tranche, 2 =0, § P — P, le poids total du ressort. On aura pour
une tranche de cote 2

P
0P =—(zp—2)
20
d’ou :

1 dz P Pz
(7) édz_l?_'—(z"—z)__fg

20 %

dz

25
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Pour I'allongement total, é z,, nous aurons donc :

Z0
P z,— P
0zp=1] —

o k£ 9
Ainsi I’'allongement d’un ressort sous son propre poids est la

moitié de 1’allongement que produirait un poids égal a celui du
ressort suspendu a 'extrémité de celui-ci.

1
dz — -
¢ k

Masse entrainée dans le mouvement d’oscillation vertical
d’'un ressort a boudin.

Considérons un ressort 4 boudin suspendu verticalement et a
I’état d’équilibre sous l’effet d'un poids P, dont nous désignons la
masse par m. Si nous communiquons a ce ressort un mouvement
dans le sens vertical et que nous abandonnions ensuite le systéme
au jeu des forces élastiques, le mouvement qui en résulte n’est
généralement pas simple. Cependant, ’expérience montre que,
parfois, le ressort vibre tout d’'une piéce, de sorte que chacun de
ses points est animé d’un mouvement sinusoidal simple, vertical.
I1 faut pour cela, tout d’abord, que le moment d’inertie du systéme,
par rapport a ’axe du ressort, soit grand; il faut que les oscilla-
tions soient d’amplitude petite; il faut enfin que les ondes de choc
qui apparaissent au moment ou on abandonne le ressort a lui-
méme, et qui donnent lieu a des battements compliqués, soient
amorties d’'une facon ou d’une autre.

Admettons qu’il en soit ainsi et que le ressort soit parfaite-
ment homogéne dans toute sa longueur, la vitesse d’'un de ses
points, & un instant donné, sera proportionnelle & la cote de ce
point, cote mesurée a partir du point de vitesse nulle. Si donc
est I’élongation verticale de la masse m, un point de cote z aura
pour vitesse, au méme instant :

z dx
7, dbt -

Si 'on néglige la déformation produite sur le ressort par son
poids, le calcul a été souvent répété depuis que lord Rayleigh
en a indiqué le résultat dans sa Theory of sound, § 156. En effet,
la masse de la tranche élémentaire, de hauteur dz, du ressort a la

M
valeur - dz, ou M désigne la masse du ressort de poids P et z,,

0
la hauteur du ressort a I’état d’équilibre. La force vive du systéme

sera donce :
2y
2 M a0\ 2
2T —=m (_dx) +f az (i . d‘)
dt, o Zo \z dt




da\ 2
en mettant ({ — ) en facteur :

dat
= fon g 2 [ (255
D L= m—|-—z— Zdz](dt)

[ 3] 5]

On en conclut que la masse entrainée est égale a la masse sus-
pendue m, augmentée du tiers de la masse du ressort.

Mais, comme nous l’avons vu, le poids du ressort déforme
celui-ci, de sorte que les spires les plus serrées sont entrainées
avec la plus grande vitesse. C’est cet effet que nous nous propo-
sons de calculer.

Remarquons premiérement que la tranche qui se trouve au
bas du ressort n’est pas déformée, sa hauteur est donc dz et sa

ou:

masse — dz, comme dans le calcul précédent.
Z

0
Les autres tranches sont allongées d’'une quantité égale a (7)
que nous écrivons :
dz P(zy—2
ddy —— . G —2)
kz, %

ou dz a toujours la méme signification, ainsi que k et z, dans le
dz '

quotient k;; au contraire, nous allons maintenant faire varier
20

¢z de 0 a Z,, Z, représentant la hauteur du ressort déformé par son
poids, car nous allons introduire la vitesse de 1’élément de cote z.

Le rapport ne changera pas de valeur par cette substitution,
0
mais il s’écrira :

Z,—7

Zy

en deésignant par Z la nouvelle cote du point du ressort qui avait
pour cote z, lorsqu’on ne tenait pas compte du poids du ressort.

Nous pourrons ainsi mettre la variation de longueur de 1’é1é-
ment de hauteur dz sous la forme :

__d= -P-Z"_Z
k z, Z,

odz

ou Z varie de 0 a Z,.
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La masse d’'un de ces éléments reste la méme : —dz Expri-

mons ici 2z, en fonction de Z,: Z, — z, est I’allongement total du
ressort en équilibre sous son propre poids P, et nous avons vu

que cet allongement est: — . Nous avons alors, en faisant: ¢ —=—,

2% ) kz,
Zy—zy P«
zg  2kz, 2

, Z
ce qui donne: Z;,=z3, (’1 —[—g) ou zyg=——"

a
1 9
On peut donc exprimer la masse de ’élément dz sous la forme :
M@+9
Z, — dz.

Mais alors, la masse par unité de longueur de I’élément dé-
formé a pour expression :

ggggw M@+%

dz—|—~—~ p. Zy—~2 2 FaZ,—7Z)
kz, ZO

Et enfin I’élément dZ du ressort déformé a pour masse :

M@+9M
A+a)Z,—aZ

Nous n’avons plus qu’a répéter notre calcul de la force vive en
introduisant cet élément de masse a la place de 1’élément cons-

M
tant: — d=.
<o

Nous obtenons :
Zo M

@)t aﬂ)g ...maz(i @)
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Zo

Le calcul de la f Z dz se fait en posant
somm :
W de T Somme ) U )2, —az ¢
a[:w’
a

En désignant par z la variable d’intégration, cette somme
s’écrit :

l Zo d " Zo
1 *z2dz «a g g
- =—|—-—-——log.(a—2)|.
aJ a—z a [ a 2a? 0. (@ )]
0 0
Mais comme |
log, (4 — 2)=— (—+2ﬁ43m,+ :y+m&a

on peut écrire :
Zo

Zo
1 (*22dz a?
aja—z [3a3+4a4+5a5+ J

0 0

et 'on a:
a i
T:[mJFM.f. B2 )] (&)
V1 a \3a3  4dat dt

La masse entrainée devient alors, en remplacant ¢ par sa
valeur,

1+_

a 1 a \2
M - -
W’”+1+J}+ T ) )
> 1S nmee & o \w
= |
M=+ M e g 2+n(1—|—a)
c’est le résultat que nous voulions établir : la série est convergente
P
pour toutes les valeurs positives de « = -— Dans cette for-
iz,

mule : m est la masse suspendue au ressort; M, la masse du
ressort ; P, son poids ; k, son module d’allongement ; 2z, la lon-
gueur du ressort mesurée dans 1’état d’équilibre en supposant ce
ressort sans poids. Pour ¢ = 0, on retrouve le résultat de lord
Rayleigh.
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Exemple.

Réservant I'étude expérimentale de quelques ressorts pour
une publication ultérieure, nous nous bornerons a illustrer 1'usage
de notre formule par un seul exemple et nous étudierons un res-
sort qui est loin d’étre parfait et dont les spires ne sont pas éga-
lement jointives a I’état de repos, mais qui nous semble se préter
particuliérement bien a une vérification, parce que sa force de
rappel est suffisamment grande par rapport a son poids. Pour de
grandes déformations, k n’est pas une constante et notre formule
ne s’applique pas.

Les caractéristiques du ressort sont les suivantes : Les spires
sont, en général, jointives sans effort, leur nombre est n — 140;
la longueur du ressort est alors de 187 mm.; le diameétre du fil
cylindrique, qui s’en déduit, est de 1™™,34. Le cylindre extérieur
que forment les spires a un diameétre de 23™*,85, de sorte que le
cylindre de I’hélice a un diamétre de 22™™,51. Ainsi la grandeur
que nous désignions précédemment par a est égale a 11™™26. La
longueur du fil est donnée par la formule ! = 2 nna = 990°™,5.
La hauteur de I’ensemble des spires a I'état d’équilibre vertical,
sous l'effet du poids P,, était Z, — 48°™45. Cette donnée permet
de calculer l'angle ¥, de la tangente a I'hélice avec la verticale,
et ’on obtient 9, — 87°12’. Le poids du ressort, dans ’air, est de
106¢7,275. Le resserrement des spires sous l'effet de ce poids est
insensible a I’ceil (0,4 mm. entre la premiére et la derniére spire).

Pour des charges voisines de la charge que le ressort suppor-

P—P,

T—2z
Pour le calcul de la masse entramee, nous avons admis une
valeur moyenne de k = 18,8 ; comprise entre la valeur obtenue
en calculant avec le tiers de la masse du ressort et une détermi-
nation statique.

La masse, que nous avons demgnee par m, suspendue a l’ex-
trémité inférieure du ressort se composait :

tait dans ses oscillations, k= gr. cm.—! Variait trés peu.

1. D’une tige verticale avec vis et encoche . . . . 255,25
2. D’une tige transversale de 7 mm. de diamétre, de

58 em. de longueur, d’'un poids de . . . . . . 233%27
3. De deux contre-poids placés aux extrémités de la

tige horizontale; ensemble . . . . . . . . . 318,64
La masse mestdonede . . . . . . . . . . . B7716

Nous n’avons pas utilisé pour ce ressort le mode de suspension
indiqué au début. Les extrémités des spires étaient recourbées et
venaient se souder a une tige verticale ayant approximativement
pour axe ’axe du ressort. Des ressorts construits avec des soins
spéciaux, en vue de notre étude, seront examinés dans un autre
article.
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La durée d’oscillation du ressort a été mesurée a la tempéra-
ture, a peu prés constante, de 19°. Nous avons d’abord employé:
une méthode directe en comptant le nombre des oscillations, soit
1004 en 1152 sec. Cela fait une période de 1,14741 sec. Nous avons
ensuite vérifié ce résultat par la méthode des coincidences et
avons obtenu 156 coincidences avec le balancier de I’horloge fon-
damentale du laboratoire, en 1214 sec.; puis 260 coincidences en
2023 sec. Le temps écoulé entre deux coincidences consécutives
est de 7,7820 sec. dans le premier, de 7,7807 sec. dans le second
cas. Les durées d’oscillation qui s’en déduisent sont respectivement
1,14745 sec. et 1,14747 sec. Nous pouvons admetire que les quatre
premiéres décimales sont exactes et qu’en comptant 7 = 1,1474
sec. pour la durée d’oscillation du ressort, nous commettons
une erreur qui ne dépasse pas 5.10—° sec.

L’amortissement a été déterminé en notant le temps que le
ressort a mis & passer d’'une amplitude de 15 a 0™ aprés
1022 oscillations, soit en 1173 sec. Le décrément logarithmique est

ainsi de ];)—gcz%b — 0,00115. Le coefficient d’amortissement [
est donné par I’équation :
fes Qn?);c log.10. log—
Le facteur de correction qui entre dans le calcul de la période
T—2xn _iKT est: Zgﬁ — 0;003425. Ce nombre est négli-
"~ 2ok

geable devant la valeur de kg — 18435,6.
Calculons maintenant la masse totale entrainée d’apres la for-
mule indiquée :

o 7 : ;
/l—l— o )n—i . o P
lJra 2+1z(1+a S

m — H77¢,16. M = 106¢7,28; nous ajouterons au total de la masse
entrainée 07,01 pour tenir compte de la poussée de lair.
Pour calculer aq, il faut calculer, tout d’abord, z,.
_ P
Ona:zy=Z4Z,—0d0z, Z,—4845cm. 4z, 2522,83 mm., et
v

M=m+M ——

I’on trouve: 7, =45,62 cm.

o —

D 012302, don g:0,06196;

kzg
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14 g —1,06196, 1+a =1,12302
log « —1,09313
log (1 s g) —0,02611; log (1 @)= 0,05073

(47
14 5 a _
P | 1 —— 2
log T 1,97538 g7 Ta 1,04240
. logarithmes nombres fractions produits
a - 1
— 1,04240 1026 - 0,027
e ; 0,110 i ,02756
2 A
(—“—) 3,08480 0,01216 ! 0,00243
1+« B
( = )3 3,12720 0,00134 : 0,00022
,1 + P 9 ’ 6 b
a \* - 1
(m) 4,16960 0,00014 8 5 0,00002
% ¥ = 1
(m) 5,21200 0,00001 6 3 0,00000
e \% _ _ 1 ;
(m) 6,25440 0,00000 2 9 0,00000
0,03024
2:%+ 0,03024 = 0,36357 % —0,33333
~ . B =(0,36357
log 3=1,56058
log M =2,02645
a
M og a —1,97538
o] ,1 + a - —7
log 3=1,56058
log M’ =1,56241 —1log 36,51
m =9571,16 gr.
M= 36,51 »
poussée — 0,01 »

9L — 613,68 gr.
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Nous trouvons ainsi, pour la masse entrainée, 613¢,68; le tiers
de la masse du ressort étant 35%7,43, on obtiendrait par Ia formule
habituelle 612¢7,60. Notre formule ne donne donc qu’une diffé-
rence de 1 gr. environ.

La quantité la moins bien connue dans les calculs qui pré-
cédent est certainement le module d’allongement k; nous en avons
donné une valeur moyenne. Mais, connaissant la durée d’oscilla-
tion T et la masse entrainée DI, on peut calculer k par la formule

= ?)_]t ol g — 980,6 cm. sec.” 2
kg

et on trouve £ =18,767 gr. cm.— .

Lorsqu’on fait le calcul avec le tiers de la masse du ressort,
on obtient pour k : 18,733.

On pouvait prévoir que cette valeur serait un peu plus faible
.que la valeur obtenue par la mesure statique. Nous nous sommes,
en effet, servis pour notre calcul de I’équation (6)

A sin? 9,
azl

Une mesure statique correspond, au contraire, & la formule
compléte :

(6) =

e :
(3 bis) y— IO L L PR AR Y

2 i
z—2z, z—2z, la z— 2,

La mesure que nous avons faite nous a donné :

F 99,987 gr.
z—2z, 531 cm.

1{21 ==

=18,83 gr. cm.—.

Nous pourrions, en partant de la valeur donnée par la premiére
définition, calculer la valeur de k;, correspondant a la seconde,
et alors comparer le résultat de nos calculs a la valeur expéri-
mentale: k, — 18,83. Nous utiliserons pour cela 1’équation
(3 bis).

11 faut, tout d’abord, déterminer le coefficient B.

Pour cela on se sert de 1’équation (5), p. 114, et il faut déter-
miner le couple de torsion N. C’est ce qu’on fait en déplacant
les surcharges sur la tige transversale et en mesurant: 1) leurs
distances, ¢ et ¢’, a 'axe du ressort, et 2) les durées d’oscillation
T et T’, autour de ce méme axe. On a:

I—r m (c2 — c'?)
N-4n2T T,2——47z QW'
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En faisant: m — 159¢7,32; ¢ = 28™,20; ¢’ = 10=,02; T = 20,077
secondes; T — 10,534 sec., on trouve log N = 1,48449.

: IN —A cos?d
Dés lors, en vertu de ’équation (5), on a: B = 2

sin?
ce qui donne : log B — 4,48056 en gr. cm®.
11 faut ensuite calculer les deux termes :
sin
= b
in$ "’ B z
k S et (smzﬂ —sin? ) ——
g ZO & — ZO

ol nous faisons :
18,767 gr. cm.—1

I =990,5 cm.
a = 1,126 cm.
¢in eﬁlf- sinq_‘}():_zlo-
z —zy,=5,31 cm.
On trouve ainsi :
sin 4,
" 0
p— 209 48791
B
— (sin* 8, —sin® 9) 5 0422
e ""0
By ... =18,846

On sait que la valeur trouvée expérimentalement est 18,83.

L’écart qui subsiste entre ces valeurs s’explique par diverses
raisons. La mesure statique de k avait été faite pour d’autres
valeurs de 2z, un peu inférieures a celles qui sont entrées dans nos
calculs; comme k croit faiblement avec 2z, nous devions obtenir
une valeur trop grande, et c’est en effet le cas.

Remarquons cependant que la méthode statique employee
pour mesurer k, donne difficilement une appromixation supé-
rieure a 1 %,,. Nous ne pensons pas avoir dépassé cette approxi-
mation dans notre mesure. C’est pourquoi I’écart que nous venons
de constater, inférieur a 1 /,,, nous permet de considérer le résul-
tat de nos calculs comme satisfaisant.

L’important est d’obtenir une valeur plus approchée au moyen
de la formule proposée pour le calcul de la masse entrainée. Avec
la formule habituelle, c’est-a-dire en ajoutant a la masse suspen-
due, le tiers de la masse du ressort, on obtient pour k, 18,813 gr.
cm. “1. L’erreur relative est donc numériquement la méme que
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précédemment, mais elle est de sens contraire, et ceci est en con-
tradiction avec la prévision qu’on pouvait faire on obtient une
valeur trop petite, c’est une trop grande qu’'on devait attendre.
Notre formule donne done un meilleur résultat que l’addition du
tiers de la masse du ressort.

I1 peut paraitre inutile d’attacher une certaine importance a
des erreurs de l’ordre de celle que nous nous sommes efforcé de
réduire. Mais il ne faut pas oublier que les ressorts sont, a justes
titres, trés utilisés dans I’enseignement ou il est important d’at-
teindre une précision souvent visiblement insuffisante avec la for-
mule ordinaire.

De plus, les ressorts permettent de mesurer avec quelque cer-
titude le module de Poisson qui est une des constantes importantes
de la théorie de I’élasticité, toujours délicate a déterminer.

On a: Z:”.l—lﬂr. Or, le calcul de la masse entrainée entre

dans la détermination de A aussi bien que de B, comme on 1’a vu
dans I'exemple étudié.
Dans notre cas, I’acier du ressort a pour module :

6—0,27997 = 0,28.

Enfin, nous nous permettons de faire observer que la formule
proposée pourrait s’appliquer a d’autres corps élastiques, car son
calcul n’est basé sur aucune propriété appartenant exclusivement
au ressort spiral cylindrique. Il n’est donc pas impossible qu’il se
présente d’autres cas ou elle soit applicable.

Nos mesures ont été faites a 1'Institut de physique de 1’'Uni-
versité de Neuchéatel. Qu’il nous soit permis de remercier ici, publi-
quement, son directeur, M. le prof. A. Jaquerod, pour le bienveil-
lant intérét qu’il ne cesse de témoigner a ses anciens étudiants.

Manuscrit recu le 1er aotit 1932.
Derniéres épreuves corrigées le 1er mai 1933.




	Comment tenir compte de la masse du ressort dans quelques cas simples d'équilibre et de mouvement?

