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| Les formules de Frenet
dans un espace généralisé de Weyl

Gustave JUVET, professeur a 1'Université

e S b ——————— '

On sait I'importance des formules de Frenet pour I’analyse
infinitésimale des courbes. Tous les traités de géométrie diffé-
rentielle les établissent pour une courbe gauche dans ’espace
euclidien a 3 dimensions (E,) dont le ds? est de la forme :

ds® = do + do - da?

M. C. Guichard les a établies! pour une courbe gauche
générale décrite dans un espace euclidien & n dimensions (E,),
dont le ds? a la forme :

ds®* =dxi|-dxi+... Fdx2

Cette question est d’ailleurs classique.

M. W. Blaschke, dans un récent travail2 a considéré une
courbe, placée dans une variété riemannienne (R,) dont le ds?
a la forme tres générale: -

1...n ‘
ds? = E ik dﬂ.’?i d{L'];,
i,k

les gu étant des fonctions continues en général, d’ailleurs
quelconques des coordonnées curvilignes x;, x,, . .. Zn. Nous
suivons 1ci la méthode employée par ce géométre, et dans la
mesure du possible, nous emploierons les mémes notations
que celles qui sont employées dans I’article cité, de sorte qu’il
nous sera aisé, a la fin de cette note, d’énoncer les résultats

1 Cours professé en Sorbonne, hiver 1919-1920. ;

2 Mathematische Zeitschrift, t. 6, 1919 ; Frenets Formeln fir den Raum von
Riemann. : :
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de M. Blaschke puisqu’ils constituent uir cas partlcuher des
formules que nous établirons. En effet, notre dessein est de
trouver une géneralisation des Iormules de Frenet pour une
variété ou la métrique est définie au sens de M. Weyl!.-Dans
une telle variété (W,) la métrique est définie au moyen de
deux formes différentielles, l’une quadratique : .

d?zzmda,, _(_11)

Les gub et les ¢; sont des fOIlCthIiS des coordonnees curvi-
lignes xy, %o, ...%, au moyen desquelles on represente Ies-
pace (W,); la forme d¢ est un mvarlant pour toutes les trans-
formations continues x; = f; (¥, Y, - - - Yn)- -

C’est dire que les ¢; sont les composantes covamantes ne un
tenseur d’ordre 1 attaché a la forme (I). L’intérét — d’ordre
philosophique puisqu'il est relatif aux « hypothéses qui servent
de base a la geemetne » — qui s’attache a une telle définition
de la metrlque d’une variété, dépend de la notion d’étalon-
nage. Nous n'y insisterons pas outre mesure, nous contentant_
de renvoyer le lecteur aux articles et ouvrage cités.

Toutefois il est bon de rappeler les faits suivants qui per—
mettent de situer nettement le probléme. Supposons qu’en
chaque point de la variété, I'on change I'unité de longueur;

nous supposerons qu'elle y devienne /X fois plus petite, X étant
une fonction positive du lieu. Alors le carré de 1élément
“linéaire devient?2:

1’autre linéaire :

ds’ Q-Rg,h dx; dac;,
et M Weyl a demontle que la forme (II) de\dent

dcp —d?——?_d?—dloﬂ

¢’est-a-dire que, si I'on admet que les gi sont deﬁms a un
facteur conny prés, la forme de n’est définie qu’a une diffé-
rentielle totale prés. Au principe de l'invariance des formules

1 Voir Raum, Zeit, Materie. & ed Sprmger, Berlin 1921, p. 109, ou bien
Math. Zs., t. 2, 1918 Reine Infinitesimalgeometrie.
2 Suivant la convention bien connue, nous supprimons les signes = quand ils
portent sur des indices qui sont i la fois covariants et contravariants.

"
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qui expriment les lois de la géométrie infinitésimale!, ¢’est-a-
dire en quelque maniére, a l'indifférence que ces formules
manifestent pour le systéme des coordonnées curvilignes
choisi dans la variété, M. Weyl a ajouté le pfrmmpe de la
relativité de la grandeur:

Les formules de la géométrie différentielle ne doivent pas
étre seulement invariantes pour des transformations continues
quelconques des variables «;, mais encore elles doivent rester
inaltérées quand l’étalonnao‘e de la variété change, c’est-a-dire

1 o)
quand on remplace Gix par Agi. et ¢; par ¢; — — =—-

Cette notion est liée tres étroitement a la notion de con-
nexion métrigue dont elle découle d’ailleurs. En chaque point
de la variété, on peut imaginer des vecteurs, c’est-a-dire des
grandeurs définies par » nombres §1, §2, . g qui se trans-
forment dans un changement de coordonnées comme les dif-
férentielles dx;; ce sont les composantes contravariantes d’un
vecteur. A chaque vecteur, on peut faire correspondre un
nombre qui sera appelé la mesure du segment determme par
le vecteur, ce nombre est2 : :

quegh

Considérons I’ensemble des vecteurs attachés a un point P.
Il y correspond un ensemble simplement infini de nombres
qui sont les mesures des segments déterminés par ces vec-
teurs. Considérons de plus les deux ensembles de vecteurs et
de segments attachés a un point P’, infiniment voisin de P.
On dira que le point P est en connexion mélrique avec son
voisinage; si 1'on sait avec quel segment attaché a P’, un seg-
ment quelconque attaché a P, vient coincider quand on déplace
par congruence I’ensemble des vecteurs attachés a P jusqu’a
I’amener a coincider avec I’ensemble des vecteurs attachés &
P’. Un tel déplacement par congruence a été déja défini par
M. Levi Civita® sous le nom de déplacement paralléle, dans le
.cas ot 'on admet que la mesure d’un segment reste inaltérée
quel que soit le déplacement que subit le vecteur auquel il
est attaché. La définition que donne M. Weyl du déplacement
congruent, coincide parfaitement avec celle de M Levi Civita,

1 Les pr1nc1pes de cette géométrie intrinséque se trouvent developpes dans le
- travail suivant de MM. Ricci et Levi Civita : - Méthodes de calcul différentiel
absolu et leurs applications. Math. Annalen, t. 54, ’1900

2 Ce n’est pas sa longueur.

3 Nozione di parallelismo in una varieta qualunque, ete. Rendiconti del
Cire. Mat, di Palermo, t. 42, 1917. .
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- quand on suppose d¢ = 0. Voici les résultats: Si_1'on consi-
dére en P (x;,...2x,) le vecteur X (¢1,£2,...8%), et qu'on le
déplace par congruence de P en P’ (.sc —{—d.x, . X dcy)
il vient s apphquer sur le vecteur attaché a P’ dont les com-
- posantes sont £ d&t (1=1,2,...n) et 'on a:

At = —T t" dx,.

Les Il sont les composantes d’une grandeur qui n’a un
~caractére tensoriel que pour des transformations linéaires des
- coordonnées ; elles sont alors covarlantes en r et s, contrava-
riantes en Ty de plus:

e
' I‘rs Sy r;r .

- Leur expression en fonction des gi. et des ¢; est’
' Iﬂ;s —Yg e rk:TS :
avec |
_&grk

1 [6957

1 itk == & E.
R I,,

6(]11 |
9 ] + 5) (gw ‘Pk—!“grk?z“‘“gtk ‘Pr)
les g sont égaux respectivement aux mineurs des gm dans le
déterminant | g |, divisés par ce déterminant lui-meme; on 2
- de plus:

ag ik

A Fm,m —I_ Fk tr—""' + GirPr.

Considérons une courbe € .donnée par les équations para-
métriques : x;=x;(s); a chaque point de la courbe, attachons
un vecteur X; ses composantes ¢ seront définies par des fonc—
- tions de s: E"——f‘(s)

Déplacons congruement ce vecteur X (¢%), relatif au point
P (s) de la courbe, de P en P’ (s—]—ds) ses composantes v
deviennent

E*+d€*-—£"——l‘fs£ da,

Mais au pomt P’ (s ds) est attaché, & d[)l s les lois don-

nees, le vecteur - '

| daft
ds

La différence de ces expressions _donn,e'l'a quaritité dont
varie une composante du vecteur X, quand on passe de P en
P’; cette différence n’est pas autre chose qu'une des compo-

eurd“ds_a% s,
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santes du vecteur qu’il faut ajouter au vecteur X (s) transporté
congruement de P en P’, pour obtenir le vecteur X (s} ds)
attaché a P’. | | ' |

1l s’ensuit que:

CdE o dag
gt —— -1 &r
E ds_l—‘r“’E ds

@)

est une composante d’un vecteur contravariant attaché a la
courbe?. . |
Ces préliminaires établis ou rappelés, il nous est facile de
trouver les formules de Frenet pour une courbe quelconque
tracée dans une (W,). Ces formules expriment la variation
d’un n-édre rectangle, attaché & la courbe lorsque 1’on passe
d’'un point de cette courbe a4 un point infiniment voisin. A
chaque point P(s) de la courbe, nous attachons n vecteurs
définis de la maniére suivante 2:

(2 'S ' . B ! -—_ .
X, (§4) aux composantes: &, = —
‘X'Q (532)) ) » : Eg) ZGE&)
' ] *
X (E;k)) » » y=0¢0-1)
r (2 »
‘XN (E(H)) ?) » Gén): BE(::—-U

Nous supposerons qu’il n’existe aucune relation linéaire et
homogéne entre ces n vecteurs; cela veut dire que ces n vec-
-teurs forment bien un n-édre (oblique en général) situé dans
espace plan, tangent a la variété W, au point P. (M. Gui-
chard appelle un tel espace plan un n-plan.)

Cela étant, appliquons a ces n vecteurs les proceédés d’or-
thogonalisation qui sont dus & M. Schmidt 3, ¢’est-a-dire consi-
‘dérons dans le n-plan tangent & W,, un n-édre n-rectangulaire*.

' R., Z., M., p. 103, : T |

* Ici, nous suivons servilement la méthode que M. Blaschke a employée pour

le cas particulier d’un espace (Rn).
3 Math. Ann., t. 63

- 4 Deux vecteurs X (E 5) et Y (‘t]") sont dits rectangulaires, cdrri_me on sail, si

{]@k' Ei .qk . U
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PosQnS :

Yibin by =(0> D)
1,1, ,9)...d, p)

et

=Dp; * (Do=1);"

- les n vecteurs de base du n-édre seront :

(17 1)? 8 (17 P— l)a gz'ly
1 (27 1)7 SR (27 p.'_ 1)? E%Z)

VD<P—1)D(P)

" N
=

- L@, ), (00 — 1) 8L,
(p=1,2,...n) | : |

En se rappelant les principes de la théorie d’orthogonali-
~sation suivant Schmidt, on voit que: '

i gk ik N
Jurmip=0 et gunpngp=0,sip>q,
g .
et Ju: 22 (m =1

~ Nous avons ainsi un n-édre (N) formé de n-vecteurs dont
les segments ont pour mesure I'unité ; ces vecteurs étant ortho-
gonaux 2 a 2. :

1y, est le vecteur tangent & la courbe en P,
iy est le vecteur situé dans le un-plan osculateur a la

courbe en P, il est. normal a la tangente; c’est la 1re normale
a la courbe; etc., etc... ' | |

Déplacons le n-édre (N) par congruence de P(s) en
P’ (s ds); soit (N*) sa nouvelle position, et considérons le
n-¢dre (N’) attaché en P’. Comment passe-t-on du n-édre (N*)
au n-édre (N)? Tel est le probléme que I'on se pose et qui
aboutit aux formules de Frenet. Prenons, par exemple, le vec-
teur H,(n,), il est devenu dans le déplacement H,; formons

*

’ :
—H : | T
alors ,_ILd — P, ce n'est pas autre chose que 9H,, et ce n’est
v S E

pas d’une autre maniére que 'on procéde quand on emploie
en géométrie différentielle classique, 'image sphérique de la -
courbe. :



— 62 —

i) ¢
ﬁn(p)_ E, (}Jq)”(q)v o (2)

nous dirons que les ag,g sont les courbures generahsees on
voit aisément leur signification vectorielle. Remarquons que

Posons alors:

o i Y.k
%o = it (00 )G
en vertu des relations d’orthegonalisation.
Calculons les a(p, explicitement.

Puisque it 0y My = const.,
d .
1
™ |9ik1(m ] =0,

¢’est-a-dire en vertu de (1):

agl’p . i g ) [ I .
ErRRIORI O L [ — Dia €0 | 6
’_I— gkl [07] iq) 1 if gj 7)(,1)] n(p) "_U ; (3)

' ‘ d(l,l,,
ar: - G M"’—JM '-_'—Ia I.r+lh,u*".jcl ',+d.l; 3.0

PO

par suite, I'égalité (3) devient :

’

ST LU AN O Uk bk LE gy
Y% ()2 T Iy — Jin 28" 50 Mg =0

de
Done, on a: “(pq)‘l"“(qp)wa(pq) ds'
car
ey e dJ,,,, dy
< R ds  ds’
' , : I (si p=
on a pose: S(M,:O Esi g#g;

on voit donc que, si p=£gq,

X(pq) = — %(qp)
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Remarquons encore que 6ny) depend lmealrement des vec-
teurs £u), &g, ... E(pya); OF m(y est orthogonal aux vecteurs
5(1), £ - - - bigt)y AONC Si

p+1=q —~1, ]"on A

gir (Bi) ni =0,
¢’ est-a-dire que apgy="0
quand p et ¢ différent de 2 unités ou plus.
~ On posera par suite : =
N
a i ="
(0, pt+1) e

Notre calcul est déja considérablement réduit pulsqu il
ne s’agit plus que de caleuler les (n —1) grandeurs

P (i) (t—1 2 n—’l)

Or:

(p,pH1) = o0 )'—“ 9k ﬂn(p) "l(p+1y
: p

m&iS- . ’ ;- (1’1)5 (177) ) EE‘)
. 1 : '
I/Dw 1) D(p)

11(:n)

_ (pa 1)9 (ps T) /I)v E(;o)
¢’ est-a-dire :

1 =40 T Aelet - A i
les A étant des nombres bien choisis; par suite :
¥y = B(l) 5(1) 4 4By "‘(?7)+ Byt EfrH—l)ﬂ
les B étant des coefficients dont le dernier seul nous

- importe, gar le vecteur H, 4 (1{,14)) €St m‘thogonal a tous les

1)(—(;.,) pour lesqueh r <p+1
Donc on a:
A

(p,pjrl) — F_E;) =Yk B(IH—I) E?P—i—‘) N (pt1)-
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Bipty se calcule aisément, ce n’est pas autre chose que
Ay comme il appert de la régle suivante :

_dr . .
0(151):d_8 Ei - MEE,
ou A est une fonction quelconque de s. Mais

A(p)— Dp—y) : VD(m Dip—yy.

Bemalquons enfin que les formules qui expriment les 7,
en fonction des &%, peuvent se résoudre par rapport aux
Z@; On trouve en particulier:

¥ p+1) = Cm"‘?(l; + €y "’(‘))JF rp? C(p+1) mp+n~

le seul coefficient intéressant pour nous est Gpyy), car

Fptn T P(_p) =ik A(p) C(H—l) (p+) N(p+1) "“‘A(p) C(m-l)
Un caleul simple montre que
o) — V Dy Diptny
A p oo
D(p)
donc : : :
&) = 1 - Dip 1) 1/])-13)]){11+1! I/D(w—l) 1p+1)
BipHN) = o B e b ey :
0@ Y Dipy Dip—yy Dy Dy
Les formules (2) deViennent donc :
1 d(?
671 =
W™ 9 s ’1(1)+ (1)
o | 1 dy
B jg) = — — 7
It o) ’1(1)"|“2dq 0)"1' ”]m
g 4 o v e e e e e
& i /1 1d‘? ; 1
i (= — p(p—1) (- 1)“‘ 9 ds (p)““ T'(erl)(P "“"""'l'” —1b
1 1de .
en:n)ﬂ L (tn l)+¢_'_? (%1)
Pn-1 S 2ds
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Ce sont les formules de Frenet cherchées; les rayons dé
courbure p(jy. .. pm—r sont donnés par les formules:

Dyy -
V Dge—ny Dy

Le déterminant des coefficients des formules (F) est symé-
trique gauche ; les termes de la diagonale principale sont fous

Piry==

égaux d — — - Si I'on regarde le n-édre (N) comme mobile

2 ds
‘sur_la courbe (, on peut dire que I'on passe d'une de ses
Ppositions a la p051t10n voisine en le déplacant par congruence,
puis en lui faisant subir une rotatwn deﬁme par les courbures

= de C, et, enﬁn en le déformant suwant une. homothe’tze de
(@ .
rapport 1+ -Nous généraliserons ces resultats pour. des

© variétés quelconques plongees dans une (Wn)

Manuscr1t recu le 10 octobre ‘1921 _
Derniéres épreuves corrigées le 15 nevembre ’192’1
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