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FONCTIONS SPHÉRIQUES
ET

SURFACE D'APPROXIMATION

L. GABEREL
Professeur de géométrie à Neuchàtel

Position du problème.

Dans ses Anwendungen der Differential und Integralrechnung
auf Geometrie, F. Klein, le célèbre mathématicien de Göttingue,
proposait le problème suivant :

Les quantités cp et 0 désignant les coordonnées variables angulaires

(longitude et colatitude), une fonction de ces deux variables
est arbitrairement définie sur la sphère unité (de rayon un), de telle
manière qu'elle soit alternativement égale à -\- 1 et — 1 sur les
octants successifs de la sphère. On demande d'exprimer la
représentation approchée de cette fonction par le moyen des fonctions
sphériques. On poussera l'approximation jusqu'au quatrième degré.
Enfin, on construira la surface représentative d'approximation de
la fonction.

L'intérêt didactique d'un tel problème est évident, et d'ailleurs
la solution, que nous allons développer, présente des particularités
géométriques remarquables.
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PREMIERE PARTIE

Formules des surfaces d'approximation.

§ 1. Généralités.

Série de fonctions sphériques. — Lorsqu'une fonction f(fi, cp),

où l'on a ,w cos 0, est arbitrairement définie sur la sphère unité,
cela signifie que la valeur de cette fonction est donnée en chaque
point de la sphère, c'est-à-dire pour un quelconque des couples de
valeurs de pt et cp qui correspondent aux divers points de la sphère.

Or, une fonction de pt et <p, définie sur la sphère unité, qui satisfait

aux conditions de Birichlet pour chacune des variables, peut
être représentée par une série convergente procédant suivant les
fonctions sphériques générales de degrés indéfiniment croissants.
C'est précisément le cas pour la fonction qui nous est proposée.

La formule de la série est la suivante :

/0*, ç>)=Y„+r, + F8+...+ ?,»+¦

n ctPmifl)

Ym (fi, cp) Ym désignant la fonction sphérique générale de degré
m définie comme suit :

Ym(fi, cp) /> {A„,m cos ncp-\-Bn,m sin ncp) sin" 0

ou, en posant

ufi dfi

et en séparant le terme pour lequel n 0,

dfin

n~m
Ym (fi, Cp) Ao, m Prn (ß) A\ {&-n, m COS « f -f- -S«, m Sin H (p) P„ (fl),

les A et les B désignant des coefficients constants dont nous
rappellerons plus loin la forme.

Les fonctions Pm (fi) sont les fonctions sphériques zonales ou
coefficients de Legendre. L'indice m marque le degré'.

Quant aux fonctions Pm(fi), nous les appellerons d'aprèsByerly1,
fonctions sphériques associées. Cet auteur donne une table des fonctions

Pm(fi) et Pm{pt) jusqu'au 8me degré inclusivement.
1 Byerly. An elementary treatise on Fourier's series, etc. Boston, 1902.
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Dans ces conditions, la série d'approximation def(pi, cp) en fonctions

sphériques peut s'écrire, en supprimant la notation fi dans les

Pm(fi) et Pm(pi) pour simplifier l'écriture,
ffl=oo p n—m -jf(fi, q>)=\ \Ao,m Pm + y-, (An,m COS ncp-\- Bn, m sin n cp) Pm \.

m=ti L n—1 J

L'indice m sera donc toujours supérieur ou au moins égal à n.
Quant aux coefficients A et B, leurs formules de détermination

sont :

2m-fl /» /* rAo,TO =— \dcp\j (fi, cp) Pm dfi,
o —i

2m-)-l (m — m)
*-n, m -

2jt (m -f- n)
- I rfqp f~(fi, (p) cos wqp P« dfi,

o —i

_ 2m-fl (m — n)\ f, /» A/ __
#n, m —s -,—.—r-r dcp\ f(fi,cp) sin n cp Pm du.In (m-{-n) !J JJ

A cause du facteur commun (m — «)!, on voit que les An,m et
-ßn,m sont nuls pour m n. On ne pourra donc avoir que m > «.

Le domaine d'intégration s'étend à toute la sphère, soit pour cp,
de 0 à 2 n, et pour ,« cosö, de —1 à -\-i. Mais la variation de fi
peut être opérée en deux parties, savoir de —1 à 0 pour l'hémisphère

inférieur, et de 0 à 1 pour l'hémisphère supérieur.
D'ailleurs, sur chaque hémisphère, de <p 0 à <p 2jr, la fonction

f {fi, cp) particulière que nous devons représenter doit être
alternativement égale à -f-1 et —1 lorsqu'on passe d'un octant au
suivant, de telle manière que sur l'hémisphère supérieur, la valeur
initiale est -}-l, et qu'elle est égale à —1 sur l'hémisphère inférieur.

§ 2. Calcul des A0,m et An,m.

Calcul des Ao,m. — Puisque Pm(fi) ne dépend que de /i, on a

9 i ,i r ° ïn * 27C n
A0,m -. I Pm dfl I f(fl, Cp)d(p-\- { Pmdfl i J(fl, Cp) dcp

L_i o oo-"Le premier terme représente l'intégrale sur l'hémisphère
inférieur, le second sur l'hémisphère supérieur. Or, pour une même



— 76 -
valeur de cp, la fonctiony"^, cp) prend deux valeurs opposées —1 et
-f-1 sur ces deux hémisphères. Il en résulte que les intégrales

171

I J(pi, cp) dcp sur les deux hémisphères sont opposées. En repré-
0 c%

sentant par I J(fi,cp)dcp la valeur de cette intégrale sur l'hémisphère

supérieur, on a

.0 1 m
Aa,m r I I Pmdfi—l j i f(/i,q>)d<p.

Toutes les fois que plusieurs intégrales se suivront portant sur
la même expression différentielle, nous n'indiquerons celle-ci que
sous le premier signe /, comme nous l'avons fait ci-dessus pour
Pmdfi, ceci afin d'alléger l'écriture.

Mais l'intégrale relative à cp sur l'hémisphère supérieur donne
71 -&71

171 2 71 ~~2 171

ff(fi, <p)d<p =Jd cp -J%j-f= 0.
0 ° TT 71 371

Tous les Ao,m sont donc nuls, quel que soit l'entier m.

Calcul des An>m.— La formule générale de ces coefficients est donc

2m-f-1 (m — n)
-171 1

zm-f-l (m — n)\ f f rAn>m —— -—— dcp /(fi,cp) cos ncp-Pmdfi.
v ' / o .—i

D'ailleurs les Pm (fi) ne dépendent que de /i. En tenant compte
des remarques précédentes, on pourra donc écrire

2m-(-l (m — n)
o

im-\-l (m — n)l/f n f \ f fAn,m _.__^(Jpw^__j jj/^cp) cos ncp dcp,

l'intégrale relative à cp ne se rapportant plus qu'à l'hémisphère
supérieur. Dans ces conditions, on a

7t 37C

171 ~ï 71 ~2~ 171

J f(ji,<p) cos ncpdcp= l cos ncpdcp— J -|- I — j — -(sin — -f-sin—-
1 O TT. TT. H7T71 71 371

J T
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et l'on a

nn 3nn nn .n nn nn
sin — -j- sin ——— sin — -J- sin (4w — n) — sm — sin — — 0.

Ji Ia A Ji Z A

Tous les An,m sont donc nuls, quels que soient m et n.

§ 3. Généralités sur les coefficients B„

Première formule. — La formule générale est

171 1

z m -j-1 m — n) p f f/ •. _„Bn,m —s -, :—— \ dtp \ f (fi, cp) sin ncp ¦ Pm d/i.
Lln (m-\-n)\J JJ2n (m-f-n)!1 J o —i

En vertu des remarques déjà formulées sur Pmdfi et sur les

valeurs def(fi, cp), on peut évidemment écrire :

2m + l (m — n)!//» P\ C r, n •

ß„,M ^'SiT-yiJ^H )J/W)sin»^,*2n (m A n) ¦

l'intégrale en <p ne se rapportant qu'à l'hémisphère supérieur. On
a alors

ITC 2 7T "2" 2'f

\f(fi, cp) sin iicpdcp=c I sin ncp dcp — i -—|— I — j

71 71 371

"2 "F

r nn 1
3nn d]

cos -— -f- cos — (1 -f- cos nn)__
2

n

La quantité entre crochets donne

nn ,n „nn „ nn /, nn
cos —•- 4- cos (4n — n) — — 2 cos2-— 2 cos-— 11 — cos —-

2 2 2 2 \ 2

nrc nn4 cos-— sin2—- •

2 4

Il faut maintenant trouver la valeur de ce produit suivant que n
est pair ou impair.

'YlTL
Cas de n impair. — On a cos-— 0, par suite on aura

Zi

quel que soit m.
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Cas de n pair. — a) n est pairement pair : n 2-2Ä;, k étant
un entier tel que 4k<dm. On a alors

sm —— sin kn U.
4

Par conséquent, lorsque n est pairement pair, on a

r^n, m u,
quel que soit m.

b) n est impairement pair: n 2(2k-\-i). On a alors

YkjTX, W TT 7L

cos—-sin2-- cos(2/<-f l)^sin2(2A + I)- — 1.
2 4 2

Par conséquent, dans le cas où n est impairement pair, on peut
avoir Bn,m^0. On a alors

X/
8

(pi, cp)smncp dcp
a

et, par suite,

4(2m-fl) (m-n)! / /» ç
On, m ¦

z \ i I "m Ctfl I

un (m-\-n) V J

Résumé. — Les seuls Bn,m qui peuvent être différents de 0 sont
donc

Bitm, Be,mi -Dio.m, etc.

avec m>2, 6, 10... respectivement.
Quoique le propre énoncé du problème n'exige que le calcul

des coefficients jusqu'à m 4, nous pousserons cette détermination
jusqu'à m 9. Ceci nous permettra de comparer rapidement
l'approximation du quatrième degré avec celles de degrés supérieurs
jusqu'à 9.

Parité de P«. — L'intégration, pour le calcul des Bn,m, portant
maintenant sur la fonction Pm(fi) dans les deux domaines opposés

(—1,0) et (0,1), il y a lieu de comparer les valeurs de Pm(pi) pour
deux valeurs opposées de pi. Ceci revient à étudier la parité
éventuelle de Pm(fi).

Or, en posant cos 0=fi, on a

r,n s _ • » n
d Pm(fl) y 2^â « Pm (u)

Pm([i) zm ti—__=(1_fi) ——s—¦
apt api

Remarquons tout d'abord que le domaine de ti auquel correspond
celui de pi de —1 à -\~1, est celui qui s'étend de 8 n à 0 0.
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i

Dans tout ce domaine, sin ti ou (1 — /*2)2 reste positif et il en
n

est de même de sin" ti ou (1 — /t2)2.
D'autre part, on sait que la fonction Pm(/i) est de même parité

que le nombre m1. Or, la dérivée d'une fonction paire est impaire,
tandis que celle d'une fonction impaire est paire. Il en résulte que
les fonctions

a t^ra a Jsm a i m

dfi dfi dfin

sont respectivement de même parité que les nombres

m, m -f-1, m -f- 2,. m -f- n.

Par conséquent, la fonction Pm sera de même parité que le
nombre m-\-n.

1° Si m-\-n est pair, c'est-à-dire si m et n sont de même parité,
on a

0 1 0 1

fpmdfi=Cpmdfi, d'où ÇPmdfi— f=0;
—1 0 —1 0

2° Si m-\-n est impair, on a

0 1 0 10Ppj, dfi — Çpm dfi, d'où fPS, dfi — P= 2 fe d/*.

—10 —1 0 —1

0 1

Conclusion. — ia différence j P", d/t— j Pm dfi est nulle pour
—i o

tous les couples de nombres m et n qui sont de même parité', et
o

égale à 2 I Pm dfi pour les couples de m et n qui sont de parités
—i

différentes.
Les seuls Bn,m qui peuvent donc ne pas être nuls jusqu'au

gme degré sont :

-62,3, -62,5, -^2,7, -62,9, et Be,i, Be,g.

Formule définitive des Bn,m. — Nous avions trouvé'n,m*
0 1.

_ 4(2m-fl) (m — n)\ f nn ^ ç
Un, m — -

\ i I I "tn & f* I
nn (m An) \J Jv ' ' —i o

1 Le terme de parité est ici employé sous deux sens différents : parité d'une fonction,

parité d'un nombre. Cette dualité ne présente évidemment aucun inconvénient.
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Or, pour les B„ym qui peuvent être non nuls, m et n sont de

parités différentes, c'est-à-dire que Pm(fi) est impair; on aura donc

B„ 8(2ro-fl) (m — n)\
nn (m-\-n) y J Pm(fi)dfi.

% 4. Calcul des B2,m et B6zW pour m 3,5,7.

Calcul de .02,3. — On a

B-,
8-7 1

2?r 5!

u

I PÌ(fì)dfi,

et comme

on aura
Pl(^ (l--M2)-15^

_ U 0

4W 4?rJ on-i -i
(1-M2)2

soit
Bi

sn

Calcul de .62.0. — On a

8-11-3 (>*>, sß2'5==-2^7!j^W^
avec

105
Pi^^ei-^).—(3^_^ 105

(3^-V+ z»).

Donc 3 8 • 11 -105o 0 ¦ ri • îuo /»
E2'5== ^.ttf M3 M5 — V+^oV/ 1 ¦ n J.

Or, 0

I (3,w5 — 4fi3A(i)dfi 2 ^ ^2
On a, par suite, £,5 0.
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Calcul de B2.i. — On a

8-15-t)! f 2/

aveC
P?(m) (4 - ^2) ¦ ¦ (143^5 -110^ +15^).

o
Donc

5i15¦63 r
P2; 7 _— (143^7 - 253/t5 -f 125/*3 —15/«) dp,

y A • n J

5 1143 253 125 15

Tn\ 8

J?2,7

6 " ' 4

65

768?

Calcul de B61. — On a

Bri
8 15 1

6n 13

u

- Cp«(p)dii,
'—i

avec

Donc

soit

P? (p) (1 — fiy 135135p, 135135 -^p^-
2™. 3"-5

-Be,1 " Oll q22 • d JT
(l-^2)4

B,6,7 :

18432»

5. Calcul de P2,g et Be, 9.

Remarque préliminaire. — Le calcul de .62,9 et de P6,9 nécessite
la connaissance de Pl et de JPg. Les tables de Byerly pour les fonctions

Pm ne s'étendent pas au delà du 8m« degré m 8. En
conséquence, j'ai dû calculer Pl et Pl et comme on le verra, aussi P9.
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Pour être plus sûr des résultats, j'ai fait les calculs par deux
méthodes distinctes, l'une directe en partant de la formule

„„ N (2m)! sin™0 f (m — n)(m — n — 1) „p" /,,\— x ' I „m—n ^ i_± l „m—n—1
mW~2-m!(m-n)!r 2(2m-l) ** + " '

-]•(m — n)(m — n — l)(m — n — 2) (m — n — 3) _fi1

2-4-(2m— l)(2m — 3)

l'autre en partant de la formule de définition

n-dnPm
Pl(fi) (l-fi*f dfin

Cette dernière méthode a nécessité le calcul préalable de Pm(u)
pour fi — 9.

Les calculs sont longs et un peu fastidieux. Les résultats seuls
nous intéressant, je me borne à les transcrire ici :

P9 JL(12155^9— 25740p7+18O18p5— 4620p3+315p),

495
Pl — sin2 0 (224p7— 273p5+91p3— Ifi),

675675~'! '
¦ sin6 ti(17p3— 3fi) (675675 5 ¦ 7 • 9 ¦ 14 • 13 • 15).

2

o
8 • îy • y /*

Calcul de JB2,9. — On a P2>9 —- —- j Pl(pi)dfi.
2 • ji • 11 J

—i
ic o

P2,9 4^- f(221 fi9— 494p7+ 364p5— 98p3— 7p) dp
2 -nJ.

19 1221 .„ 494 364 „ 98 7
-r U10 fl8-\ M6 fl1 flt-n 10^ 8^6 4 2

soit D 19 19
#2,9

2 -3-5» 3840?

8•iy•o i fCalcul de i?6,9. — On a P6|9 — ~~- i Pt(fi)dfi
o • n ¦ lo J—i

pe_ 675675
(1 _ ^2)3 (4V3_ 3/t)
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Le coefficient de l'intégrale sera donc

3 8 • 19 • 675675 8 ¦ 19 • 3 ¦ 5 • 7 ¦ 9 • 11 • 13 • 15 19

1512-6-7T 6 • n ¦ 15

L'intégration donne
0 i r°

29 • 33 • 5 • 7 • n

Ùllpfi— 3p)(l —p2)3dp= —- f(17p2-3)d[(1 — p2)4]
—i —i

0
47 °

(17p2- 3)(1 - p»)* | +8-/(1 - M2)4d(p2)

-i —i

5-8 5(17p2— 3)(1 — p2)4+17(l — p2)5

Donc on a „ 19 —1
-06,9 "

T-3ó-5-l-n 2-5
soit r 19 19

i>6,9
2n-33-52-7-rc 9676800^

§ 5. Représentation de la fonction arbitraire.

Coefficients. — Les seuls coefficients non nuls jusqu'à m 9
sont donc

P2,3_-, A.7-^. ^7 Ï8432^' ß2'9-3840^'
19

B,6,9 r
9676800^

Tous les Ao,m ainsi que tous les An,m sont nuls.

Fonctions sphériques générales jusqu'au 9me degré.

Nous désignerons maintenant avec Klein par Fm(ti, cp) la fonction
sphérique générale de degré m que nous avions appelée Y (pi, q>):

Fm (0, (p) Ym (fi, <p), pour p — cos Q.
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On a donc

Fm (ti, cp) Ao, m Pm (fi) -\- y, (An, m cos n q> + Bn> m sin n cp) Pm (fl),
n=l

pour p cos 0.

Puisque les A0,m et les An,m sont ici tous nuls, cette formule se
réduit à n=m

Fm (ti, Cp) — \ Bntm Sin H Cp Pm (fl).
n—1

Les seuls coefficients non nuls jusqu'à m 9 étant donnés ci-
dessus, on voit qu'on a

tandis que

Fs= — sm2<pPl,
on

65 1

19 19

On a d'ailleurs en faisant p cos0:

Pl I5p (1 — p2) 15 sin2 ti cos ti,

63
P2=--(l —p2)(143p5—110p3+15p)8

-63
— sin2 ti (143 cos5 0 — 110 cos3 0 + 15 cos 0),
8

P6=135135p (1 — p2)3= 135135 sin6 ti cos ti,

495
Pg= -tttCI — p2) (221 p7—273p5+ 91 p3— 7p)

495
— sin2 0 (221 cos7 0 — 273 cos5 0+ 91 cos3 ti — 7 cos 0),

675675 675675P%=-—— (1 — p2)(17p3— 3p)=—-— sin6 0(17 cos3 0 — 3cos0).

Formules approchées de la fonction arbitraire. — Nous

désignerons par^ (fi, cp) la valeur de la fonction approchée de la

fonction^/ (fi, <p) au moyen des fonctions sphériques générales jusqu'au
degré m, c'est-à-dire que nous poserons :

/¦(p,9P)=p0+iT1+Fî+...+Fm.
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On voit qu'il faut aller jusqu'au 3me degré pour obtenir une
formule approchée. On voit aussi que l'approximation reste ensuite
la même jusqu'au 6rae degré inclusivement,

/=/=/=/=~sin2ç>Pt.Jz Jii Jb Je Sn t
Surface d'approximation. — Nous représenterons la valeur de

y (p, cp) par un rayon rm issu de l'origine et porté par la droite
passant par le point (p, q>) de la sphère unité et dirigé vers ce point
ou dans le sens contraire, suivant que rm sera positif ou négatif. Le
lieu des extrémités du rayon rm dans tout le domaine de la sphère
sera donc une surface ayant pour équation, en coordonnées
sphériques rm, ç et 0 :

'
m

rm=^Fi(e,<p).
0

Cette équation représentera l'approximation obtenue pour la
fonction arbitraire en employant les fonctions sphériques jusqu'au
me degré.

Il n'y a donc, jusqu'au degré 9, que trois surfaces distinctes
d'approximation, savoir celles dont les équations sont:

r3=F3, r7 P3 + P7, ,.g p3 + p7 + pg.

Nous nous bornerons à écrire la première, soit
105 nra= -— sin Acp sm'2 ti cos ti,
on

les deux autres ont des équations qu'il serait aisé d'écrire puisque
nous avons calculé tous les éléments utiles, savoir les Bn,m et les

Pm, mais ces équations sont compliquées.

§ 7. Remarques sur la construction des surfaces
d'approxi mation.

Symétrie par rapport aux axes coordonnés. — Il résulte des

expressions des Bn,m et des Pm que dans les équations des trois
surfaces d'approximation, l'angle cp ne figure que sous le symbole
sin portant sur des multiples pairs de cp. Or, on a

sin 2/D(qp + ?r) sin2A;<jp,
sin 2k (n — g>) — sin2fcqp.

Donc, en supposant l'angle 0 constant, on peut déjà faire les
deux remarques suivantes :

1° Si cp croît de n, r reprend la même valeur;
2° Si çc> est changé en son supplément n — cp, r change simplement

de signe.
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De plus, dans chaque terme des trois équations, l'angle 0 figure
dans un produit de deux facteurs, l'un étant formé de puissances
impairement paires de sin 0 sera toujours positif; l'autre est un
monôme ou un polynôme de puissances impaires de cos 0.

Il en résulte que si cp ne change pas de valeur, mais que 0 soit
changé en n — 0, la fonction cos changeant de signe, ses puissances
impaires en feront autant et, par suite, r prendra la valeur opposée.

Supposons maintenant qu'on opère une rotation de deux angles
droits autour d'un quelconque des trois axes rectangulaires, voici
ce qui se produira :

1° Autour de l'axe des z :

ti reste constant,
cp croît de n,
r reprend la même valeur.

2° Autour de l'axe des x:
ti est changé en n — ti,
cp Tu » » —cp ou en 2n—cp,
r reprend la même valeur.

3° Autour de l'axe des y :

ti est changé en n — ti,
cp » » » n — q),

r reprend la même valeur.
En d'autres termes, les surfaces d'approximation sont symétriques

par rapport aux axes coordonnés.

Relations par rapport aux plans coordonnés.

Si l'on passe d'un point (ti, cp) de la sphère unité au point
symétrique par rapport à l'un quelconque des plans coordonnés, on aura
les variations suivantes :

1° Par rapport au plan x y :
ti est changé en n — ti,
cp ne change pas,
r change simplement de signe.

2° Par rapport au plan y z :
6 ne change pas,
cp est changé en n — cp,

r change simplement de signe.
3o Par rapport au plan z x :

ti ne change pas,
cp est changé en —cp ou 2yr—cp,
r change simplement de signe.
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Conclusion. — Numérotons les octants de la sphère comme suit :

1° Sur l'hémisphère supérieur: 1, 2, 3, 4 à partir de <p — 0;
2° Sur l'hémisphère inférieur: 5, 6, 7, 8 à partir de cp — 0.

Il résulte alors de la symétrie par rapport aux axes coordonnés
qu'une rotation de deux droits opérée sur la surface d'approximation

correspondant au premier octant et autour de l'axe des z, ou
de l'axe des y, ou de l'axe des x, donnera la partie de la surface
relative aux octants 3, 6, 8.

Il en est évidemment de même de la surface relative à l'octant 5
par rapport aux parties relatives respectivement aux octants 7, 2, 4.

Il suffit donc de faire voir comment on obtient la représentation
de l'octant 5 au moyen de l'octant 1.

Or, il résulte des relations par rapport aux plans coordonnés
que si r est la valeur du rayon secteur de la surface d'approximation

correspondant à un point (0, cp) du premier octant, la valeur
du rayon qui correspond au point symétrique par rapport au plan
x y de l'octant 5 sera — r, c'est-à-dire qu'elle devra être portée
dans le sens négatif. En d'autres termes, la représentation de ce
point du 5me octant coïncidera avec celle du point de l'octant 3
qu'on obtiendrait par une rotation de deux droits de la surface
relative au premier octant autour de l'axe des z.

Or, pour le premier octant les r sont positifs. 17 suffira donc
de construire la surface relative au premier octant. Alors, on en
pourra déduire :

a) la surface relative au 3me octant, par une rotation de deux
droits autour de l'axe des z;

b) la surface relative au 6>m octant, par une rotation de deux
droits autour de l'axe des y;

c) la surface relative au 8me octant, par une rotation de deux
droits autour de l'axe des x.

De plus, les représentations ainsi obtenues sont doubles; elles
correspondent aux octants 1, 3, 6, 8, d'une part, et à leurs opposés
respectifs par rapport à l'origine 7, 5, 4, 2, d'autre part.

Nous nous bornerons d'ailleurs, ainsi que le comporte l'énoncé
primitif du problème, à étudier la surface d'approximation relative
au 4me degré qui est celle des degrés 3, 4, 5, 6 à la fois.
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DEUXIÈME PARTIE

Etude en coordonnées sphériques
de la première surface d'approximation

relative au premier octant.

§ 1. Généralités.

Symétrie. — L'équation de la première surface d'approximation
(3me; 4me; 51^ Qwe degré) est

105
sin 2 çp sin2 0 cos ti.

8n

Elle montre immédiatement que cette surface est symétrique

par rapport au plan bissecteur cp — -~ du premier dièdre (x, y). Car
4

n
pour deux valeurs cpi et qd2 de cp, équidistantes de -, on a

4

n n
cpl=- — a, y2 -+ a,

d'où
sin 2 çd1 cos 2 a, sin 2 ço2 cos 2 a,

soit
sin 2cpj sin 2ç>2,

et comme pour deux points de la sphère unité, symétriques par

rapport au plan cp j, les deux valeurs de ti sont égales, il s'ensuit
4

que les deux valeurs de r sont aussi égales.
Nous étudierons la surface en la coupant, soit par des plans

méridiens: cp const., soit par ces cônes : 0 const.

Cônes ti. — L'équation
0=0„ (1)

où ti{ est constant, représente un cône ayant pour sommet l'origine,
pour axe l'axe des z, et pour demi-ouverture 6t. Ce cône coupe la
surface d'approximation suivant une courbe gauche dont les points
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sont à des distances de l'origine variables avec cp et données par la
formule

13 125
r°t — sin2 0j cos tit sin 2 cp. (2)

Les équations de (1) et (2) sont celles de cette courbe gauche.
La projection de la courbe sur le plan xy a pour équation polaire

R{ rx sin ti
soit

t, 13'425
Q

B{ sin3 0, cos 0, sin 2gr>,
n

Rj et cp étant les coordonnées polaires dans le plan xy, le pôle étant
l'origine O et l'axe x étant pris pour axe polaire. C'est une équation
de la forme

Bi Al sin 2<jp,

qui représente une rosace à quatre feuilles.
A son tour la courbe gauche (4), (2) est l'intersection du cône

0 —0d avec le cylindre P1 A1 sin 2çp qui a ses génératrices parallèles

à l'axe des z.
Soient

BX AK sin 2(jp, i?2 A2 sin 2ç>,

deux quelconques des courbes projetées sur xy, correspondant aux

cônes tiy et 02. Elles sont symétriques par rapport à cp — -et de

plus, homothétiques par rapport à l'origine, le rapport d'homothétie
étant

B{ At sin3 tiK cos tiy

i?2 A2 sin3 02 cos 02

Sections cp. — L'équation
cp cp{ (1)

représente un plan passant par l'axe z et faisant un angle cp avec
le plan origine zx; sa trace sur le plan xy fait elle-même l'angle cp

avec l'axe des x.
Ce plan coupe la surface d'approximation r — F3 suivant une

courbe ayant pour équations (1) et

13 125J sin 2<jt>, sin2 0 cos 0. (2)
n

Si l'on considère le plan cpt comme donné, l'équation polaire de
cette courbe dans ce plan est simplement l'équation (2), le pôle
étant l'origine O, l'axe polaire l'axe des z et 0 l'angle polaire.
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Sur un autre plan cp cpi on aurait la courbe d'intersection

13'125 • O • 2 « «-sin 2<jp2 sin2 0 cos ti.
n

Formons le rapport
sin 2^
sin 2 c

Nous voyons que si l'on opère une rotation d'un des plans
projetants autour de l'axe z jusqu'à ce qu'il vienne s'appliquer sur
l'autre, les deux courbes rK et r2 seront homothétiques par rapport

• • ¦ ,„ •
si11 2a-«

a 1 origine, le rapport d homothetie étante—
sin 2<jp2

nSi nous considérons en particulier le plan fi =—, et si nous
4

posons ry — R pour cet angle, l'équation de la section par ce plan
sera

„ 43.425
it —'- sin2 0 cos 0,

n
et l'on aura pour un autre plan cp quelconque la courbe d'intersection

r R sin 2ç>. (3)

Sous cette forme, on voit que le rapport d'homothétie de chaque
jrcourbe cp avec la courbe f — y varie avec <p comme sin 2çp. Si l'on

admet donc qu'en faisant tourner le plan cp autour de l'axe des z
nà partir de cp ~, la courbe se rétrécisse d'une manière continue
4

dans le rapport d'homothétie sin 2çc, c'est-à-dire suivant la loi (3),
la courbe variable décrira la surface relative au premier octant de
n - n n
v a 0 et de — a — ¦

4 4 2
Nous sommes ainsi amenés à construire la courbe B relative au

IL
plan cp — qui présentera, à l'échelle près, les mêmes affections

4
que toutes les courbes cp.

§ 2. Etude de la courbe R.

Courbe*;. — Si l'on pose

sin2 ti cos tì — q,
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l'équation de la courbe R prend la forme

_ 13,425
it Q.

n

La courbe R se déduira donc par homothétie de la courbe ç, le
centre d'homothétie étant l'origine et le rapport d'homothétie
43,425

n

Voisinage de l'origine. — Pour 0=0 et 0 90°, la fonction ç
est nulle. D'ailleurs q sera infiniment petit pour ti infiniment petit
et pour 0 infiniment voisin de 90°. Donc la courbe q est tangente
à l'axe polaire (axe des z) et à la trace sur le plan xy du plan cp. Il
en sera de même de la courbe R.

Comme on en peut dire autant de toutes les courbes r, la surface

est donc tangente, à l'origine, à l'axe z et au plan xy.

Valeurs particulières de ç sin2 0 cos ti. — On a :

4 /2 1,414
pour 0 45o, Çi5 -Y_ ^_ =o,3335,

I l/3 1 732
pour 0 30°, ?30 -î^ -2__ =0,2165,

pour 0 15°, çl5 -sin 30° sin 15° 0,6475,
A

pour0 6Oo, Q60 ^-^ =0,375,

1

pour 0 75°, çn - sin 30° sin 75° 0,2415,
A

i
pour 0=82°,5?82,5 ~ sin 5° sin 82°,5 0,1283.

A

On aura donc pour les R correspondants, en nous bornant aux
décimales pratiquement utiles :

Ä„ 4,47, R60 =1,56,

R30 0,835, R15 =1,009,

£,5 0,27, P82,5 0,536.
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Rayon maximum. — La dérivée de o sin2 ti cos 0 est

do
-+ 2 sino cos2 ti — sin3 0 sin ti cos2 0(2 — tg*ff)dd

n
Lorsque ti varie de 0 à-, on a donc

A

~> 0 pour 0 < ti < are ty /2),tt0
do ,—
—7 0 pour 0 arc^y2,dti
do sa rsr n-^<0pour are tg/2<ti<~.ah J

Donc o croît, à partir de la valeur zéro, de 0 0 à 0 arc tg \/~2,
prend une valeur maximale pour 0 arc tgY^, enfin décroît de

g-r

0 arc tg j/2 à — pour reprendre la valeur zéro.
A

Les tables de logarithmes donnent pour £#0 -j/2,

0 54>44'9",
et l'on a pour cet angle

sin 0=1/ cos0
1

i y/3
de sorte que le ç maximum est

2
Umax —— 0,3849

3/3
et par suite on a pour le R correspondant

Pmo, 1M25. ^ 4,608..
n 3/3

Ce rayon est évidemment porté par la demi-droite issue de l'origine

et qui passe par le point (4,1, 1) rapporté au système cartésien
rectangulaire.

Les plans bissecteurs des trois dièdres Ox, Oy, Oz des demi-
axes positifs passent par cette demi-droite, laquelle perce l'octant
de la sphère unité au point qui est représenté sur la surface
d'approximation par l'extrémité du B maximum. C'est donc en ce point
de la surface d'approximation que l'erreur, par excès, soit 0,608..
du rayon vecteur est la plus considérable.

Il s'ensuit que le cône 0 arci<7|/r2 coupe la surface aux points
les plus éloignés de l'origine sur toutes les courbes cp.
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Point de cote maximum. — Le cote z d'un point (o, 0)
quelconque de la courbe o est évidemment

z q cos 0 sin2 0 cos2 ti.

Puisque la somme des deux facteurs sin20 et cos20 est égale à 1,
c'est-à-dire constante, la cote sera maximale pour sin 0 cos 0, soit

n
pour 0—j : Le rayon R au point de cote maximale sera

_ 13,125 n n ,_it sin2 — cos y 1,47,
n 2 4

et la cote maximale' sur la courbe R sera

Z R cos y=1,044,4

valeur qui est évidemment égale à la distance du point de cote
maximale à l'axe z.

nLe cône 0 —coupe la surface d'approximation aux points où

les courbes cp ont leurs cotes maximales.
Les équations de la courbe gauche, lieu des points de cotes

maximales sur les sections cp, sont donc en coordonnées sphériques,

n 13,125 „0 =—» r= sin2 0 cos 0 sin 2 œ.
4 n

Conoide. — Le lieu des tangentes aux points de cotes maximales
des courbes cp forme un conoide ayant pour plan directeur le plan
xy, pour directrice rectiligne l'axe des z, et pour directrice curviligne

le lieu des points de cotes maximales. Ce lieu peut donc être
considéré, soit comme la source commune au conoide et à la sur-

¦jr
face, soit comme l'intersection du cône 0=yet du conoide, soit

4
comme l'intersection de ce cône et de la surface.

Le conoide est circonscrit à la surface le long de cette courbe.
Donc le plan en un point de celle-ci qui est tangent à la surface
l'est au conoide et, passant donc par la tangente à la courbe cp

correspondante, coupera le plan xy suivant une droite parallèle à cette
tangente.

TC

La cote maximale de la courbe 9 y ayant été désignée par Z,
4

il résulte des relations d'homothétie développées plus haut que la
cote maximale d'une courbe cp quelconque sera z Zsin2<p, soit
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13,125 n n 13,125
z — sin2 y cos2 — sin 2œ —; sin 2œ.

JT 4 4 4;r

Cette formule est aussi l'équation du conoide en coordonnées
cylindriques.

Point d'éloignement maximum de l'axe des z. — Il s'agit ici de
rendre maximum l'éloignement e çsin0, soit

e sin3 0 cos 0

du point de la courbe o sin2 0 cos ti. Or, on a

de
— sin2 ti (3 cos2 0 — sin2 0)
dti

On aura done I /3 tg — 1

de ^ n n
->OpourO<0<r
de n n— 0 pour 0 0 et 0=-.a0 3

de ^ n n-<Opour-<0<--
TT

Donc e, partant de zéro, croît de 0 0 à 6 ——, atteint un maxi-

mum pour 0 arc tg /3, enfin décroît au delà de arc tg ~\f3 jusqu'à
n

0 —où il redevient nul.
A

Le rayon correspondant est

13,155 n n 13,125 3
A „„„r — sin2 -cos - — -=1,567.

TT 3 3 TI 8

La cote du point correspondant, très importante à connaître
pour la construction de la surface, est

z r cos 5 0,783.

Enfin l'éloignement maximum sera

_ 13,125 3 nE — -sin- l,357.no o
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Remarque. — Aux points d'éloignement maximum de l'axe des z,
la tangente à la courbe cp sur la surface ainsi que le plan tangent
sont parallèles à l'axe des z.

Le cylindre

D 13,125 n „ 13,125 3/3 0R sin3-cos-sin2ç> TT"-sin 2qp,
n 3 3 n lu

dont la trace sur le plan xy est une rosace à quatre feuilles, est
circonscrit à la surface tout le long de la courbe d'éloignement
maximum de l'axe des z. Sa trace sur xy est donc le contour apparent

horizontal de la surface.

§ 3. Courbe d'exactitude.

L'équation de la surface de la sphère est en coordonnées
sphériques r, cp, 0.

r l. (1)

C'est aussi, pour le premier octant, l'équation représentant
exactement la fonction arbitraire proposée.

L'équation de la surface d'approximation est, d'autre part,
13 125

r —: sin 2 cp sin2 0 cos ti. (2)
n

Les équations (1) et (2) sont celles d'une courbe gauche qui est
l'intersection de la sphère unité et de la surface d'approximation.
Le long de cette courbe la fonction étudiée est toujours égale à +1
sur le premier octant ; elle y est donc représentée exactement. Nous
l'appellerons la courbe d'exactitude.

Si l'on suppose donnée la surface de la sphère unité, la courbe
d'exactitude relative au premier octant aura simplement pour
équation sur cette sphère

13125
—- sin29>sin20cos0 l. (3)

n
Il est important de construire cette courbe en déterminant un

nombre suffisant de ses points et, en particulier, en fixant ses points
extrêmes dans le sens des cp et dans celui des 0. A cet effet, nous
étudierons ses intersections avec des méridiens cp et des parallèles 0
de la sphère.

TV
Si l'on y suppose cp constant entre 0 et —, on aura une équation en

Ji

cos 0 dont les racines correspondront aux intersections de la courbe
d'intersection avec le méridien cp. Cette équation peut s'écrire

TV

cos30 —COS0+ =0.
13,125 sin 2 cp
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On vérifie aisément qu'une racine cos 0 est inférieure à —1.
nLe produit des racines est — trk inr, .—^—, soit négatif. Donc, sir 13,125 sin 2cp

&

les trois racines sont réelles, la somme des racines devant être nulle,
il y aura encore deux racines positives. D'ailleurs aucune n'est
supérieure à 1. Il y aura donc alors deux racines positives comprises
entre 0 et 1.

Ce sont les seules qui correspondent à un angle 0 réel, et par
suite, dans l'intervalle des valeurs de cp où les racines cos 0 sont
réelles, chaque méridien cp coupe la courbe d'exactitude en deux
points. Il n'y a qu'à exprimer que les trois racines sont réelles pour
obtenir cet intervalle, ce qu'indique la condition, nécessaire et
suffisante,

1 \ 3 n2

3/ 26,252sin22y"

soit, puisque sin2<p>0,
3yßn

sin2qp^
26,25

Le cas de l'égalité signifie que le méridien cp correspondant
rencontre la courbe d'exactitude en deux points confondus. Cette
équation fournit deux valeurs supplémentaires pour 2 cp et, par

TV

conséquent, deux valeurs pour cp équidistantes de -. Soient, q>{ et
4

cp% ces deux valeurs. Le calcul donne

cp{ 19°13'35",5, cpz 70°46'24",5,

et l'on aura donc pour la courbe d'exactitude

<p{^(p^ <p2.

Pour les valeurs <p{ et çt>2, l'équation en cos 0 est

/(0) cos80— cos 0-1 0.J V ^3/3
Les deux racines égales sont aussi racines de l'équation

f(ti) sin 0 (1 — 3 cos2 0)=0,
soit en supprimant le facteur sin 0 qui ne fournit évidemment aucune
solution de /(0) O,

1

cos0 -^, d'où tgO y%.
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Projections de Monge

de la surface d'approximation (as2+1/2+ z'2)2 -

Plan horizontal de projection : xy.
Plan vertical de projection: bissecteur de z(x,y).

26,25
xyz 0.

Les deux projections sont écartées pour éviter le recouvrement.

Signe de terre: u(u,u"), u=Y. Axe Z —axe z. Axe X (non marqué)

perpendiculaire à u
e(e,e")\ courbe d'exactitude. —cß(cd cd) : ^ônes 6.
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On reconnaît ainsi que les méridiens cpt et <jp2 de la sphère
touchent la courbe d'exactitude aux points où les courbes <jp4 et <je>2

de la surface d'approximation ont leur rayon vecteur maximum.

Intersection avec les parallèles ti. — L'équation de la courbe
d'exactitude peut s'écrire

sin 2œ-| 0.
13,125 sin2 0COS0

Si l'on y suppose 0 constant, les valeurs de cp qu'elle définira
détermineront les points d'intersection de la courbe avec le parallèle
0 correspondant. Le second membre étant positif, pour que ces
points soient réels sur le premier octant de la sphère, il faut
évidemment et il suffit que 0 soit tel que

dl.
13,125 sin2 0 cos 0

de l'ég

on a l'équation

TV

Pour le cas de l'égalité, c'est-à-dire pour sin2qp l, soit 9>=y

cos3 0 — cos 0 -

13,125

Une analyse, analogue à celle du paragraphe précédent, donne
IJT

pour les deux seuls angles réels définis entre 0 et — par cette

équation,
01 32°6'48",8, 02 75°9'25",6.

Ce sont les équations des parallèles limites entre lesquels est
comprise la courbe d'exactitude sur le premier octant. Ces parallèles

sont tangents à celle-ci.

Remarque finale. — On peut remarquer que l'énoncé du
problème ne fait jouer à l'axe z aucun rôle particulier. On pourrait
opérer une permutation cyclique des trois axes x, y, z, de sorte
que ce qu'on a dit de l'axe z, par rapport à x et y, sera vrai de
l'axe x par rapport à y et z, et aussi de l'axe y par rapport kzetx.
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TROISIEME PARTIE

La surface d'approximation en coordonnées
cartésiennes.

§ 1. Equation cartésienne de ia surface.

L'équation, en coordonnées sphériques, étant

13 125
R — sin2 0 cos ti sin 2 cp,

n
les formules de transformation,

x Rsin ti cos cp, y Rsin 0sin cp, z RcosO,

donneront

R2 x2+y2+z2, sin20 ^±^, cos0 -, sin2<p ^-,"^ R2 R * xa-Ay*
de sorte que l'équation pourra d'abord s'écrire

_ 13,125 .-r2 + ya- z_ Ixy
' n2 ' n' I 2'

n R R x A V
soit évidemment

26 25
F(x, y,z) (x°- + if- + zy -— x y z 0. (1)

n
Le produit xyz devant toujours être positif, il s'ensuit que la

surface d'approximation n'existera que dans les trièdres trirec-
tangles qui contiennent les octants 1, 3, 6 et 8 de la sphère unité.

Symétrie. — La fonction F(x, y, z) est symétrique par rapport
aux trois coordonnées x, y, z. Si donc on échange deux
quelconques d'entre elles, l'équation reste satisfaite. Cela signifie
évidemment que la surface d'approximation est symétrique par rapport
aux trois plans bissecteurs des dièdres rectangles dont les arêtes
sont les axes x, y, z.

Plan tangent. — L'équation du plan tangent au point P(x,y,z)
de la surface étant

dF dF dF(z-a,)-+(r-!/)-+(z-,)-=o.
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on peut écrire

c d^2 26,25
b —(B) xyz,

n
avec

r>1 2 i 2 i 2b =x a y +z ¦
On aura donc

dF „ 26,25 -/ i?;
=!^Bdx '— yz R 4a; —

ÖF 2 26,25 / fl2
s— 4?B y zx B 4w

dF 26,25 ./ if
y— 4iî z a?« Rr 4z

Donc l'équation du plan tangent deviendra

/ R2\
0.(X-x)Uœ-^)A(Y-y)Uy-^)+(Z-z)Uz-*

XJ V y)
On peut encore l'écrire

4(Xx + Yy +Zz)-B2(- + -+ -)-B2 Q,
\x y zj

ou

^(^--)+ f(42/-^)+z(4,---)-jR^O,
où l'on fera toujours B2 x2 + ?/2 + z2.

§ 2. Courbe d'exactitude et angle d'approximation.
Courbe d'exactitude. — Cette courbe est l'intersection de la

sphère unité et de la surface d'approximation. Ses équations sont
donc

26 25
(x°- +y*AAf '—xyz 0, ^ +^+^ 1,

n
soit, évidemment,

Tout le long de cette courbe, on a R l, et par suite,

^l— / _1 ^"_/ 1 aF—A- j
<?*

" *' dy i/ dz ~
z
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Dès lors, le plan tangent à la surface d'approximation, en un
point P (x, y, z) de la courbe d'exactitude, aura pour équation

(X-x)^x-i^ + (Y-y)(^y-ì-j+(Z-z)(iz-ì^0,
/X Y 7\

4(Xx+Yy +Zz)-(—\ 1—)_1=0.
\x y z/

Angle d'approximation. — J'appelle angle d'approximation en
un point de la courbe d'exactitude, l'angle a sous lequel, en ce
point, la surface d'approximation coupe la sphère unité, celle-ci
étant la surface exacte. Il est intéressant de connaître cet angle qui
exprimera la loi suivant laquelle la surface d'approximation différera
de la surface exacte le long de la courbe.

Or, cet angle étant celui des normales aux deux surfaces, est
déterminé par la formule

J(4—;)+l,(0+'(*^l
|/ (- +-»-+^[(*—D + (*r-;)+(*«-!) j

c'est-à-dire, puisque a;2 + ?/2 + z2 l,
1

cosa

i/ ì+ì+i-8& y* &

Cherchons entre quelles limites varie l'angle a, et quelles sont
les coordonnées des points qui correspondent à ces limites.

Les simples relations de symétrie déjà énoncées font voir
immédiatement que les points de la courbe d'exactitude situés sur les
bissecteurs des dièdres x, y, z correspondent à des extrêmes de
l'angle a. Mais n'en existe-t-il pas d'autres?

Or, les maxima et minima de l'angle a correspondent respectivement

aux minima et maxima de cosa, c'est-à-dire aux maxima et
minima de la fonction

le long de la courbe d'exactitude

-c2 + 2/2 + z2 l, (2)
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Les coordonnées x, y, z d'un point quelconque de cette courbe
sont des fonctions d'un seul paramètre qui peut être une des trois
coordonnées et qu'il n'est d'ailleurs pas nécessaire de spécifier.
Mais pour les valeurs de ces coordonnées qui rendent f(x, y, z)
extrême, on doit avoir df—0, soit

1 1 1
<&£-{—zdy-\-~dz-.

x3 y3
0 (4)

les différentielles dx, dy, dz devant satisfaire aux deux équations
de la courbe, c'est-à-dire être telles que

x dx + y dy + z dz 0,

yz dx + zx dy + xy dz 0.

(5)

(6)

L'élimination des trois différentielles entre ces trois équations
donnera

1 11

xà

X

yz

li Z

y z

zx xy

0. (7)

Les équations (2), (3) et (7) permettent de trouver les valeurs
de x, y, z qui peuvent rendre f(x, y, z) extrême.

Or, en vertu de (3), l'équation (7) peut s'écrire

1 1 i
x'6 y-i i3

X y 7

1 1 1

X y z

:0.

Multiplions les éléments des trois colonnes respectivement par
x3, ï/3, z3. Cette opération n'introduit aucune solution étrangère, ni
ne supprime aucune solution existante, car aucune des coordonnées

x, y, z n'est nulle sur la courbe d'exactitude. On a alors

1

x-

1

•V2

i
^2 =o,

ce qu'on peut évidemment écrire en changeant les signes

(2/2-z2)(z2-ï2)(a;2-?/2) 0.
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Les maxima et minima cherchés sur la courbe d'exactitude
correspondront donc aux points de celle-ci où l'on a alternativement
(et non simultanément, ce qui est impossible):

yi — z2 0, z2 —«2 0, x2 — y- 0. (8)

Ce sont les équations des paires de plans bissecteurs des dièdres
x, y, z respectivement. Par là on voit qu'il n'y a pas d'autres
extrêmes que ceux que l'on pouvait découvrir, à la qualité près, à
l'aide des simples relations de symétrie géométrique.

En nous bornant au premier octant, pour lequel les x, y, z sont
tous positifs, nous pourrons écrire ces relations indépendantes

?/ z, z ^c, x y- (9)

Les équations de la surface d'approximation, de la sphère unité
et de la courbe d'exactitude étant symétriques par rapport kx,y, z
il suffira d'étudier la solution x y. Alors les équations (2) et (3)
donnent

2«2 1 — z2, a;«=
rc

26,25 z
d'où

0. (10)
1

13,25

C'est l'équation qui donnera les valeurs de z correspondant aux
points où l'angle a d'approximation sera extrême sur le plan bissecteur

x y. Or, sur la sphère, on a toujours z cos0. Dès lors,
cette équation a déjà été étudiée et l'on a trouvé pour ses deux
racines positives et inférieures à 1,

z1 cos01, z2 cos02,
où

ti{ 32°6'48",8, 02 75°9'25",6.

Pour décider laquelle des deux valeurs de z fournira un maximum

ou un minimum pour la fonction f(x, y, z), remarquons que,
tout le long de la courbe d'exactitude, on a

/v s 1,1,1 *2+«/2 ,1 *
», a/26,25\2, 1

La fonction à rendre extrême devient donc

,w_(?£)V-„+î.
D'ailleurs, il s'agit ici d'extrêmes absolus, de sorte que le plus

petit sera le minimum et le plus grand le maximum. Or, cos 0j est
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V3 1
peu inférieur à cos30°-=—-, cos02 est peu supérieur à -> et
/26,25\2 l ^

4
I 1 est peu différent de 67. On vérifie alors aisément que

_ /l/3\ /1\FI — I < FI - I. Les calculs faits avec les valeurs exactes Zj et z2

montrent qu'on a, en effet, F(z1)<F(z2).
Ce qui a été dit des z se dira mutatis mutandis des a; et des y.
Conclusion. — Le long de la courbe d'exactitude, l'angle

d'approximation présente six extrêmes, tous aux points situés sur les
plans bissecteurs des dièdres x, y, z, à savoir, trois minima aux
points A, B, C les plus rapprochés des trois axes x, y, z, et trois
maxima aux points A' B' C les plus rapprochés des plans yz, zx
et xy.

§ 3. Représentation de la surface en projections
de Monge.

Le plan xy étant horizontal, si l'on prenait le plan yz pour plan
vertical de projections, les deux projections de la surface auraient
comme contours apparents des rosaces à quatre feuilles. La
représentation devient plus intéressante lorsque, conservant l'axe z et le

TV

plan xy, on fait tourner le trièdre autour de z d'un angle ç> >

de manière que les anciens axes x et y seront les bissecteurs des
angles des nouveaux axes X et Y. A cet effet, il suffit évidemment
de faire

*=(Z+Y)7I' y=-(x-Y)±i z=z.

L'équation de la surface devient

(Z2 + Y2 + Z2)2 +^- (A2- Y2) Z 0.
n

Alors, le contour apparent horizontal est une rosace à quatre
feuilles, comme on l'a vu dans la première partie.

Pour reconnaître la nature du contour apparent vertical, remarquons

qu'il est le lieu de la trace, sur le plan YZ, d'une droite
de bout tangente à la surlace. Or, une telle droite, passant par le
point (Y, Z) du nouveau plan vertical, a des coordonnées courantes
|, t], f, telles que £ est variable, rj — Y, £=Z.

Pour ses points d'intersection avec la surface, on a

(f+ Y2 + Z2)2 + -^i25(f -Y2)Z 0,
n
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soit, évidemment,

^+2(V2+ Z2 +1^Z^2+ (F2 + Z2)2-13^125F2Z 0.
\ ln «

C'est une équation bicarrée en £. A chaque couple de valeurs
réelles de Y et Z correspondent donc quatre points communs à la
droite de bout et à la surface. Ces points sont deux à deux réels ou
imaginaires, distincts ou confondus, mais symétriques par rapport
au plan vertical X=0. Ils ne peuvent d'ailleurs être réels que pourf 0ouf>0.

1° § =0. Les deux points correspondants sont donc confondus
en un seul sur le plan YZ. La droite de bout est tangente à la surface

en ce point. La condition, nécessaire et suffisante pour que ce
cas soit réalisé, est qu'on ait

(y2 + Z2)2-1iy2572Z 0,
n

avec, nécessairement, Z>0. C'est l'équation du contour apparent
vertical au-dessus de la ligne de terre u Y. Il est aisé de voir que
l'équation ci-dessus étant satisfaite pour Z>-0, les deux autres
points d'intersection de la droite de bout avec la surface sont imaginaires

conjugués.

Conclusion. — Le demi-plan vertical X=0 supérieur (Z^>0J
coupe la surface suivant la partie du contour apparent vertical
situé au-dessus de la ligne de terre.

2° f> 0. Les racines étant réelles, la droite de bout ne pourra
être tangente qu'à la condition que deux points d'intersection situés
d'un même côté du plan vertical soient venus se confondre. Alors
les deux autres points, symétriques de ceux-là, seront aussi
confondus. La droite sera bitangente. En d'autres termes, chaque
valeur de f définissant un même couple de points symétriques par
rapport au plan vertical, les deux couples devront être représentés
par deux valeurs égales de f. La condition, nécessaire et suffisante
pour qu'il en soit ainsi, est que le réalisant de l'équation du
deuxième degré par rapport à f soit nul, c'est-à-dire qu'on ait

(y2+z2)2_|_13!125z(y2+z2)+/13425\2z2
n \ 2n i

_(r2+z2)+13'125Y2z=o.
n

En réduisant et supprimant la solution Z 0 qui ne peut
évidemment convenir qu'au seul point singulier qui est l'origine des
coordonnées, on obtiendra l'équation
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1 '1 195
2F2+z2 +^-Z 0.

in
Elle représente une ellipse qui ne peut être réelle que pour

Z«<0, c'est-à-dire sur le demi-plan vertical inférieur.
On pourra écrire cette équation

13,125\2
+ 8n Y2

213425V /13,125y

On obtient donc ce résultat remarquable : le contour apparent
vertical au-dessus de la ligne de terre est une ellipse, tangente à la ligne

13 125
de terre à l'origine et dont le demi-petit axe —A=-, parallèle à la

13,125 8V2^
ligne de terre, est au demi-grand axe — comme le côté d'un carré

on
est à sa diagonale.

Manuscrit reçu le 22 avril 1932.

Dernières épreuves corrigées le 19 mars 1933.
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