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Gomment tenir compte de la masse du ressort dans

quelques cas simples d'équilibre et de mouvement?

S. GAGNEBIN
Professeur au Gymnase cantonal

(AVEC 6 FIGURES)

INTRODUCTION

La théorie classique de l'élasticité, grâce à la forme analytique
à laquelle elle a pu parvenir dans la première moitié du 19me

siècle, reste d'une grande importance dans l'étude de la physique.
Elle traite des deux problèmes suivants : 1° Connaissant les

déformations d'un corps solide, déterminées en fonction des
coordonnées de ses points, calculer les tensions intérieures et les
forces appliquées à la surface. 2° Connaissant les forces
extérieures appliquées à un corps solide, calculer les déformations et
les tensions intérieures. Pour résoudre l'un ou l'autre de ces
problèmes, il faut connaître deux coefficients caractéristiques du
corps, si celui-ci est isotrope ; s'il est anisotrope, au plus 36.
Les deux paramètres choisis par G. Lamé, l'un des principaux
créateurs de la théorie, sont désignés par les lettres grecques
l et pt, et l'on définit sous le nom de module de Poisson la quan-ltite g= - dont il est question à la fin de cette étude.

2 (*+ /*)
Les deux problèmes mentionnés n'ont pas une importance

équivalente. Le second, qui se présente constamment dans la
pratique, est incomparablement plus difficile à résoudre que le
premier. Il suppose généralement une étude expérimentale approfondie

qui permet, grâce à des hypothèses, d'exprimer les
déformations en fonction des coordonnées ; on est alors ramené au
premier problème. Jusqu'à présent le second problème n'est
résolu que dans un nombre restreint de cas simples.

Dans le cas où la théorie de l'élasticité ne peut s'appliquer, le
physicien ne se tient pas pour battu. Il renonce sans doute à
résoudre complètement les problèmes énoncés, mais, en généralisant

certains résultats de la théorie rigoureuse et en faisant
certaines hypothèses simplificatrices, il parvient à des solutions
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approximatives, parfois tout à fait suffisantes étant donnée la
précision des expériences. L'ensemble des méthodes appliquées
dans ces cas est désigné sous le nom de Résistance des
matériaux. Ces méthodes sont seules applicables au problème de
l'équilibre des ressorts à boudin.

Un effet de la torsion du fil formant le ressort.

Supposons un ressort spiral cylindrique suspendu verticalement.

Nous utilisons pour cela un simple fil ciré attaché à deux
points diamétralement opposés de la spire supérieure, fil glissant
sur une tige horizontale \ Par un moyen analogue, nous suspendons

un poids à la spire inférieure. De cette façon, une force F
est appliquée au ressort suivant son axe vertical. La fig. I permet
de conclure qu'en un point A du ressort sont appliqués une force
F' égale, parallèle à la force F, de même sens qu'elle, et un couple
dont le moment est le produit de la distance a du point A à
l'axe du ressort, et de la force F.

F.

A

T
Fis. 1.

La force F' est appelée effort tranchant et on en néglige les
effets, petits par rapport aux autres, lorsqu'on ne soumet pas le
ressort à des forces trop grandes. On réduit ainsi le problème à
Tétude des déformations d'une hélice, lieu des centres des
sections droites du fil métallique qui forme le ressort. A sera un
point de cette hélice. Le couple de moment a F se décompose :
1° en un couple d'axe tangent à l'hélice Fa sin ê qui tord la tige
et, 2° en un couple Fa cos ¦& dont l'axe est dirigé suivant la binormale

et qui imprime à la tige une flexion dans le plan osculateur
de l'hélice en A. Ce couple, dit fléchissant, est d'autant plus petit
que la tangente à l'hélice fait, avec la verticale, un angle & plus
voisin de 90°, autrement dit qu'elle est plus près d'être
horizontale.

1 Sur la suspension des ressorts voir: G. Broulhiet, La technique des ressorts à
boudin travaillant à la tension, dans «Produire», p. 66.
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AH Fa sind- AK=Fa cos &

Nous allons faire voir que l'écartement des spires est dû au
premier de ces couples, c'est-à-dire à la torsion du fil. La fig. Illa
montre que, si l'on relève une demi-spire d'un plan horizontal
dans un plan vertical, en maintenant plane l'une des génératrices
AB, l'épingle B tourne de 180° en B\ La fig. III b montre que si
l'on maintient cette épingle parallèle à sa direction primitive B,
la génératrice AB devient une courbe gauche AB' et que, en
conséquence, la surface canal que forme la tige a subi une torsion
totale de 180°. La fig. YVa montre comment, pour relever dans un
plan vertical une spire complète, on peut procéder par étapes en
relevant d'abord une demi-spire, puis l'autre moitié, de sorte que
la torsion totale de la spire entière est 360°, quand on a maintenu
les épingles B et C dans leur direction primitive. Enfin, la fig. IV b
montre que, par une simple flexion, et par conséquent sans
nouvelle torsion de la surface, on peut amener l'épingle C" en C dans
sa position initiale. Il résulte de l'examen de ces figures que si
l'on fait exécuter à la spire entière une rotation de 90°, de ma-



— 110 —

nière à amener la spire d'un plan horizontal à un plan vertical,
en maintenant fixe les épingles A et C, la torsion totale du fil est
de 360°, soit 2 n.

B'

E/

A

B B

Fig. III.

C

c
B73

A

Fig. IV.

Si, au lieu d'amener la spire dans le plan vertical, on l'amenait
dans un plan faisant un angle •& avec celui-ci, la torsion totale de
la spire serait 2 n cos #. Enfin, si l'on divise cette torsion totale
par la longueur de la spire placée dans le plan d'angle ê, et qui
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2na
est ——-, on aura la torsion moyenne, qui se confond dans notre

sin & cos d- ¦ sin d-
cas avec la torsion en un point, 2 71 cos d- - •

Ana a
Or, cette expression représente précisément la torsion géométrique,

ou seconde courbure de l'hélice dont la tangente fait un
angle & avec la verticale. La torsion physique de la surface que
forme le fil du ressort est donc égale à la seconde courbure, ou
torsion géométrique, de l'hélice.

De là, on peut conclure que les variations de l'angle ¦& sont
fonction du couple de torsion de moment Fa sin ê. D'ailleurs, le
pas de l'hélice est donné par l'expression 2 n a cotang ê; donc
nous avons établi que le pas de l'hélice, à savoir l'écartement des
spires, est dû à la torsion du fil dont est fait le ressort. Un petit
appareil, très simple et ingénieux, décrit dans plusieurs ouvrages,
en particulier dans la Mécanique appliquée de John Perry (trad.
Davaux), permet de vérifier expérimentalement cette conclusion.
Je l'ai présenté, avec d'autres expériences sur les ressorts, à la
Société neuchâteloise des sciences naturelles (séance du 29
janvier 1932).

Variations du rayon du cylindre
sur lequel s'enroule l'hélice.

La théorie de la résistance des matériaux admet qu'un couple
fléchissant a pour effet une variation de courbure, proportionnelle,
dans le plan du couple. La courbure de l'hélice en un de ses points

sin2 *
a pour expression et l'on peut calculer l'effet du couple C

a
appliqué dans le plan osculateur de l'hélice.

où B est une constante égale au produit du moment d'inertie de la
section droite du fil du ressort par rapport à un diamètre contenu
dans le plan osculateur, et du module d'Young, E, relatif au fil
utilisé.

D'autre part, si l'on fait le développement de l'hélice sur un
plan parallèle à l'axe du cylindre (voir fig. V), on a facilement la
relation suivante :

sin d- —

où l est la longueur du fil, a le rayon du cylindre, cp l'angle total
des spires, de telle sorte qu'on a la relation cp 2 n n, où n est
le nombre (entier ou fractionnaire) des spires.
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On tire de là :

Fig. V.

C B-d a

et, en remarquant que da et dcp sont de signes contraires,

da--
Isind-

on peut écrire :
cp-

dcp,

M- sin2 d- ~sin#
aa + 2—;— dcp

az l

Il résulte de cette équation que l'application d'un couple de
forces dans le plan osculateur de l'hélice donne lieu à une
diminution du rayon a du cylindre sur lequel est enroulée l'hélice,
diminution qui est proportionnelle au couple de forces et au carré
du rayon a du cylindre. Cette variation augmente quand l'angle ê
diminue, c'est-à-dire quand la tangente à l'hélice s'éloigne de
l'horizontale.

L'application du même couple donne encore lieu à une
augmentation du nombre des spires de l'hélice qui est proportionnelle
à la longueur du fil formant le ressort.

En utilisant la relation qui existe dans une hélice entre la
longueur l du fil, celle z du ressort, le rayon a du cylindre et
l'angle cp donnant le nombre de spires, à savoir la relation :

2 2 72 2
a cp t —2

on peut calculer la variation du rayon du cylindre en fonction de
l'allongement dz du ressort et de l'augmentation dn du nombre
des spires :

da dz dn.
l~ — z n

La quantité
da a:

peut se représenter par la courbe
dz r-

de la fig. VI. Pour obtenir cette courbe, on a fait : a — 1, l — 8.
On voit que la variation du rayon du cylindre est très faible même
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pour des allongements du ressort considérables. Le rayon diminue,
au contraire, très rapidement quand la longueur du ressort devient
comparable à la longueur du fil.

1=8

0' 4
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t 0,01 i
11 Û, OÒ3
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Fig. VI.
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Equations d'équilibre.
On les obtient en faisant la somme des énergies de torsion et

de flexion. Nous désignerons par q le rayon de courbure de l'hélice
en un de ses points, et par r le rayon de seconde courbure.

L'énergie de torsion a pour expression :

A/1
2 U

1
h A 1

Vf (<Pz — <Pohî

L'énergie de flexion a pour expression

B/i
2 \o

1

<=!'?Kf- ¦<Po Vt-â
où B a la signification qui lui a été donnée à la page 111 et A désigne
une constante, produit du moment d'inertie de la section droite du
fil par rapport au centre de cette section, par la constante pt ;
3„ et <p0 désignent la longueur du ressort et l'angle proportionnel
au nombre des spires quand le ressort est dans sa position d'équilibre

initiale. La somme de ces énergies reste constante si l'on
laisse librement osciller le ressort et qu'on fasse abstraction des
amortissements. C'est ce que met en évidence l'expérience de
Wilberforce (1894). On suspend au ressort une masse dont le
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moment d'inertie par rapport à l'axe du ressort est réglable, on
peut alors constater l'échange des énergies de torsion et de flexion.
Pour une valeur calculable du moment d'inertie, l'une des énergies
devient nulle lorsque l'autre est à son maximum.

L'énergie totale est égale au travail accompli par le poids sus-
z

pendu, lorsqu'on déplace celui-ci d'une hauteur s — z0, soit I Fdz.
Za

Ainsi la dérivée partielle, par rapport à z, de l'énergie totale
sera égale au poids F. C'est ainsi qu'on obtient l'équation de l'équilibre

du ressort sous le poids F :

(1) F^^z-cp^cp-^cpYf^-^Yf^^^
Si c'est un couple de forces de moment N qu'on applique à

l'extrémité du ressort et dans un plan perpendiculaire à l'axe,
l'énergie sera égale au travail de ce couple tournant d'un angle
cp — <p0 h partir de la position d'équilibre cp0. En dérivant par
rapport à cp, on obtient l'équation :

(2) iV=|^/^^-yo/f=^/^^+ |(9)2_.9,o,o)z.

Les déterminations des constantes A et B des ressorts se font
au moyen de petites oscillations autour d'une position définie, la
masse suspendue au ressort ayant un grand moment d'inertie par
rapport à l'axe de celui-ci. a„L'angle ê variant au voisinage de 90°, sin ¦& — varie très

z l
peu, cos ¦& — - varie beaucoup, au contraire; on écrira donc

l'équation (1) en fonction de s :

„ Asin2#/ sin#0 \ B

Si l'oscillation est assez petite pour qu'on puisse écrire ê #0:
on a simplement :

(4) *-^<-*
et l'on voit qu'alors la force F est proportionnelle à l'allongement
z — z0.

Si l'oscillation est une torsion se produisant dans un plan
perpendiculaire à l'axe, on a s z0 et l'équation (2) s'écrit :

(5) S-ß«*h±l2*iiW-rt
t

ainsi le couple est proportionnel à l'angle de déviation.
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Ces équations ont été données par Thomson et Tait : Natural
Philosophy, vol. I, part II, p. 141. Dans l'exposé qui précède, je
me suis principalement inspiré des ouvrages de H. Bouasse :

Mécanique physique, 1912, Résistance des matériaux, 2me

édition, 1931. Voir aussi : A. Boulanger, Les principes de la mécanique

des ressorts, 1927.

Allongement d'un ressort spiral cylindrique
sous son propre poids.

Jusqu'à présent, nous n'avons pas tenu compte du poids du
ressort. Pour en calculer l'effet sur la longueur du ressort dans
l'état d'équilibre, nous nous placerons dans des conditions
particulièrement simples. Nous admettrons que ce poids est faible par
rapport à la force appliquée à son extrémité, de sorte que
l'allongement qui en résulte est proportionnel au poids. En d'autres
termes, nous nous bornerons à appliquer la plus simple des équations

qui précèdent (4) et nous désignerons par fc le module
d'allongement défini par l'équation :

(6) k==~aJT

Pour des ressorts de même rayon a, de même pas, de même
fil, fc est inversement proportionnel à la hauteur z0 du ressort,
puisque z0 est alors proportionnel à la longueur l du fil qui figure
au dénominateur de l'expression qui définit fc.

Considérons des tranches horizontales de même hauteur
infiniment petites dz ; la constante d'allongement est, pour chacune

¦7

d'elles, k —- et, par conséquent, la variation de longueur d'une de
dz

ces tranches sous un poids ò P est :

ôdz^-ôP.
k Zq

è P varie avec la cote z de la tranche considérée : pour z z0,
c'est-à-dire au bas du ressort, ô P 0 ; pour la plus haute
tranche, z 0, ôP P, le poids total du ressort. On aura pour
une tranche de cote z :

ôP=-(z0-z)
h

d où :

_, 1 dz P, P zn — z
(7) ôdz -¦ -¦ 7(z0-z)=T-V-Ath ^A X-A tl> ^Q
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Pour l'allongement total, ô z0, nous aurons donc :

r°p z0-z i p
ÔZ«=X y-ïAdz=k-ï

Ainsi l'allongement d'un ressort sous son propre poids est la
moitié de l'allongement que produirait un poids égal à celui du
ressort suspendu à l'extrémité de celui-ci.

Masse entraînée dans le mouvement d'oscillation vertical
d'un ressort à boudin.

Considérons un ressort à boudin suspendu verticalement et à
l'état d'équilibre sous l'effet d'un poids P„ dont nous désignons la
niasse par m. Si nous communiquons à ce ressort un mouvement
dans le sens vertical et que nous abandonnions ensuite le système
au jeu des forces élastiques, le mouvement qui en résulte n'est
généralement pas simple. Cependant, l'expérience montre que,
parfois, le ressort vibre tout d'une pièce, de sorte que chacun de
ses points est animé d'un mouvement sinusoïdal simple, vertical.
Il faut pour cela, tout d'abord, que le moment d'inertie du système,
par rapport à l'axe du ressort, soit grand; il faut que les oscillations

soient d'amplitude petite; il faut enfin que les ondes de choc
qui apparaissent au moment où on abandonne le ressort à lui-
même, et qui donnent lieu à des battements compliqués, soient
amorties d'une façon ou d'une autre.

Admettons qu'il en soit ainsi et que le ressort soit parfaitement

homogène dans toute sa longueur, la vitesse d'un de ses
points, à un instant donné, sera proportionnelle à la cote de ce
point, cote mesurée à partir du point de vitesse nulle. Si donc x
est l'élongation verticale de la masse m, un point de cote z aura
pour vitesse, au même instant :

z dx
z0 dt

Si l'on néglige la déformation produite sur le ressort par son
poids, le calcul a été souvent répété depuis que lord Rayleigh
en a indiqué le résultat dans sa Theory of sound, § 156. En effet,
la masse de la tranche élémentaire, de hauteur dz, du ressort a la

M
valeur — dz, où M désigne la masse du ressort de poids P et s0,

zo
la hauteur du ressort à l'état d'équilibre. La force vive du système
sera donc :

2 r=,n(dA+ [**(l.*t\\ât! ^Ja z„ \!„ it)
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'dx\2
en mettant I — en facteur

dt

ou

2r=|m + -^J22(fe|

¦*-[-+f]

dx\2
dt)

/dxA
\dì)

On en conclut que la masse entraînée est égale à la masse
suspendue m, augmentée du tiers de la masse du ressort.

Mais, comme nous l'avons vu, le poids du ressort déforme
celui-ci, de sorte que les spires les plus serrées sont entraînées
avec la plus grande vitesse. C'est cet effet que nous nous proposons

de calculer.
Remarquons premièrement que la tranche qui se trouve au

bas du ressort n'est pas déformée, sa hauteur est donc dz et sa
M

masse dz, comme dans le calcul précédent.
h

Les autres tranches sont allongées d'une quantité égale à (7)
que nous écrivons :

ôdz=!t p^-z)
kz0 z0

où dz a toujours la même signification, ainsi que fc et z0 dans le
dz

quotient -— ; au contraire, nous allons maintenant faire varier
kz0

s de 0 à Z0, Z0 représentant la hauteur du ressort déformé par son
poids, car nous allons introduire la vitesse de l'élément de cote z.

Le rapport ne changera pas de valeur par cette substitution,
2o

mais il s'écrira :

en désignant par Z la nouvelle cote du point du ressort qui avait
pour cote z, lorsqu'on ne tenait pas compte du poids du ressort.

Nous pourrons ainsi mettre la variation de longueur de
l'élément de hauteur dz sous la forme :

js,j dz n Z"~Z
òdz=T7P~~~7r~~

ft. Z0 Z/0

où Z varie de 0 à Z0.
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M
La masse d'un de ces éléments reste la même : — dz. Expri-

h
mons ici z0 en fonction de Z0 : Z0 — z0 est l'allongement total du
ressort en équilibre sous son propre poids P, et nous avons vu

P P
que cet allongement est: —-. Nous avons alors, en faisant: a -—,2k kz0

zo — h__ P =a
z0 2kz0 2

ce qui donne : zn zn 11 + - I ou zn —A.qui donne : Z0 — z0 M + j
1 + -2

On peut donc exprimer la masse de l'élément ds sous la forme :

MN)rf—=—&.
Mais alors, la masse par unité de longueur de l'élément

déformé a pour expression :

M(l+V
Zo

a\

dz M(i+t)
dz I — p Z°~Z zo + a(zo — z)

kz0 Zq

Et enfin l'élément dZ du ressort déformé a pour masse :

*(i+f),g
(l + a)Z0 —aZ'

Nous n'avons plus qu'à répéter notre calcul de la force vive en
introduisant cet élément de masse à la place de l'élément cons-

M
tant : — dz.

Nous obtenons :

,t »A\d ÇM{i+$dZ
2I-m{dt)+J(l + a)Z0-aZ\.

Z dxV
Z0

' It) '
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Zo

a

Z'dZ

o(l +a)Z0-aZ

(l + a)Z0

(* z az
Le calcul de la somme -r—,—-—, se fait en posant :

J (l + a)Zn—«Z

a

En désignant par s 1st variable d'intégration, cette somme
s'écrit :

Za Zo

1 r*dz a?ï z z°- I- I — —— — loge (a — ~) •ai a — z a I a 2a2 6 v 'J
0 0

Mais comme
r2 -S

loge(«-z) -^+—+ —+ ....j + logea

on peut écrire :

i r°z*dz _anz3 *4
¦

^5 \

et l'on a :

2r=rm+3^.«2Yâ+â+ -)] (fvZo a \3a3 4a4 /1 \d«

La masse entraînée devient alors, en remplaçant a par sa
valeur,

K_.+J,!±lß+*. «+*(-y+...l1 +b[3 .4 1 + a 5 \1 + a/ |

où a

c'est le résultat que nous voulions établir : la série est convergente
P

pour toutes les valeurs positives de a -— Dans cette for-
kzf)

mule : m est la masse suspendue au ressort ; M, la masse du
ressort ; P, son poids ; fc, son module d'allongement ; z0, la
longueur du ressort mesurée dans l'état d'équilibre en supposant ce
ressort sans poids. Pour a 0, on retrouve le résultat de lord
Rayleigh.
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Exemple.

Réservant l'étude expérimentale de quelques ressorts pour
une publication ultérieure, nous nous bornerons à illustrer l'usage
de notre formule par un seul exemple et nous étudierons un
ressort qui est loin d'être pàtfait et dont les spires ne sont pas
également jointives à l'état de repos, mais qui nous semble se prêter
particulièrement bien à une vérification, parce que sa force de
rappel est suffisamment grande par rapport à son poids. Pour de
grandes déformations, k n'est pas une constante et notre formule
ne s'applique pas.

Les caractéristiques du ressort sont les suivantes : Les spires
sont, en général, jointives sans effort, leur nombre est n 140;
la longueur du ressort est alors de 187 mm.; le diamètre du fil
cylindrique, qui s'en déduit, est de lmm,34. Le cylindre extérieur
que forment les spires a un diamètre de 23mm,85, de sorte que le
cylindre de l'hélice a un diamètre de 22mm,51. Ainsi la grandeur
que nous désignions précédemment par a est égale à llmm,26. La
longueur du fil est donnée par la formule l 2 nna 990cm,5.
La hauteur de l'ensemble des spires à l'état d'équilibre vertical,
sous l'effet du poids P0, était Z0 48cm,45. Cette donnée permet
de calculer l'angle &0 de la tangente à l'hélice avec la verticale,
et l'on obtient #0 87° 12'. Le poids du ressort, dans l'air, est de
106gr,275. Le resserrement des spires sous l'effet de ce poids est
insensible à l'œil (0,4 mm. entre la première et la dernière spire).

Pour des charges voisines de la charge que le ressort suppor-
p p

tait dans ses oscillations, k gr. cm.-1 variait très peu.
z — z0

Pour le calcul de la masse entraînée, nous avons admis une
valeur moyenne de fc 18,8 ; comprise entre la valeur obtenue
en calculant avec le tiers de la masse du ressort et une détermination

statique.
La masse, que nous avons désignée par m, suspendue à

l'extrémité inférieure du ressort se composait :

1. D'une tige verticale avec vis et encoche 25sr,25
2. D'une tige transversale de 7 mm. de diamètre, de

58 cm. de longueur, d'un poids de 233gr,27
3. De deux contre-poids placés aux extrémités de la

tige horizontale; ensemble 318sr,64

La masse m est donc de 577gr,16

Nous n'avons pas utilisé pour ce ressort le mode de suspension
indiqué au début. Les extrémités des spires étaient recourbées et
venaient se souder à une tige verticale ayant approximativement
pour axe l'axe du ressort. Des ressorts construits avec des soins
spéciaux, en vue de notre étude, seront examinés dans un autre
article.
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La durée d'oscillation du ressort a été mesurée à la température,
à peu près constante, de 19°. Nous avons d'abord employé

une méthode directe en comptant le nombre des oscillations, soit
1004 en 1152 sec. Cela fait une période de 1,14741 sec. Nous avons
ensuite vérifié ce résultat par la méthode des coïncidences et
avons obtenu 156 coïncidences avec le balancier de l'horloge
fondamentale du laboratoire, en 1214 sec; puis 260 coïncidences en
2023 sec. Le temps écoulé entre deux coïncidences consécutives
est de 7,7820 sec. dans le premier, de 7,7807 sec. dans le second
cas. Les durées d'oscillation qui s'en déduisent sont respectivement
1,14745 sec. et 1,14747 sec. Nous pouvons admettre que les quatre
premières décimales sont exactes et qu'en comptant T 1,1474
sec. pour la durée d'oscillation du ressort, nous commettons
une erreur qui ne dépasse pas 5.10-5 sec.

L'amortissement a été déterminé en notant le temps que le
ressort a mis à passer d'une amplitude de lmm,5 à 0mm,l après
1022 oscillations, soit en 1173 sec. Le décrément logarithmique est

log 15
ainsi de .„^ 0,00115. Le coefficient d'amortissement /

1022
est donné par l'équation :

f=^-10gal0.log-0-
it A. "*n

Le facteur de correction qui entre dans le calcul de la période

T In -i / ^ 2 est : -^ 0,003425. Ce nombre est négli-

V kg-mt
geable devant la valeur de kg 18435,6.

Calculons maintenant la masse totale entraînée d'après la
formule indiquée :

1 + -

1+«îéi 2+«vi+«/? kz0

m 577gr,16. M 106gr,28; nous ajouterons au total de la masse
entraînée 0^,01 pour tenir compte de la poussée de l'air.

Pour calculer a, il faut calculer, tout d'abord, z0.

P
On a : z0 Z0 — ôz0 Z0 — 48,45 cm. ôz0 — 2,83 mm., et

2fc

l'on trouve : r0 45,62 cm.

: -— 0,12392, d'où 5 0,06196 ;
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1 + - 1,06196, 1 + a =1,12392
dà

log a 1,09313

log M + ~\ 0,02611 ; log(1 + a) 0,05073

4+ï -log—.— 1,97538
1 + a

log
1+a

1,04240

logarithmes

1,04240
1 + a

a

lÄa
a

a

1 + a.

a
1 + a

a

Ï+Ï.

2=5+ 0,03024 0,36357

nombres

0,11026

2,08480 0,01216

3,12720 0,00134

4,16960 0,00014 8

5,21200 0,000016

6,25440 0,000002

fractions
1

4
1

5
1

6
1

7
1

8
1

9

1

3

S
log S=4,56058

produits

0,02756

0,00243

0,00022

0,00002

0,00000

0,00000

0,03024

0,33333

0,36357

log M=2,02645
a

M' !+;
log'T~r~:1+a

1,97538

log .2=1,56058
log M' 1,56241 log 36,51

m =577,16 gr.
Ai'= 36,51 »

poussée 0,01 »

9ft 613,68 gr.
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Nous trouvons ainsi, pour la masse entraînée, 613gr,68; le tiers
de la masse du ressort étant 35gr,43, on obtiendrait par la formule
habituelle 612gr,60. Notre formule ne donne donc qu'une différence

de 1 gr. environ.
La quantité la moins bien connue dans les calculs qui

précèdent est certainement le module d'allongement fc; nous en avons
donné une valeur moyenne. Mais, connaissant la durée d'oscillation

T et la masse entraînée 9Î£, on peut calculer k par la formule

/ mrT=23il/ — où # 980,6 cm. sec.-2

et on trouve k== 18,767 gr. cm.-1.
Lorsqu'on fait le calcul avec le tiers de la masse du ressort,

on obtient pour fc : 18,733.
On pouvait prévoir que cette valeur serait un peu plus faible

que la valeur obtenue par la mesure statique. Nous nous sommes,
en effet, servis pour notre calcul de l'équation (6)

(6) k -~aH~-
Une mesure statique correspond, au contraire, à la formule

complète :

sin-&0

(3 bis) fc, —— fc ™- f- -^ (sin2 90 — sin2 9) —-—

La mesure que nous avons faite nous a donné :

F 99,987 gr. taanh ^_A_ .18,83 gr. cm.-1.
z — z0 5,31 cm.

Nous pourrions, en partant de la valeur donnée par la première
définition, calculer la valeur de kt correspondant à la seconde,
et alors comparer le résultat de nos calculs à la valeur
expérimentale : fcj 18,83. Nous utiliserons pour cela l'équation
(3 bis).

Il faut, tout d'abord, déterminer le coefficient B.
Pour cela on se sert de l'équation (5), p. 114, et il faut

déterminer le couple de torsion N. C'est ce qu'on fait en déplaçant
les surcharges sur la tige transversale et en mesurant : 1) leurs
distances, c et c', à l'axe du ressort, et 2) les durées d'oscillation
T et î", autour de ce même axe. On a :

I — P to(c2 —c'2)
N==4tn2^ï ^72 4Tr2-2-=2 Tj^T '
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En faisant: m 159«r,32; c 28cm,20; c' 10cm,02; T 20,077
secondes; î" 10,534 sec, on trouve log N 1,48449.

IJSf Acos2^
Dès lors, en vertu de l'équation (5), on a : B

ce qui donne : log B 4,48056 en gr. cm2.
Il faut ensuite calculer les deux termes :

sin-&0
z znsind ° B

k et — (sin2 #0 — sin2 9)
z — zn ari -

sin2 90

où nous faisons

On trouve ainsi

k 18,767 gr. cm.-1

z0= 48,45 cm.
I =990,5 cm.
a 1,126 cm.

sin 9 - ; sin 90 — •

t l
z —^0 5,31 cm.

sin 9.o
0-Zn

/¦ ?BdL—^ 18,724
z — z0

B z
—-(sia*»0 — sin2#) 0,122àll Z Zn

h =18,846

On sait que la valeur trouvée expérimentalement est 18,83.
L'écart qui subsiste entre ces valeurs s'explique par diverses

raisons. La mesure statique de fc avait été faite pour d'autres
valeurs de z, un peu inférieures à celles qui sont entrées dans nos
calculs; comme fc croît faiblement avec z, nous devions obtenir
une valeur trop grande, et c'est en effet le cas.

Remarquons cependant que la méthode statique employée
pour mesurer kx donne difficilement une appromixation
supérieure à 1 °/00. Nous ne pensons pas avoir dépassé cette approximation

dans notre mesure. C'est pourquoi l'écart que nous venons
de constater, inférieur à 1 %o, nous permet de considérer le résultat

de nos calculs comme satisfaisant.
L'important est d'obtenir une valeur plus approchée au moyen

de la formule proposée pour le calcul de la masse entraînée. Avec
la formule habituelle, c'est-à-dire en ajoutant à la masse suspendue,

le tiers de la masse du ressort, on obtient pour k1 18,813 gr.
cm.—1. L'erreur relative est donc numériquement la même que
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précédemment, mais elle est de sens contraire, et ceci est en
contradiction avec la prévision qu'on pouvait faire : on obtient une
valeur trop petite, c'est une trop grande qu'on devait attendre.
Notre formule donne donc un meilleur résultat que l'addition du
tiers de la masse du ressort.

Il peut paraître inutile d'attacher une certaine importance à
des erreurs de l'ordre de celle que nous nous sommes efforcé de
réduire. Mais il ne faut pas oublier que les ressorts sont, à justes
titres, très utilisés dans l'enseignement où il est important
d'atteindre une précision souvent visiblement insuffisante avec la
formule ordinaire.

De plus, les ressorts permettent de mesurer avec quelque
certitude le module de Poisson qui est une des constantes importantes
de la théorie de l'élasticité, toujours délicate à déterminer.

On a : —-=1 + o. Or, le calcul de la masse entraînée entre

dans la détermination de A aussi bien que de B, comme on l'a vu
dans l'exemple étudié.

Dans notre cas, l'acier du ressort a pour module :

a 0,27997^0,28.

Enfin, nous nous permettons de faire observer que la formule
proposée pourrait s'appliquer à d'autres corps élastiques, car son
calcul n'est basé sur aucune propriété appartenant exclusivement
au ressort spiral cylindrique. Il n'est donc pas impossible qu'il se
présente d'autres cas où elle soit applicable.

Nos mesures ont été faites à l'Institut de physique de
l'Université de Neuchàtel. Qu'il nous soit permis de remercier ici,
publiquement, son directeur, M. le prof. A. Jaquerod, pour le bienveillant

intérêt qu'il ne cesse de témoigner à ses anciens étudiants.

Manuscrit reçu le 1er août 1932.

Dernières épreuves corrigées le 1er mai 1933.


	Comment tenir compte de la masse du ressort dans quelques cas simples d'équilibre et de mouvement?

