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FONCTIONS SPHERIQUES

ET

SURFACE D'APPROXIMATION

PAR

L. GABEREL

Professeur de géométrie a Neuchdtel

Position du probléme.

Dans ses Anwendungen der Differential und Integralrechnung
auf Geomelrie, ¥. Klein, le célébre mathématicien de Gottingue,
proposait le probléme suivant:

Les quantités ¢ et 6 désignant les coordonnées variables angu-
laires (longitude et colatitude), une fonction de ces deux variables
est arbitrairement définie sur la sphére unité (de rayon un), de telle
maniére qu’elle soit alternativement égale a 1 et — 1 sur les
octants successifs de la sphére. On demande d’exprimer la repré-
sentation approchée de cette fonction par le moyen des fonctions
sphériques. On poussera ’approximation jusqu’au quatriéme degré.
Enfin, on construira la surface représentative d’ apprommatlon de
la fonction.

L’intérét didactique d’un tel probléme est évident, et d’ailleurs
la solution, que nous allons developpel présente des particularités
géométriques remarquables.



PREMIERE PARTIE

Formules des surfaces d’approximation.

§ 1. Généralités.

Série de fonctions sphériques. — Lorsqu’une fonction f (1, @),
ou 'on a w=-cos #, est arbitrairement définie sur la sphére unité,
cela signifie que la valeur de cette fonction est donnée en chaque
point de la sphére, ¢’est-a-dire pour un quelconque des couples de
valeurs de u et ¢ qui correspondent aux divers points de la sphére.

Or, une fonction de p et @, définie sur la sphére unité, qui satis-
fait aux conditions de Dirichlet pour chacune des variables, peut
étre représentée par une série convergente procédant suivant les
fonctions sphériques générales de degrés indéfiniment croissants.
(Vest précisément le cas pour la fonction qui nous est proposée.

La formule de la série est la suivante :

S o)=Y+ Y, + Vb Vot

Yo (u, ) = Y désignant la fonction sphérique générale de degré
m définie comme suit :

n=m an ( )
. W ) . m A\
¥l i Y= Ap. COS 1 By sin ne) sin” § ———~,

1, 9)= 2 (Anm cos ng+ ») o
ou, en posant
dnpqn /‘}.dnprn;(l/
sin” 6 nw): (A — )2 = o),
du _ du

et en séparant le terme pour lequel n=0,

n=m

Yo (u, o) = Ao, P (1) +2 (An,m €08 np —+ By, sin n) Pi, (w),
n=1

les A el les B désignant des coefficients constants dont nous rap-
pellerons plus loin la forme.

Les fonctions P, (x) sont les fonctions sphériques zonales ou
coefficients de Legendre. L’indice m marque le degré.

~ Quant aux fonctions P, (u), nous les appellerons d’aprés Byerly?,
fonctions sphériques associées. Cet auteur donne une table des fonc-

tions Py, (u) et Py, () jusqu’au 8me degré inclusivement.

1 BYERLY. An elementary treatise on Fourier’s series, etc. Boston, 1902.
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Dans ces conditions, la série d’approximation de f (u, ) en fonc-
tions sphériques peut s’écrire, en supprimant la notation g dans les
P, (u) et Py, (w) pour simplifier 1’écriture,

(u, @)= [A o l Ay m COS T By, sinn Pﬁ@].
S lug _2: 0 2( p+ %)

L’indice m sera donc toujours supérieur ou au moins égal a n.
Quant aux coefficients A et B, leurs formules de détermination
sont :

2m 41
AO,m — —I_ fd(pff(ﬂ’ )P d:”’)

. 2m 41 (m—n)' :
An,m 9 (}’n-—l—’n) rfd(pj f(ﬂ, (p) COos ng Pm d‘u,
2m -1 (m—mn)!
Bl o =2 oy (fmJ[—n) fdgoff(,u, @) sin ne Py, du.

A cause du facteur commun (m —n)!, on voit que les A, et
B, .. sont nuls pour m = n. On ne pourra donc avoir que m > n.

Le domaine d’intégration s’étend a toute la sphére, soit pour ¢,
de 0 & 2, et pour p=cos#f, de —1 & 1. Mais la variation de u
peul étre opérée en deux parties, savoir de —1 a 0 pour ’hémi-
sphere inférieur, et de 0 & 1 pour 'hémisphére supérieur.

D’ailleurs, sur chaque hémispheére, de p=0 & ¢ =2, la fonc-

tion f (u, ) particuliére que nous devons représenter doit étre

alternativement égale a 41 et —1 lorsqu’on passe d’un octant au
suivant, de telle maniére que sur I’hémispheére supérieur, la valeur
initiale est -}-1, et qu’elle est égale & —1 sur I’hémisphere inférieur.

§ 2- calcu’ des Ao,m, et Anﬂn-

Calcul des Ao ... — Puisque P,,(u) ne dépend que de g, on a

AOM——“m+1[meduff(u,qv)d@JrfP duff(mqv)dqo]

Le premier terme représente I'intégrale sur I’hémisphére infé-
rieur, le second sur I’hémisphére supérieur. Or, pour une méme
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valeur de ¢, la fonction f (u, @) prend deux valeurs opposées —1 et

+1 sur ces deux hémisphéres. 1l en résulte que les intégrales
27w

f f (#, @) do sur les deux hémisphéres sont opposées. En repré-
0 27

sentant par f / (u, @) dp la valeur de cette intégrale sur I’hémi-
0
sphére supérieur, on a

0 1 27
2m 1
Ao,w;,————ét—g—t——,(ifpm,dpt*[)‘[/(u,(p)d(p.

Toutes les fois que plusieurs intégrales se suivront portant sur
la méme expression diflérentielle, nous n’indiquerons celle-ci que

sous le premier signe [, comme nous l'avons fait ci-dessus pour
P,, du, ceci afin d’alléger I’écriture.
Mais l'intégrale relative & ¢ sur I'hémisphére supérieur donne

27 _‘.7.3-E T 327—” 27

[ S wpdp=[dp—[+[—[=o0.
0 0 17 b1z 37
2 2

Tous les Ao m sont donc nuls, quel que soit U'entier m.

Calcul des A,, ,..— La formule générale de ces coefficients est donc

2m 41 (m—mn)! - "
An m— : y P - L .
, . (m+n)![d¢£/(ﬂ @) cos ng- P du

D’ailleurs les P, (x) ne dépendent que de . En tenant compte
des remarques précédentes, on pourra donc écrire

2m-4+1 (m—n)!

0 1 27
y. Ppp— ‘ " odu — , ) COS de,
; P (mJ[_n)!(fP du {)If(uw)foqnww

—1

I'intégrale relative & ¢ ne se rapportant plus qu’a I’hémisphére supé-
rieur. Dans ces conditions, on a

R¥(4
2 2

Q7 7T 27
3
ff(lu, @) COS nqndcpmfcos 7-qud<p——f+f—f:%<sin?%n+sin ;m>
0 0 T 37
_ 2 Ex

T



et 'on a

N 3nmw . N . nm
sm—+sm 5 _5111——|-51n(4n—n) g — S~ —sin—o-= =

Tous les Ay, ., sont donc nuls, quels que soient m et n.

§ 3. Généralités sur les coefficients B, ;..

Premiére formule. — La formule générale est

2m -1 (m —mn)!
2 (m—{—n) !

- En vertu des remarques déja tormulées sur Py, du et sur les
valeurs de f (u, @), on peut évidemment écrire :

b L ) (i g

l’inltégrale en @ ne se rapportant qu'a I’hémisphére supérieur. On
a alors

ff(lu, @) sin mpdcp—fsm nrpa’!cp——f—{—.ﬁ— f

By,m= goff(y, @) sin ne - Ppdu.

2 n 3 N
= [cosj—i— co ~+ cos nn)]
7 2
La quantité entre crochets donne
NI n n no
cos———{—cos(!m——fn)——-~2cos9 n—Qcosj(l—cos—)
2 2 2
=4 cos = sin? na
i —Ssln®——— .
2 4

Il faut maintenant trouver la valeur de ce produit suivant que »
est pair ou impair.

N
Cas de n impair. — On a cos?_—O par su1te on aura

Bn}m:O,
quel que soil m.
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Cas de n pair. — a) n est pairement pair: n=2-2k, k étant
un entier tel que 4k<m. On a alors

N

sin " —sin kv =O0.
4
Par conséquent, lorsque n est pairement pair, on a
B'n, m— O,

quel que soit m.
b) n est impairement pair: n=2(2k-+1). On a alors
cos njn sin? ?lf: cos (2k 4+ 1) msin® (2k 4 1)g: —

Par conséquent, dans le cas ou n est impairement pair, on peut
avoir By 0. On a alors

27
: 8
ff(‘u,, (p) sinne d(pzﬁa
0

et, par suite,

. <1 LY P )
— 0

NI (m+ n)!

Résumé. — Les seuls B, ,, qui peuvent étre différents de 0 sont
donc
B2 my  Be,ms Bio,m, etc.

avec m>2, 6, 10... respectivement.

Qumque le propre énoncé du probléme n’exige que le calcul
des coefficients jusqu’a m =4, nous pousserons cette détermination
jusqu'a m=9. Ceci nous per mettra de comparer rapidement |’ap-
proximation du quatriéme degré avec celles de degrés supérieurs
jusqu’a 9.

Parité de P),. — L’intégration, pour le calcul des By, ., portant
maintenant sur la fonction Py, (u) dans les deux domaines opposés
(—1,0) et (0,1), il v a lieu de comparer les valeurs de Pj,(u) pour
deux valeurs opposées de u. Ceci revient & étudier la parité éven-

tuelle de Py, ().
Or, en posant cos #=—u, on a

dn Pm 5 d P?’ﬂ
Py, (u)=sin" 0 ———————n(‘u) ( )2 (‘u)

Remarquons tout d’abord que le domaine de 8 auquel correspond
celui de pw de —1 & 41, est celui qui s’étend de 6 =n a 6=0.
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Dans tout ce domaine, sin 6 ou (1 — u2)? reste positif et il en

est de méme de sin” 6 ou (1 — u?)2.

D’autre part, on sait que la fonction P () est de meéme parité
que le nombre m?*. Or, la dérivée d'une fonction paire est impaire,
tandis que celle d’une fonction impaire est paire. Il en résulte que
les fonctions

d P M d2 P m dn I)m
de = di du"

PTH)

sont respectivement de méme parité que les nombres

m, m-4+1, m-++2,..., m-+4n

Par conséquent, la fonction P, sera de méme parité que le
nombre m -+ n.

1o Si m -+ n est pair, ¢’est-a-dire si m et n sont de méme parité,

on a :
0 1 0 1
fpxdyzfpmﬂ, d ot fpz;zdﬂ—fzo
-1 0 —1 0

20 Si m—n est impair, on a
0 1 0 1 0
fpzdyz—fpxdu, d’ott fp:;zdﬂ—f—_—zfm du.
—1 . 0 —1 0 —1

1
Conclusion. — La différence f Pdu— f P, du est nulle pour

0
tous les couples de nombres m et n qui sont de méme parité, el
égale a 2 f Py du pour les couples de m el n qui sont de parités

différentes.
Les seuls B, , qui peuvent donc ne pas étre nuls jusqu’au
9me degré sont :
Bss, Bys, Boz, Bay, et Bsi, Bspy.

Formule définitive des B, .. — Nous avions trouvé

LG ()

1 Le terme de parité est ici employé sous deux sens différents : parité d’une fonc-
tion, parité d’un nombre. Cette dualité ne présente évidemment aucun inconvénient.
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Or, pour les B, , qui peuvent étre non nuls, m et n sont de
parités différentes, c’est-a-dire que Py, () est impair; on aura donc

8(2m—+1) (m——n) !

I%th::
' ni (m+n) !

0
[ Phan.
—1

§ 4. Calcul des B, ., et Bs ., pour m=3,5,7.
Calcul de B> 3. — On a

87 1
Byy—— f Pi(w)dp,
et comme ,
| Py () =(1-—p*) - 15u
on aura
7 2 7 . "
BZ,SZ—%L{MU— Ydu=-- u-—~ Dl —p) = [(1— >
soit 7

By .
%3 8x

Calcul de B; ;. — On a

8 113!
Bys—— f Piwdu

avec

105 100

P3(w)=(1 — u?)- — Bu—w= 4w
Done 31811105
Bs 5= 5 (Bt — 4w dp.
7'2°- n J,
Or, 0 0

6

[Ew—wwtwdu=|"—w+5|=0.
=

On a, par suite, Bz s=0.
TR G



Calcul de Bs.. — On a

15 5l
T
avec
Pi(w)=(1 — 2) C (14345 — 11043 - 15p),
Done
5!15-63
B; 1=

i f(mgﬂ — 9535 - 1954° —15p) dp,

5 1143 953 125 15
_T 8 6 M&____y}
Pzl 8 6 4 2" |
65
By - e
T 7687

Calcul de Bﬁ,;’}'. — On a

81

B peew d L]
s - BJPM) @,
avee
y N | _ 131
Pi{f=0—p 43615, - 1518 — g
Donc ’
[ AR . 2\
61 == w)
|
soit
1
Bor=gi30,

§ 5. Calcul de B: et B; 9.

Remarque préliminaire. — Le calcul de B; et de Bs g nécessite
la connaissance de Pj et de Pj. Les tables de ByERLY pour les fonc-
tions Py, ne s’étendent pas au deld du 8me degré m = 8. En consé-
quence, j’ai di calculer Pj et P§ et comme on le verra, aussi P,.

6
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Pour étre plus sir des résultats, jai fait les calculs par deux
méthodes distinctes, I'une directe en partant de la formule

Mk (2m)!sin" 0 oy (m—m)(m—n—1)

P”‘(“)—Q.mi(m—n)![ T e@m—np Mt
(m—n)(m—n—1)(m—n—2)(m—n —3) o

T 2 %-2m—1)2m — 3) _]

I’autre en partant de la formule de définition
n gt

Pr(w)y=(1 — u2p Z

Cette derniere méthode a nécessité le calcul préalable de P,,(u)
pour u=9. o

Les calculs sont longs et un peu fastidieux. Les résultats seuls
nous intéressant, je me borne a les transcrire ici:

szi(12155u9_2574()”74-18018”5__ 4620 431 315),

495
Pi— 16 sin? 6 (221 u™— 2735+ 9 ud— Tu),

o 675675

9:

sin® (17 u3—3u) (675675=5-7-9-11-13-15).

8.19.7!
Caleul de By — On a Byo——_ 0 f P2 () d.

Donc 0
B2,9=2§9 f (221 — 497+ 3645 — 984 — Tu) dpe
t
S

19 |22 494 364 98 7
=% Eu“’— —8'wu8+ —-M“—ZM“~—§1»

soit By 19 _ 19

Calcul de Be,g. — On a .Bs g——

avec 675675

Pi= (1— 2)3 (174 —3u).
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Le coefficient de I'intégrale sera donc

_ 3!8-19-675675  8-19-3-5-7-9-11-13-15 19

1512. 6.7 6.7-15! T PP 5T

L’intégration donne

| | L Jarwe—3afa—uwy]

ars—sa—u |+ syao
== "5 o L— Y — M H
8 4 8—1

0

1
—— o | 5UTur— 8 — w17 (1 — oy

5.8
-
w——~( 15-4-17) 1
~ 5.8% )
Done on a B 19 _ =]
ST 9. 3. 5.7.2 2.5
soit Bo.o— 19 19

—= 9" 3 5. 7., 96768007

§ 5. Représentation de la fonction arbitraire.

Coefficients. — Les seuls coefficients non nuls jusqu'a m=9

sont donc
7 65 1 —19

Brs=g» Bur=gae Bor=jgao— Bue=ggn
' 19

Boo= 96768007

Tous les A ., ainsi que tous les 4, », sont nuls.

Fonctions sphériques générales jusqu’au 9me degré.

Nous désignerons maintenant avec Klein par F, (6, ¢) la fonction
sphérique générale de degré m que nous avions appelee Y (u,¢):

Fn (6, )= Ym (1, ), pour p==cos@.
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On a done
Fo (8, @)= Ao, m Pr () +2 (A €OS n @+ By 1 sin n ) P (1),
n=1

pour u—=cos 6.

Puisque les Ay, et les A, » sont ici tous nuls, cette formule se
Pédlllt E‘l n=m
F.n (6, 9) :Z By wsinng P, ().
n=1

Les seuls coefhclents non nuls jusqu’a m =9 étant donnés ci-
dessus, on voit qu’on a

Fy=lje= g Hi=e e e Foes),
tandis que

Fo—s 8n81n2(pP;,
65 5 1 . .
——— sin6
7 ,768%51112(,19})7—!—/1843Ez sin 6z P,
19 19 i
- —— Y VT 2T
Fo= 330 5" 29 P+ 75800, 511 07 P9
On a d’ailleurs en faisant w=-cos@:

Pi=15u(1— u2)=15sin26 cos 0,

P%:%B(-l — 1) (14365 — 11043+ 154)

- 63
) sin? 6 (143 cos® 6 — 110 cos® 6 15 cos 6),

P3=135135u (1 — 1?*=135135 sinb 6 cos 6,
, 495
P 163(1 — ®)(22L uT— T35 P — T p)
/9”
=g —sin? 6 (221 cos’8 — 273 cos® 6+ 91 cos? 6 -— 7 cos 6),

()7:)()7.:) 675675 .

Pi— (1 — ) (17w —3p) = —5—sin®6 (17 cos? 6 — 3 cos 6).

Formules approchées de la fonction arbitraire. — Nous dési-
gnerons par f (u, @) la valeur de la fonction approchée de la fonc-

tion f (&, ) au moyen des fonctions sphériques générales jusqu’au
degré m, c’est-a-dire que nous poserons :

fm(.u, p)=Fy+F+Fy+ ...+ Fn.



— 8 —

On voit qu’il faut aller jusqu’au 3me degré pour obtenir une
formule approchée. On voit aussi que |’approximation reste ensuite
la méme jusqu’au 6me degré inclusivement,

7 5

i e o ST T B 2

fsﬁ_fé_. g 2¢ Ps.
Surface d’approximation. — Nous représenterons la valeur de
f (#, @) par un rayon r, issu de lorigine et porté par la droite
passant par le point (u, ¢) de la sphére unité et dirigé vers ce point
ou dans le sens contraire, suivant que 7, sera positif ou négatif. Le

lieu des extrémités du rayon r,, dans tout le domaine de la sphére
sera donc une surface ayant pour équation, en coordonnées sphé-

riques 7., @ et 4: m
- :Z Fi(0, @).
U

~ Cette équation représentera 1'approximation obtenue pour la
fonction arbitraire en employant les fonctions sphériques jusqu’au
me degré. .

Il n’y a donc, jusqu'au degré 9, que trois surfaces distinctes
d’approximation, savoir celles dont les équations sont :

ry="F,, m=F+F, rn=F+FL+F,.
Nous nous bornerons a écrire la premiére, soit

105
Tg= g—sin 2¢ sin? 0 cos 6,

les deux autres ont des équations qu’il serait aisé d’écrire puisque
nous avons calculé tous les éléments utiles, savoir les B, ,, et les
P, mais ces équations sont compliquées.

- § 7. Remarques sur la construction des surfaces
d’approximation.

Symétrie par rapport aux axes coordonmés. — Il résulte des

expressions des B, ,, et des P, que dans les équations des trois
surfaces d’approximation, I’angle ¢ ne figure que sous le symbole
sin portant sur des multiples pairs de ¢. Or, on a

sin 2k (¢ -}- w) =sin 2k ¢,
sin 2k (& — @) = — sin 2k g.
Donc, en supposant I'angle 6 constant, on peut déja faire les
deux remarques suivantes:

1o Si ¢ croit de =, » reprend la méme valeur;
20 Si @ est changé en son supplément =z — @, » change simple-
ment de signe. '
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De plus, dans chaque terme des trois équations, I’angle 6 figure
dans un produit de deux facteurs, I'un étant formé de puissances
impairement paires de sin 6 sera toujours positif; ’autre est un
mondme ou un polynéme de puissances impaires de cos 6.

Il en résulte que si @ ne change pas de valeur, mais que 6 soit
changé en 7 — 6, la fonction cos changeant de signe, ses puissances
impaires en feront autant et, par suite, » prendra la valeur opposée.

Supposons maintenant qu’on opére une rotation de deux angles
droits autour d’un quelconque des trois axes rectangulaires, voici
ce qui se produira:

1o Autour de Uaxe des z:

6 reste constant,
¢ croit de s,
7 reprend la méme valeur.

20 Autour de U'axe des x:
6 est changé en & — 6,
@ » » » —opouen2x—gp,
r reprend la méme valeur.

30 Autour de Uaxe des y :
6 est changé en = — 6,
® » » » T— @,
r reprend la méme valeur.

En d’autres termes, les surfaces d’ approximation sont symétri-
ques par rapport awx axes coordonnés.

Relations par rapport aux plans coordonnés.

Si I'on passe d'un point (6, ¢) de la sphére unité au point symé-
trique par rapport a I'un quelconque des plans coordonnés, on aura
les variations suivantes :

1o Par rapport au plan x y :

6 est changé en & — 6,

@ ne change pas,

r change simplement de signe.
20 Par rapport au plan y z:

6 ne change pas,

@ est changé en n — ¢,

r change simplement de signe.
3¢ Par rapport au plan z x:

6 ne change pas,

@ est changé en — ¢ ou 27w — @,

r change simplement de signe.
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Conclusion. — Numérotons les octants de la sphére comme suit :

1o Sur I’hémispheére supérieur: 1, 2, 3, 4 a partir de p =0;
20 Sur I’hémisphére intérieur: 5, 6, 7, 8 & partir de ¢ =0.

Il résulte alors de la symétrie par rapport aux axes coordonnés
qu’une rotation de deux droits opérée sur la surface d’approxima-
tion correspondant au premier octant et autour de I’axe des z, ou
de I'axe des y, ou de I'axe des «, donnera la partie de la surface
relative aux octants 3, 6, 8.

Il en est évidlemment de méme de la surface relative a I’octant 5
par rapport aux parties relatives respectivement aux octants 7, 2, 4.

Il suffit donc de faire voir comment on obtient la représentation
de I'octant 5 au moyen de l'octant 1.

Or, il résulte des relations par rapport aux plans coordonnés
que si r est la valeur du rayon secteur de la surface d’approxima-
tion correspondant & un point (6, ) du premier octant, la valeur
du rayon qui correspond au point symétri ique par rapport au plan
x y de l'octant 5 sera —r, c'est-a-dire qu’elle devra étre portée
dans le sens négatif. En d’ autres termes, la représentation de ce
point du 5me octant coincidera avec celle du point de l'octant 3
qu'on obtiendrait par une rotation de deux droits de la surface
relative an premier octant autour de I'axe des z.

Or, pour le premier octant les r sont positifs. Il suffira donc
de construire la surface relative au premier octant. Alors, on en
pourra déduire :

a) la surface relative au 3me octant, par une rotation de deux
droits autour de U'axe des z;

b) la surface relative au 6me octant, par une rotation de deux
droits autour de l'axe des y; .

c) la surface relative au 8me octant, par une rotation de deux
droits autour de l'axe des x

De plus, les représentations ainsi obtenues sont doubles; elles
correspondent aux octants 1, 3, 6, 8, d’'une part, et a leurs opposés
respectifs par rapport a I’ orlgme 7 5 4, 2, d’autre part.

Nous nous bornerons d’ a1lleurs ainsi que le comporte I'énoncé
primitif du probléme, a étudier la surface d’ approximation relative
au 4me degré qui est celle des degrés 3, 4, 5, 6 a la fois.



DEUXIEME PARTIE

Etude en coordonnées sphériques
de la premiére surface d’approximation
relative au premier octant.

§ 1. Généralités.

Symétrie. — L’équation de la premiére surface d’approximation
(3me, 4me  Hme Gme degré) est

105

:8n

T sin 2 ¢ sin? 6 cos 6.

Elle montre immédiatement que cette surface est symétrique

ar rapport au plan bissecteur = du premier diédre [z, y/. Car
P Pp plan =7 P Y

pour deux valeurs ¢, et g, de ¢, équidistantes de g, on a

VA

T
. (plzz_a? (pﬁ:Z—}_a’
d’ou
sin 2, =rcos 2e, sin 2 @,=cos 2a,
soit
sin 2 ¢, =sin 2 @,,

et comme pour deux points de la sphére unité, symétriques par
T 8
rapport au plan =7 les deux valeurs de 6 sont égales, il s’ensuit

que les deux valeurs de » sont aussi égales. _
Nous étudierons la surface en la coupant, soit par des plans
méridiens : ¢ = const., soit par ces cones : § = const.

Cénes 6. — L’équation
8—=4¢6,, (1)

ou 6, est constant, représente un cone ayant pour sommet I’origine,
pour axe I'axe des z, et pour demi-ouverture 6,. Ce céne coupe la
surface d’approximation suivant une courbe gauche dont les points



sy B mes
sont a des distances de 1'origine variables avec ¢ et données par la

formule
o 13:10%

an2 1 ¢
P sin? 6, cos 6, sin 2 ¢. 2)

JT

Les équations de (1) et (2) sont celles de cette courbe gauche.
La projection de la courbe sur le plan 2y a pour équation polaire

13,125 . .
—sin? 6, cos 6, sin 2¢,

s0it
B’l -

T

R, et @ étant les coordonnées polaires dans le plan xy, le pole étant
I'origine O et I’axe « étant pris pour axe polaire. C'est une équation

de la forme
Ry=A, sin 2¢,

qui représente une rosace d qualre feuilles.

A son tour la courbe gauche (1), (2) est U'intersection du cone
6=06, avec le cylindre R,=A, sin 2¢ qui a ses génératrices paral-
léles a I'axe des z.

Soient

R,= A, sin 2¢, R,=A4, sin 2¢,

deux quelconques des courbes projetées sur xy, correspondant aux
cones 0, et 6,. Elles sont symétriques par rapport a =7 et de

plus, homothétiques par rapport a I’origine, le rapport d’homothétie
étant
R, A, sin® 6, cos 6,

g Ta T . 3 ‘—.—
R, A, sin?®4, cos 6,
Sections ¢. — L’équation
9= ¢, M
représente un plan passant par l'axe z et faisant un angle ¢ avec
le plan origine zx; sa trace sur le plan xy fait elle-méme 'angle ¢
avec 'axe des .

Ce plan coupe la surface d’approximation r= F, suivant une
courbe ayant pour équations (1) et

13,125
=" "_sin 2¢, sin? 6 cos 6. 2)

Py e
A
Si 'on considére le plan ¢, comme donné, I’équation polaire de
cette courbe dans ce plan est simplement 1’équation (2), le pdle
étant 1'origine O, 1’axe polaire 'axe des z et 6 'angle polaire.
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Sur un autre plan ¢ = ¢, on aurait la courbe d’intersection

13,125 | ;
ry=——8in 2@, sin? 6 cos 0,

Formons le rapport
ry  sin 2¢,

ry Sin 2¢,

Nous voyons que si ['on opere une rotation d'un des plans pro-
jetants autour de l'axe z jusqu’a ce qu’il vienne s’appliquer sur
I"autre, les deux courbes r, et r, seront homothétiques par rapport

sin 2()91

a 'origine, le rapport d’homothétie étant
gine, pp sin 2¢,

, . - 7 :
Si nous considérons en particulier le plan Pr=7, et si nous

posons r, = R pour cet angle, I’équation de la section par ce plan
sera

13,125 .

T

R—= ()cos()

et I’on aura pour un autre plan ¢ quelconque la courbe d’intersection
r=R sin 2¢. (3)
Sous cette forme, on voit que le rapport d’homothétie de chaque

Jt
courbe ¢ avec la courbe (p_zvarle avec ¢ comme sin 2¢. Si 'on
admet donc qu’en faisant tourner le plan ¢ autour de 'axe des z
a partir de (p:Z’ la courbe se rétrécisse d’'une maniére continue

dans le rapport d’homothétie sin 2¢, c¢’est-a-dire suivant la loi (3),
la courbe variable décrira la surface relative au premier octant de

T
i a0et de 7 a 5

Nous sommes ainsi amenés a construire la courbe R relative au
plan p=7 qui présentera, a l'échelle prés, les mémes affections

que toutes les courbes ¢.

§ 2. Etude de la courbe R.

Courbe ¢. — Si I'on pose

sin? 6 cos 6§ =y,
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I’équation de Ja courbe R prend la forme

13125

T

0.

La courbe R se déduira donc par homothétie de la courbe g, le
centre d’homothétie étant l'origine et le rapport d’homothétie
13,125

it

Voisinage de Porigine. — Pour 6=0 et §=90°, la fonction ¢
est nulle. D’ailleurs ¢ sera infiniment petit pour 6 infiniment petit
et pour 6 infiniment voisin de 90° Donc la courbe ¢ est tangente
a I'axe polaire (axe des z) et a la trace sur le plan xy du plan ¢. Il
en sera de méme de la courbe R.

Comme on en peut dire autant de toutes les courbes r, la sur-
face est donc tangente, a l'origine, & I'axe z et au plan xy.

Valeurs particulitres de ¢ —sin? 6 cos 6. — On a:

pour 6— 450, g, — % V;Q: 1’?4 — 0,335,
pour =300, g, = % 1/2§: ! ’7832 =0,2165,
pour =15, o, -é— sin 300 sin 150 =0,6475,
pour 6=0600, g, _"2 % =0,375,

pour =750, g, ;— sin 300 sin 750 =0,2415,

1
pour =820,5 gg; 5 — 3 sin 5o gin 820,5—=0,1283.

On aura donc pour les R correspondants, en nous bornant aux
décimales pratiquement utiles :

R, —1,41, R, =1,36,
Ry, = 0,835, Ry, =1,009,

R,,=—0,27, Rigys = 0,536.
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Rayon maximum. — La dérivée de ¢=sin2# cos 6§ est
d

%:9 sin 0 cos? § — sin® H=sin # cos? (2 — tg2 6)

: T
Lorsque # varie de 0 ag, ona donc

d o
&-§>0 pour 0<CH<arctygy2),
—G}g:—O pour H=arctyg {2,
ae

do

7p <0 pour arc tg1/§<()<g-

Donc ¢ croit, & partir de la valeur zéro, de §=04a §=arc tg y/ 2,
prend une valeur maximale pour #=arctg$'2, enfin décroit de

6=arctgy'2 a g pour reprendre la valeur zéro.
Les tables de logarithmes donnent pour fg6=12,

H=>D54044"9",
et I’on a pour cet angle

sin ) —= sl Ccos =

de sorte que le ¢ maximum est
2
QWJ(HC: e 0,38'/.{:9 ..

et par suite on a pour le R correspondant
13,125 2

Ce rayon est évidemment porté par la demi-droite issue de 1'ori-
gine et qui passe par le point (1, 1, 1) rapporté au systéme cartésien
rectangulaire.

Les plans bissecteurs des trois diédres Ox, Oy, Oz des demi-
axes positifs passent par cette demi-droite, laquelle perce 1’octant
de la sphére unité au point qui est représenté sur la surface d’ap-
proximation par l'extrémité du R maximum. C’est donc en ce point
de la surface d’approximation que I’erreur, par exces, soit 0,608 . .
du rayon vecteur est la plus considérable.

Il s’ensuit que le cone #=arc g /2 coupe la surface aux points
les plus éloignés de I'origine sur toutes les courbes .

B max —

=4 008, .



Point de cote maximum. — Le cote z d’un point (g, 6) qﬁel-
conque de la courbe ¢ est évidemment

z2==0 €0S §=sin? 0 cos? 0.

Pulsque la somme des deux facteurs sin%6 et cos®6 est égale a 1,
c’est-a-dire constante, la cote sera maximale pour sin § = cosf) soit

pour BZZ' Le rayon R au point de cote maximale sera

13,125
19,140 o -
A= - sin 2 cos4

et la cote maximale sur la courbe R sera

ZzRCOSZ:’l,OM,

valeur qui est évidemment égale a la distance du point de cole
maximale a I'axe z.

Le cone 6=Zcoupe la surface d’approximation aux points ou

les courbes ¢ ont leurs cotes maximales.
Les équations de la courbe gauche, lieu des points de cotes
maximales sur les sections ¢, sont donc en coordonnées sphériques,

g_m 13195
_Z) .

Conoide. — Le lieu des tangentes aux points de cotes maximales
des courbes ¢ forme un conoide ayant pour plan directeur le plan
xy, pour directrice rectiligne 1’axe des z, et pour directrice curvi-
ligne le lieu des points de cotes maximales. Ce lieu peut donc étre
considéré, soit comme la source commune au conoide et a la sur-

face, soit comme l’intersection du cone GZZ et du conoide, soit

comme l'intersection de ce cone et de la surface.

Le conoide est circonscrit a la surface le long de cette courbe.
Donc le plan en un point de celle-ci qui est tangent a la surface
Pest au conoide et, passant donc par la tangente a la courbe ¢ cor-
respondante, coupera le plan ay suivant une droite paralléle a cette
tangente.

- jt ’ r j & - r
La cote maximale de la courbe q):—é—ayant été désignée par Z,

il résulte des relations d’homothétie développées plus haut que la
cote maximale d’une courbe ¢ quelconque sera z=2Z2sin2¢, soit
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13,125
~—sin 2¢.

158 sin? 2 cos? Y sin Qg —
T xR T Ty,

Cette formule est aussi ’équation du conoide en coordonnées-
cylindriques.

z

Point d’éloignement maximum de Paxe des 2. — Il s’agit ici de
rendre maximum 1’éloignement e= g sin 6, soit

e =sin® 6 cos 0
du point de la courbe ¢g=sin?6cosd. Or, on a

de :
o =sin%6(3 cos® 6 — sin?6).

On aura donc (ﬁ =g —g)

s

de T
d—8>0p0ur0<0<§,
de T
a“'g:o pOUl =0 et 0:3-)
de 0 ourn 7] iy
ag > PME=I=g

Donc e, partant de zéro, croit def=0a 6:%, atteint un maxi-
mum pour #=arc tg ¢/ 3, enfin décroit au dela de arc g4/ 3 jusqu’a

6=EOI‘1 il redevient nul.

2
Le rayon correspondant est
13,155 x = 13425 3
—_— ! in2—c¢ — == ’ —zll 567
P - sin 3 CO0S 3 p— ;

La cote du point correspondant, trés importante a connaitre
pour la construction de la surface, est

n..—...—
5=

Enfin I’éloignement maximum sera

=13’125.i-sinf=1,357.

T 8 3

Z =708 0,783.




Remarque. — Aux points d’éloignement maximum de l'axe des z,
la tangente a la courbe ¢ sur la surface ainsi que le plan tangent
sont paralléles a I’axe des z.

Le cylindre
4% sins 2 cos = sin Qp = 13125 3 V3 sin 2¢,

7T 3 - 7T 16
dont la trace sur le plan @y est une rosace & quatre feuilles, est
circonserit a4 la surface tout le long de la courbe d’éloignement
maximum de I'axe des z. Sa trace str ay est donc le contour appa-
rent horizontal de la surface.

R—

§ 3. Courbe d’exactitude.

L’équation de la surface de la sphere est en coordonnées sphé-
riques r, @, 6.
P, (1)

C’est aussi, pour le premier octant, I’équation représentant
exactement la fonction arbitraire proposée.
I’équation de la surface d’approximation est, d'autre part,

13,195

1A

P sin 2 @ sin? 6§ cos 6, (2)

Les équations (1) et (2) sont celles d'une courbe gauche qui est
I'intersection de la sphére unité et de la surface d’ appr0x1mat10n
Le long de cette courbe la fonction étudiée est toujours égale a |1
sur le premier octant; elle v est donc représentée exactement. Nous
I'appellerons la courbe d’exactitude.

Si 'on suppose donnée la surface de la sphére unité, la courbe
d’exactitude relative au premier octant aura simplement pour
équation sur cette sphére

13,125

Jt

Il est important de construire cette courbe en déterminant un
nombre suffisant de ses points et, en particulier, en fixant ses points
extrémes dans le sens des ¢ et dans celui des 6. A cet eflet, nous
étudierons ses intersections avec des méridiens ¢ et des paralléles 6
de la spheére.

sin 2¢ sin%6 cos 6=1. 3)

- 7
Si I’on y suppose ¢ constant entre 0 et§,
cos 6 dont les racines correspondront aux intersections de la courbe
d’intersection avec le méridien ¢. Cette équation peut s’écrire.

on aura une équation en

T

Cos 0 — 086t {3 T sy




— BB s

On vérifie aisément qu’une racine cos 6 est inférieure a —1.
T

13,125 sin 2¢
les trois racines sont réelles, la somme des racines devant étre nulle,
11 y aura encore deux racines positives. D’ailleurs aucune n’est
supérieure a 1. Il y aura donc alors deux racines positives comprises
entre 0 et 1.

Ce sont les seules qui correspondent a un angle 6 réel, et par
suite, dans l'intervalle des valeurs de ¢ ou les racines cos 6 sont
réelles, chaque méridien ¢ coupe la courbe d’exactitude en deux
points. Il n’y a qu’a exprimer que les trois racines sont réelles pour
obtenir cet intervalle, ce qu’indique la condition, nécessaire et

suffisante,
1 3 n2
o = 0,
( 3) + 26,25"sin*2¢

soit, puisque sin 2¢ >0,

Le produit des racines est —

, soit négatif. Done, si

3 ]/ 3
26,25

sin2¢ >

Le cas de I’égalité signifie que le méridien ¢ correspondant ren-
contre la courbe d’exactitude en deux points confondus. Cette
équation fournit deux valeurs supplémentaires pour 2 ¢ et, par
¥/

conséquent, deux valeurs pour ¢ équidistantes de 7

. Soient, ¢, et

@, ces deux valeurs. Le calcul donne
@, =1913'35".5, Py = T0046'24" 5,
et I'on aura donc pour la courbe d’exactitude

P1 = P = @,

Pour les valeurs ¢, et ¢,, ’équation en cos 6 est

2
#) = cos30 — cos § + ——=0.
J@© +31/§

Les deux racines égales sont aussi racines de 1’équation
f(6)=sin6(1 — 3 cos? 6) =0,

soit en supprimant le facteur sin @ qui ne fournit évidemment aucune
solution de £ (6) =0,

1
cos—=—, dou tg=12.
73 go=y12



Projections de Monge

de la surface d’approximation (x2-}-y2-}z%)* —
Plan horizontal de projection : xy.
Plan vertical de projection: bissecteur de z(x, y).
Les deux projections sont écartées pour éviter le recouvrement.
Signe de terre: u (', W), w=Y. Axe Z=axe z. Axe X (non marqué)

perpendiculaire a .
ron y L roon "

e (e ,¢ ): courbe d’exactitude. — CB(CB,CB) : Cones 6.

2—61—22 myz:O.
T
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On reconnait ainsi que les méridiens ¢, et ¢, de la sphére
touchent la courbe d’exactitude aux points ou les courbes ¢, et ¢,
de la surface d’approximation ont leur rayon vecteur maximum.

Intersection avec les paralléles 6. — L’équation de la courbe
d’exactitude peut s’écrire

: T
sin 2 == 11
v+ 13,125 sin? 6 cos 6

Si 'on y suppose 6 constant, les valeurs de ¢ qu’elle définira
détermineront les points d’intersection de la courbe avec le paralléle
6 correspondant. Le second membre étant positif, pour que ces
points soient réels sur le premier octant de la sphére, il faut évi-
demment et il suffit que # soit tel que

i =1.
13,125 sin2 Hcos 6

r » r 4 - - . n
Pour le cas de I'égalité, c’est-a-dire pour sin 2¢ =1, soit p=7y
on a l’équation

cos‘()——cosl‘ﬂ—|—)1 120 s
<)

Une analyse, analogue a celle du paragraphe précédent, donne
’ 7 § T
pour les deux seuls angles réels définis entre 0 et5par cette

équation,
0, = 3206'48" 8, b, = 7509'25" 6.

Ce sont les équations des paralléles limites entre lesquels est
comprise la courbe d’exactitude sur le premier octant. Ces paral-
léles sont tangents a celle-ci.

Remarque finale. — On peut remarquer que 1’énoncé du pro-
bléme ne fait jouer a l'axe z aucun rdle particulier. On pourrait
opérer une permutation cyclique des trois axes «, y, z, de sorte
que ce quon a dit de l'axe z, par rapport a x et y, sera vrai de
I'axe x par rapport a y et z, et aussi de I'axe y par rapport a z et «.



TROISIEME PARTIE

La surface d’approximation en coordonnées
cartésiennes.

§ 1. Equation cartésienne de la surl‘a'cé.‘
I’équation, en coordonnées sphériques, étant
13,125

T

R=

sin?6 cos 6 sin 2¢,

les formules de transformation,
rx=~Rsinfcosp, y=—~Rsinfsingp, z=~Rcosh,

donneront

2

o

x

_+_

I, cosB=—» sin 2¢p = Qxy_,

R R a2 4 y?
de sorte que 1’équation pourra d’abord s’écrire

184925 o442z 2wy

R L
7 R R x4y

R=a2"1t4"+7 sin2g=

soit évidemment
F(x — . 26,25
( » Y Z)—(m9~}—y°'-’_l_za)2¥

Le produit xyz devant toujours étre positif, il s’ensuit que la
surface d’approximation wn’existera que dans les triédres trirec-
tangles qui contiennent les octants 1, 3, 6 et & de la sphére unité.

Symétrie. La fonction F(x,y,z) est symétrique par rapport
aux trois coordonnées x, y, z. S1 donc on échange deux quel-
conques d’entre elles, 1'équation reste satisfaite. Cela signifie évi-
demment que la surface d’approximation est symétrique par rapport
aux trois plans bissecteurs des diédres rectangles dont les arétes
sont les axes x, y, .

xy z=0. 1)

Plan tangent. — L’équation du plan tangent au point P (x, y, z)
de la surface étant

or or oF
X—)— 4+ (V—y)—F+ (7 —2)—=
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on peut écrire
| 26,25
F=(R) — """ ayz,
T
avec e T
=x" 4y +z"
On aura donc

oF 26,25

— 2 —

2
yz=R’ (450—5),
a

)

o 3} R
_F:/{RQy—%’2 =R’ (4y———)a
T

oy Y
0 2

i AR 2% xy = R (4z — 5)

oz T -4

Donc I'équation du plan tangent deviendra

(X— ) (49(;_1—;) (Y —y) (4;,—5;) +(Z—=) (4-»__53_2) =0,

A~

On peut encore 1’écrire

Z
X Y ) R =0,

4(Xe+Yy+Zz)—R ( —}— _|_

2 2 2
( Y z

A2 . 2 2 2 2
ou I'on fera toujours R =x"+y J 2"

ou

§ 2. Courbe d’exactitude et angle d’approximation.

Courbe d’exactitude. — Cette courbe est I'intersection de la
sphere unité et de la surface d’approximation. Ses équations sont

donc
6.25
s Poyz=0,  a4yrf =i,
A

(22 -2 4 222 —

soit, évidemment,
T
YL =i x4 y? - z2=1.
1= 9695 T
Tout le long de cette courbe, on a R=1, et par suite,

or 1 oF 1 oOF 1

—=dr—> —=dy—-> —=lhdz—--
ox x  ody # y 0z z



Dés lors, le plan tangent & la surface d’approximation, en un
point P (z, y, z) de la courbe d’exactitude, aura pour équation

X —a)(to— 1)+ (T —p) (b — ) +Z =9 (4:—2) 0.

z
ou

- . X Y Z

Angle d’approximation. — J'appelle angle d approzimation en
un point de la courbe d’exactitude, I'angle « sous lequel, en ce
point, la surface d’approximation coupe la sphére unité, celle-ci
étant la surface exacte. Il est intéressant de connaitre cet angle qui
exprimera la loi suivant laquelle la surface d’approximation différera
de la surface exacte le long de la courbe.

Or, cet angle étant celui des normales aux deux surfaces, est
déterminé par la formule

o)
Y e ol o (]

¢’est-a-dire, puisque 22 y2-}- z2=A1,
1

1 1 ]
E—FZTQ—FZ—%‘—S

COos ¢—

Cosa—

Cherchons entre quelles limites varie I’angle e, et quelles sont
les coordonnées des points qui correspondent a ces limites.

Les simples relations de symétrie déja énoncées font voir immé-
diatement que les points de la courbe d’exactitude situés sur les
bissecteurs des diedres z, y, z correspondent & des extrémes de
I'angle «. Mais n’en existe-t-il pas d’autres?

r, les maxima et minima de I’angle a correspondent respecti-
vement aux minima et maxima de cos ¢, ¢’est-a-dire aux maxima et
minima de la fonction

1.1 1
le long de la courbe d’exactitude
syt =1, @
N :
T S ®)
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Les coordonnées «, y, z d’un point quelconque de cette courbe
sont des fonctions d’un seul parameétre qui peut étre une des trois
coordonnées et qu’il n'est d’ailleurs pas nécessaire de spécifier.

Mais pour les valeurs de ces coordonnées qui rendent f (z,y,2)
extréme, on doit avoir df=0, soit

1 1 1
de‘l—ﬁdy‘l'*z‘gdZ:O (4)

les différentielles dz, dy, dz devant satisfaire aux deux équations
de la courbe, c’est-a-dire étre telles que

xdz-+ydy+ zdz=0, ()
yz de+ zz dy + xy dz=0. (6)

L’elimination des trois différentielles entre ces trois équations
donnera

1 1 1
‘%:_3 il Eﬁi
g —0. 0
x Yy =z
yz o xy

Les équations (2), (3) et (7) permettent de trouver les valeurs
de z, y, z qui peuvent rendre f (z, v, z) extréme.
Or, en vertu de (3), I’équation (7) peut s’écrire

1 1 1

T
Yy
1
Y

Multiplions les éléments des trois colonnes respectivement par
a3, y3, z3. Cette opération n’introduit aucune solution étrangére, ni
ne supprime aucune solution existante, car aucune des coordon-
nées z, y, z n’est nulle sur la courbe d’exactitude. On a alors

1 1 1

)

w gt & |=0,

&
I
=

K| == 8

IS

ce qu’'on peut évidemment écrire en changeant les signes
G) -4 ~ ‘.Q.r 4 —
(12 — ) (2 — 29 (@* — ) =0.
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Les maxima et minima cherchés sur la courbe d’exactitude
correspondront donc aux points de celle-ci ot ’on a alternativement
(et non simultanément, ce qui est impossible):

2—0, 2—af=0, a2—y'=0, ®)

8y

yﬁ__

Ce sont les équations des paires de plans bissecteurs des diédres
x, Y, = respectivement. Par la on voit qu’il n'y a pas d’autres
extrémes que ceux que l'on pouvait découvrir, a la qualité pres, a
I’aide des simples relations de symétrie géométrique.

En nous bornant au premier octant, pour lequel les z, y, z sont
tous positifs, nous pourrons écrire ces relations indépendantes

TESA b w==y, 9)

Les équations de la surface d’approximation, de la sphére unité
et de la courbe d’exactitude étant symétriques par rapporta z, y, z
il suffira d’étudier la solution z=y. Alors les équations (2) et (3)
donnent

Tt
2| »2 ?__ ,
=A==y P
d’ou
Bz p T —0. (10)
13,25

(’est I'équation qui donnera les valeurs de z correspondant aux
points ou I'angle e d’approximation sera extréme sur le plan bissec-
teur z=y. Or, sur la sphére, on a toujours z=cos@. Dés lors,
cette équation a déja été étudiée et I'on a trouvé pour ses deux
racines positives et inférieures a 1,

Zy =08, Zg==CO0S 0,,
ou
6, = 3206'48" 8, by = T509'25" 6.

Pour décider laquelle des deux valeurs de z fournira un maxi-

mum ou un minimum pour la fonction f (z,y, z), remarquons que,
tout le long de la courbe d’exactitude, on a
: 1 .1 1 2449 1 -
N— __ | R R - 2
f@nds gt =" —a—mz(

2 12 72

=2

26,25 )2 1

La fonction a rendre extréme devient done

26,25\ 1
Fo=(22) @—=)+5

¥/
Dailleurs, il s’agit ici d’extrémes absolus, de sorte que le plus
petit sera le minimum et le plus grand le maximum. Or, cos 6, est
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e 1

peu inférieur & cos 30027, cos fl, est peu supérieur a 7 et
26,25\ . - 2-en ;s
est peu différent de 67. On vérifie alors aisément que
T

3 1
F («é—) <F ( ;/;) Les calculs faits avec les valeurs exactes z, et z,

montrent qu’én a, en effet, F'(z,) << F(z,).
Ce qui a été dit des z se dira mutatis mutandis des z et des v.

Conclusion. — Le long de la courbe d exactitude, I'angle d’ ap-
proximation présente six extrémes, lous aux points silués sur les
plans bissecteurs des diédres x, vy, z, d savoir, trois minima aur
points A, B, C les plus rapprochés des trois axes x, y, 2, et trois
mazimae auz points A" B' (' les plus rapprochés des plans yz, 2x
et xy.

§ 3. Représentation de la surface en projections
de Monge.

Le plan 2y étant horizontal, si 'on prenait le plan yz pour plan
vertical de projections, les deux projections de la surface auraient
comme contours apparents des rosaces a quatre feuilles. La repré-
sentation devient plus intéressante lorsque, conservant ’axe z et le

. -9 ? n
plan zy, on fait tourner le triédre autour de z d’un angle e

de maniére que les anciens axes x et y seront les bissecteurs des
angles des nouveaux axes X et Y. A cet effet, il suffit évidemment

de faire
1 . 1
xr=X-+Y)—= =—X—=Y)—> F==2,
X47) e y ( ) 73
L’équation de la surface devient
(X4 v+ Z2)2+13’12—5(X2— Y?) Z =0.
JT

Alors, le contour apparent horizontal est une rosace a quatre
feuilles, comme on 'a vu dans la premiére partie.

Pour reconnaitre la nature du contour apparent vertical, remar-
quons qu’il est le lieu de la trace, sur le plan YZ, d’une droite
de bout tangente a la surface. Or, une telle droite, passant par le
point (Y, Z) du nouveau plan vertical, a des coordonnées courantes
&, n, &, telles que £ est variable, n=Y, {(=27Z.

Pour ses points d’intersection avec la surface, on a

s s e . 13125
&4 ¥+ 24

—(£—Y)Z=0,

1
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soit, évidemment,

4 "2y e 13425 N e
(V24 ) E (P 2

(Yest une équation bicarrée en £ A chaque couple de valeurs
réelles de Y et Z correspondent donc quatre points communs a la
droite de bout et & la surface. Ces points sont deux & deux réels ou
imaginaires, distincts ou confondus, mais symétriques par rapport
au plan vertical X=0. Ils ne peuvent d’ailleurs étre réels que pour
£=0 ou £>0. |

1o £ =0. Les deux points correspondants sont donc confondus
en un seul sur le plan YZ. La droite de bout est tangente a la sur-
face en ce point. La condition, nécessaire et suffisante pour que ce
cas soit réalisé, est qu’on ait

( y? R Z2)2__

avec, nécessairement, Z >0. C’est I’équation du contour apparent
vertical au-dessus de la ligne de terre u = Y. Il est aisé de voir que
I'équation ci-dessus étant satisfaite pour Z >0, les deux autres
points d’intersection de la droite de bout avec la surface sont imagi-
naires conjugueés.

s Y?Z=0.

it

1819 00,

Conclusion. — Le demi-plan vertical X =0 supérieur (Z > 0)
coupe la surface suivant la partie du contour apparent vertical
situé au-dessus de la ligne de terre.

20 £>0. Les racines étant réelles, la droite de bout ne pourra
étre tangente qu’a la condition que deux points d’intersection situés
d’'un méme c6té du plan vertical soient venus se confondre. Alors
les deux autres points, symétriques de ceux-la, seront aussi con-
fondus. La droite sera bitangente. En d’autres termes, chaque

valeur de £ définissant un méme couple de points symétriques par
rapport au plan vertical, les deux couples devront étre représentés
par deux valeurs égales de &°. La condition, nécessaire et suffisante
pour qu’il en soit ainsi, est que le réalisant de 1’équation du
deuxiéme degré par rapport a £ soit nul, ¢’est-a-dire qu’on ait

. 13195 y 13,125\ *
P+ 2P+ 222 ) (g ) 7
7 2
—{ YA 22)+13’12_5 Y*Z =0.
JT

En réduisant et supprimant la solution Z=0 qui ne peut évi-
demment convenir qu’au seul point singulier qui est l'origine des
coordonnées, on obtiendra 1'équation



¢ [ ]=4
815,
4dn

¥ 2R L

Elle représente une ellipse qui ne peut étre réelle que pour
Z <0, c’est-a-dire sur le demi-plan vertical inférieur.
On pourra écrire cette équation

13,125\
(Z 5 8 ) y?®
+

—— 5 =1.
(’13,’123) (1_3,195)
87n 81 2x

On obtient donc ce résultat remarquable : le conlour apparent ver-

tical au-dessus de la ligne de terre est une ellipse, tangente d la ligne

de terre a Uorigine el dont le demi-petit axe ———@ , paralléle a la

_ , 13425 S¥V2x ,
ligne de terre, est au demi-grand aze g, comme le coté d’un carré
J

est d sa diagonale.

Manuscrit recu le 22 avril 1932.
Derniéres épreuves corrigées le 19 mars 1933.
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