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Une application dû principe de relativité

L.-Gustave DU PASQUIER, professeur à l'Université

Comme les circonstances ne permettent pas de publier in
extenso les deux conférences que j'ai faites à la Société
neuchâteloise des sciences naturelles sur

Le principe de relativité
et ses rapports avec la géométrie non-euclidienne,

j'en donne ici un extrait: la partie qui se rapporte à la vraie
forme des orbites planétaires telle qu'elle résulte de la nouvelle
mécanique céleste que le principe de relativité substitue à la
mécanique classique.

Dans l'évolution historique de la théorie de la relativité, on
distingue nettement deux phases:

1. La théorie de la relativité spéciale, ou restreinte. Elle
postule, ou admet que, dans le vide, la lumière se propage
toujours en ligne droite et avec une vitesse constante, la même
dans toutes les directions.

J'ajoute d'emblée qu'au point de vue physique ce principe
spécial de relativité ne touche pas à la théorie de la gravitation

; par contre, il renverse la cinématique et la mécanique
classiques établies par Gaulée et Newton. Au point de vue
mathématique, il permet de maintenir la géométrie
euclidienne dans toute sa rigueur et sa belle simplicité.

2. La théorie de la relativité générale. Elle n'admet plus
la constance de la vitesse de propagation de la lumière dans
toutes les directions et en ligne droite. Au contraire, d'après
cette théorie générale, la lumière, bien entendu dans le vide,
peut se propager en ligne courbe et même le fait quand elle
passe dans le voisinage de corps matériels qui ont une masse
suffisante. J'ajoute dès maintenant qu'au point de vue physique
le principe général de relativité modifie très profondément la
doctrine classique de la gravitation. Il oblige d'abandonner non
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seulement la mécanique galiléo-newtonienne comme non
rigoureuse, mais même la géométrie euclidienne. Si l'on admet le
principe général de relativité, il en découle comme
conséquence logique et nécessaire l'impossibilité de la géométrie
ordinaire, du moins dans un espace soumis à des forces de
gravitation. C'est la géométrie non-euclidienne qui est imposée.
Mécanique et géométrie classiques ne sont plus que des
approximations, d ailleurs très bonnes, de la réalité.

Dans l'étude des phénomènes, toute description qui ne
donne aucune indication relative au temps est par là même
partielle. Ce n'est qu'en introduisant le temps qu'on arrive à
la notion de vitesse si essentielle dans les sciences exactes.
Vous allez voir que le problème de la mesure du temps est un
peu moins simple que celui de la mesure de l'espace.

Un observateur N muni d'un chronomètre et qui se trouve
en un endroit donné, disons à Neuchàtel, peut déterminer à

quels instants précis ont lieu les événements dans son voisinage

immédiat, mais il n'en est pas de même des événements
qui se passent dans des régions très lointaines, p. ex. sur
l'étoile Véga éloignée de nous d'environ 204- 000 000000000
de km, distance que la lumière emploie plus de 21 ans 8 mois
à parcourir. Si l'observateur N note l'instant auquel lui
parvient le rayon lumineux qui lui apporte la nouvelle d'un
événement E ayant eu lieu en un point B très éloigné, cet
instant est postérieur à l'instant t où l'événement E s'est passé
réellement, puisque le rayon lumineux a mis un certain temps
pour arriver de .fl à l'œil de l'observateur N. Comment
déterminer l'instant <? Notre savant N pourrait le calculer grâce à
ses observations chronométriques, s'il connaissait la vitesse de
propagation de la lumière dans la direction B N. Or, mesurer
cette vitesse n'est possible que si l'on sait déterminer : 1) la
distance B N, 2) l'instant du départ de fl et 3) l'instant d'arrivée

en N du rayon lumineux. Cela suppose donc que l'observateur

iV a déjà résolu le problème de la détermination de
l'heure au point B. Vous voyez qu'on tombe dans un cercle
vicieux. Pour en sortir, il faut faire des hypothèses. La suivante
est très plausible : dans le vide, un rayon lumineux met le

même temps pour aller de B en N que pour se propager de

N en B. Cette hypothèse (car malgré sa simplicité, c'est une
hypothèse) permet effectivement de régler, même sans
connaître la vitesse de propagation de la lumière, des chronomètres

très éloignés l'un de l'autre. Voici comment :
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Deux observateurs munis chacun d'un chronomètre, l'un

se trouvant à l'origine des coordonnées O, l'autre en B, ont

convenu de s'envoyer mutuellement un bref signal lumineux
à l'instant précis où leurs chronomètres marquent 3 heures,
de noter l'heure de réception du signal envoyé par l'autre»

puis de se communiquer leurs observations. La distance O B
qui les sépare est supposée rester constante.

Premier exemple. Supposons la distance OB de 1 milliard
1)20 millions de km (Terre-Saturne). 1) le signal envoyé par B
(à l'instant où le chronomètre B marque 3 h. précises, comme

convenu) parvient à l'observateur O quand le chronomètre de

celui-ci marque par exemple 5 h. 10' ; — 2) le signal envoyé

par O (à l'instant où le chronomètre O marque 3 h. precises)

parvient à l'observateur B au moment où le chronomètre de

celui-ci marque 3 b. 50'. Je représente ces suppositions par le

schéma que voici :

O B
3h. —>-3h. 50'
5 h. 10'-<—3 h.

Cet exemple donne lieu au calcul suivant:

5 h. 10' — 3h. 50' 1 h. 20' 80', dont la moitié est 40 minutes.

L'observateur O télégraphie à B de faire avancer de 40

minutes les aiguilles de son chronomètre, puis de recommencer
l'expérience. On se convaint que, ce changement étant fait,

l'expérience donnera lieu au schéma

O B
3 h.—^4 h. 30'
4 h. 30'-<—3 h.

En effet à l'arrivée du rayon lumineux en fl, le chronomètre

v marquera 3 h. 50' -f 40' 4 h. 30', puisque les

aiguilles v ont été avancées de 40' ; pour cette même raison,
le signal lumineux qui part de fl à 3 h., part en réalité 40

plus tôt que la première fois, donc arrive aussi 40' plus tot
en O, soit à 5 h. 10' - 40' 4 h. 30'.

Les chronomètres sont maintenant réglés l'un sur l autre,
en vertu de l'hypothèse faite tout à l'heure sur la propagation
de la lumière entre O et fl. On voit que le procédé ne suppose

pas connue la distance O fl.
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Deuxième exemple. Soit 0 fl 180 millions de km. (Terre-
Vénus). Supposons que l'expérience fournisse le schéma

0 fl
3 h.—
2 h. 10'

*4h. 10'
<— 3 h.

(voir le premier exemple). Calcul: 2 h. 10' —4 h. 10' — 2 h.
dont la moitié est — 1 h. O télégraphiera donc à B de retarder
son chronomètre de 60 minutes. L'expérience étant alors
recommencée, donnera le schéma

O B
3 h.
3 h.10'

*3 h. 10'
<—3 h.

qui prouve que maintenant les chronomètres sont réglés l'un
sur l'autre.

Cette hypothèse et le procédé qui en découle et que je
viens d'illustrer par des exemples permettent de « chronométrer

l'espace par la voie optique », c'est-à-dire de régler
l'un sur l'autre des chronomètres placés à des distances
quelconques, et cela sans connaître ni la vitesse de propagation
de la lumière ni la distance des chronomètres. Pour des
distances moins grandes, on supposera les horloges munies
d'aiguilles indiquant les secondes, les dixièmes et les centièmes
de secondes ; pour des distances très grandes, d'aiguilles
marquant les jours, les moi», les années.

Ce procédé résout le problème de la détermination de
l'heure par la physique expérimentale. Pour connaître l'instant
précis t d'un événement quelconque E, il faut : 1) supposer
une horloge à l'endroit B où se passe l'événement E, ou dans
le voisinage immédiat de B ; 2) supposer qu'elle ait été réglée
par la voie optique sur le chronomètre-étalon qui se trouve à

l'origine O du système de coordonnées. L'indication de l'horloge

B sera l'instant cherché t.
Vous pourriez me demander : « Qu'y a-t-il là de particulier?

Tout cela est si naturel et évident » Pourtant, en y regardant
de près, on voit que la définition de l'heure à laquelle nous
sommes arrivés, n'a pas un caractère absolu ; cette définition
du temps se rapporte au contraire à un système d'horloges
réparties dans l'espace, bien réglées sur un même chronomètre-
étalon et, chose capitale, supposées toutes immobiles les unes
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mir rapport aux autres, liées invariablement au chronomètre-
étalon 0 avec lequel elles forment un système rigide. On voit

sms peine que deux horloges réglées sur le même chronomètre

sont aussi réglées l'une sur lautre. C'est pourquoi l'on appelle
le temps ainsi défini le temps propre, ou temps local du système

en question. De même, l'heure indiquée par une horloge en

un point B lié invariablement à ce système est dite l'heure
locale. Elle est aussi relative, parce qu'elle présuppose que le

système de coordonnées auquel on a rapporté fl, a été chronométré

par la voie optique sur une horloge-étalon placée à 1

origine des coordonnées.
Imaginez un grand laboratoire magnifiquement outille ou

de nombreux savants étudient les lois de la nature. Ce laboratoire

numéro I sera porteur d'un système de coordonnées
cartésiennes lié invariablement à lui. Comme les axes du triedre
de référence devront s'étendre jusque dans les espaces
interplanétaires, nous pouvons d'emblée lui attribuer des dimensions

colossales. Dans ce vaste laboratoire St sont répartis des

observateurs munis chacun des appareils les plus perfectionnes,
entre autres d'un chronomètre réglé sur l'horloge-etalon qui
est en 0„ origine des coordonnées. Cet ensemble d horloges
et de chronomètres définit le temps dans S{ et sert a le

mesurer, en donnant l'heure locale, en chaque point. C est ce

double ensemble: système de coordonnées cartésiennes et

système de chronomètres bien réglés que nous entendrons en

parlant du Système S, ou Laboratoire S,. Les savants qui
travaillent dans S{ peuvent décrire complètement les phénomènes

cinématiques, mécaniques, physiques, chimiques, etc.,

puisqu'ils ont les moyens d'indiquer pour tout événement û:
1) l'endroit précis B où il se passe, en mesurant les trois
coordonnées x., yv z, du point B; 2) l'instant précis ou il a

lieu, en notant l'indication tt de l'horloge placée dans le voisinage

immédiat de B. Tout événement E, par exemple toute

coincidence de points, est ainsi caractérisé par quatre nombres

r, u, z«, U, relatifs au système S„ nombres determinates
expérimentalement et dont chacun a un sens physique bien

défini J'appelle ces quatre nombres « les coordonnées

topochroniques de l'événement E dans le système S, », en particulier:

x„ i/„ r, les coordonnées spatiales et tt la coordonnée

temporelle de E.

Il y a une vingtaine d'années à peu près que, voyageant en

Allemagne, je me trouvais dans un petit chemin de 1er. Le
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train avait à sa gauche une grande forêt vert sombre dont il
longeait la lisière, tandis qu'à sa droite s'étendaient des prairies

entrecoupées de champs. La voie ferrée s'allongeait en
ligne droite à perte de vue, si bien que les rails semblaient
concourir en un point, comme les parallèles à l'infini dans la
géométrie euclidienne. Le train roulait à une allure très
modérée, parce qu'on réparait la voie non loin de cet endroit;
à quelques kilomètres de distance, on pouvait discerner des
équipes d'ouvriers occupés aux travaux de réfection. En regardant

par la fenêtre, j'aperçus par hasard, peinte sur la paroi
extérieure du vagon, une mince ligne droite verticale.

J'eus l'idée de faire une expérience de physique et de vérifier

si les corps tombent toujours en ligne droite. J'avais encore
en poche un caillou dont la forme cylindrique et les couleurs
particulières avaient attiré mon attention et qu'à cause de son
poids spécifique, qui m'avait paru considérable, j'avais ramassé
en cours de route. Je sortis donc mon caillou, puis, le tenant
entre le pouce et l'index, aussi près que possible de la paroi
du vagon, je l'abandonnai à l'action de la pesanteur et observai
attentivement sa chute, oubliant tous les règlements de la
police des chemins de fer. Je constatai qu'il suivit exactement
la mince ligne droite verticale peinte sur la paroi du vagon. Il
n'y avait pas le fort courant d'air que le voyageur ressent
habituellement quand il regarde par une fenêtre de vagon : le
train, j'en ai dit la raison, marchait à une allure très modérée
et par hasard dans la direction même du vent. Mon petit caillou
étant relativement très pesant, tout concourait à la réussite de
l'expérience. Pour bien observer, je tins fermé mon œil gauche,
de façon à avoir la vision monoculaire de la trajectoire. Je
constatai donc, de mon œil droit, que la trajectoire était bien
une ligne droite, jusqu'au moment où mon caillou disparut
dans une touffe d'herbe près du talus.

Ce méfait eut un témoin : un homme était apparu à côté
d'un bosquet d'arbres, non loin de la voie ferrée et observait
le phénomène, les yeux grands ouverts. Ce témoin me reconnut.
C'était un jeune fonctionnaire allemand, mais c'était aussi un
ancien camarade d'école, heureusement pour moi. Quelque
temps après, il m'aiiait retrouvé et me parlait des conséquences
qu'entraîne l'inobservation des règlements de la police des
chemins de fer en Allemagne. Je lui racontai l'expérience de

physique que j'avais faite, ajoutant que je n'avais enfreint
aucun règlement, puisque je n'avais rien «lancé» par la fenêtre
du vagon, que j'avais abandonné le caillou à l'action de la
pesanteur sans lui communiquer de vitesse initiale. Pendant

•) BULL. T. XLV
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qu'il réfléchissait encore sur le distinguo inattendu que je
venais de faire et pour détourner la conversation du brûlant
terrain juridique, je lui posai la question : « Quelle est la vraie
trajectoire de mon' caillou? » Je me rappelai très à propos que

e
Kiu.

mon ancien camarade d'école s'était toujours beaucoup
intéressé à la philosophie et aux mathématiques. « Pour moi »,

ajoutai-je, « qui ai observé le phénomène attentivement de mon
œil droit, avec toute l'exactitude possible, j'ai constaté que la

trajectoire en question était une ligne droite. » — « Erreur »,

répondit-il, « tu oublies décidément que tu étais en chemin de
1er : Moi qui ai observé le phénomène de mes deux yeux,
même grands ouverts, j'ai vu que ton caillou n'a pas suivi la

ligne droite marquée par le poteau télégraphique devant lequel
tu passais justement ; j'ai constaté que la trajectoire était un
arc de parabole ; je la vois encore quand je le veux, se projetant

sur le fond vert sombre de la forêt. D'ailleurs, ton caillou
cylindrique a fini sa trajectoire depuis qu'il s'est échoué près
des rails. » « Erreur», répliquai-je à mon tour, «tu oublies

que la Terre tourne. La vraie trajectoire, si elle n'était pas un
segment de droite comme je l'ai constaté de visu, n'était en

lout cas pas un arc de parabole. D'ailleurs, mon caillou ne
s'est pas brisé en tombant près des rails; il est donc loin
d'avoir fini sa trajectoire. Même s'il était tombé au pôle nord,
il décrirait encore une ellipse dont le Soleil occuperait l'un
des foyers; mais comme nous ne sommes pas au pôle nord,
si vraie trajectoire est plus compliquée. Elle résulte des deux
mouvements que notre globe exécute simultanément dans

l'espace : I rotation diurne sur son axe ; 2) révolution annuelle
autour du Soleil. » — Et nous voilà lancés dans une longue
discussion sur la forme de la vraie trajectoire de mon caillou
cvlindrique.

Si la Terre exécutait une révolution annuelle en 365 jours
exactement, la trajectoire en question serait une courbe fermée

composée de :H>5 boucles.
La ////. / en représente une partie; mais en réalité —
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comme on le voit immédiatement pour des points situés près
du pôle nord ou dans le voisinage du pôle sud — la trajectoire
ne présente pas de boucles ; ce serait une épicycloïde elliptique
raccourcie, courbe qui serpente entre deux ellipses concen-

BA

Kig. 2.

triques, sans points doubles et dont la fig. 2 représente une
partie. Cependant, dans la fig. 3 et pour les déductions du
texte s'y rapportant, j'ai laissé subsister les boucles et les
points doubles, vu que cela facilite l'exposé et qu'il ne s'agit
pas d'une description de la trajectoire rigoureusement exacte,
mais uniquement d'un schéma destiné à en donner une idée
générale.

A JB

ï iVia. :*\3

Or, une révolution de la Terre autour du Soleil dure à peu
près 365 jours et six heures. Représentons par le point A
(fig. 3) le point de l'espace planétaire où vint choir mon caillou
cylindrique près des rails. Sa trajectoire passera par A D B E
C G..., chaque boucle correspondant à l'espace parcouru en
24 heures. Au bout de 365 jours précis, ayant exécuté 365
boucles semblables, le caillou se trouvera non en A, mais en
At ; au bout de la première année exactement, le centre de la
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lene occupant de nouveau la même position, le caillou sera
dans le voisinage de A, disons en /, puis, continuant sa trajectoire,

passera par DiBiEtCt G,... Au bout de 365 nouvelles
circonvolutions, il se trouvera en A» pour continuer par
Da, B, E a, Ci G*... Ayant exécuté pour la'troisième fois 365
circonvolutions en 36b jours, il se trouvera en A3 et continuera

par D3B3E3C3G%\ enfin, après avoir fait pour la quatrième
t'ois 305 boucles en 365 jours, il se trouvera en At; continuant
alors par Dk. il viendra en A emboîter exactement la trajectoire

commencée quatre ans auparavant. — Voilà quelle serait
la trajectoire, si l'année comptait exactement 365 jours six
heures.

Or, on sait que l'année sidérale comprend 365,25636 jours,
soit 365 jours (i heures 9 minutes et 9,504 secondes, et l'année

tropique 365,2422166 jours 365 jours 5 heures 48 minutes
18 secondes. Vous voyez dans quelle discussion astronomique
autant que mathématico-philosophique cette question nous
lanca. Nous finîmes pourtant, en nous disant adieu deux jours
plus tard, par tomber d'accord : en supposant rigoureusement
exactes les données qui servaient de base à nos déductions et
faisant abstraction des perturbations astronomiques, la vraie
trajectoire de mon caillou cylindrique serait une courbe fermée
très compliquée et que le centre de gravité du dit caillou
mettrait 250 siècles à parcourir une fois. Tous les 25 000 ans,
il recommencerait à coïncider périodiquement avec les mêmes

points de l'espace planétaire. Tel fut le résultat de nos calculs
et de notre longue discussion.

Erreur! puis-je dire aujourd'hui. Ignorants que nous étions,
nous supposions que le Soleil reste en place, immobile au centre
de l'univers. On sait aujourd'hui qu'au contraire, le Soleil est

lancé dans les espaces cosmiques, dans la direction de la
constellation d'Hercule, avec une vitesse qui dépasse 80 000 km à

l'heure, entraînant avec lui tout notre système planétaire. Dans

ces circonstances, la vraie trajectoire de mon caillou ne saurait
être une courbe fermée du genre de celles que je viens de

décrire, puisqu'en une année, le Soleil se déplace d'environ
800 millions de km, que par conséquent le caillou, parti de A,
ne se retrouvera au bout de l'année sûrement pas dans le
voisinage de A. Si le Soleil file en ligne droite, la trajectoire du
caillou n'est pas une ligne fermée. Mais le Soleil, et tout notre
inonde planétaire avec lui, ne gravite-t-il fpas plutôt autour
d'un astre de la constellation d'Hercule, mettant peut-être des

millions d'années à parfaire une révolution? Mystère! Tout
ce que nous savons aujourd'hui, c'est que la distance du Soleil



— 21 -
à la constellation d'Hercule diminue à raison de plus de
80 000 km par heure. Qui nous dit que la constellation d'Hercule

reste immobile? Et si ce n'est pas le cas, est-ce cette
constellation qui fuit devant le Soleil, pour être un beau jour
rattrapée par lui, après des millions ou des milliards de siècles?
Ou est-ce notre Soleil qui fuit devant elle, comme s'il cherchait
à échapper? Encore une fois: mystère! Je pense que ni l'un
ni l'autre n'est le cas. Le Soleil et les astres de la constellation
d'Hercule décrivent chacun son orbite, et ces orbites, très
probablement, se croisent dans l'espace et ne se coupent pas.
Il n'y aura donc très probablement jamais cette catastrophe
de tamponnement stellarne.

Mais alors, quelle est donc la vraie trajectoire de mon
caillou cylindrique? Mesdames et Messieurs, je vous pose la
question. Quelle est sa trajectoire réelle, sa trajectoire absolue,
indépendante de la Terre et du Soleil et de la constellation
d'Hercule et de tous les astres de l'univers? Quelle en est
la trajectoire en soif

Après réflexion, vous arriverez au résultat que, posée en
ces termes, la question n'a pas de sens précis. En eflet, l'idée
d'une « trajectoire en soi décrite par un point » n'a aucun sens
mathématique ni physique. — Je laisse ouverte la question du
sens métaphysique, me bornant à rappeler la définition que
donnait Voltaire de la métaphysique : Deux interlocuteurs A
et B discutent ; si A ne comprend pas ce que dit fl, mais
comprend ce qu'il dit lui-même et que, réciproquement, B ne
comprenne pas ce que dit A, mais comprenne ce qu'il dit lui-
même, alors c'est de la philosophie ; si au contraire, A ne
comprend ni ce que dit fl ni ce qu'il dit lui-même, et que,
réciproquement, fl ne comprenne ni ce que dit A, ni ce qu'il
dit lui-même, alors c'est de la métaphysique.

Pour donner à la question posée un sens physique et
mathématique, il faut et il suffit qu'on mentionne un système de
coordonnées, ou qu'on le sous-entende ; en langage populaire :

il faut placer l'observateur dans un laboratoire déterminé. —
Envisageons d'abord la trajectoire parcourue par mon caillou
depuis l'instant où ma main le lâcha jusqu'au moment où il
atteignit le talus. On pourra répondre en disant : « dans un
système de coordonnées lié invariablement au train, la trajectoire

en question est un segment de droite » ; ou bien en disant :

« dans un système de coordonnées lié invariablement à la surface

terrestre, la trajectoire en question est un arc de parabole.

» Les deux propositions sont justes. Elles ont chacune
un sens mathématique nettement défini ; toute apparence de
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contradiction a disparu: elles ont aussi un sens physique: si

nous disons « laboratoire » au lieu de « système de
coordonnées », un physicien muni des appareils nécessaires et
placé dans ce laboratoire pourra, par des manipulations
appropriées, vérifier l'exactitude de la proposition dans les
deux cas.

Envisageons maintenant la trajectoire du caillou à partir
île l'instant où il resta enfoncé dans le talus. On peut répondre
à la question posée en disant : I' «Dans un système de
coordonnées lié invariablement à la surface du globe, la trajectoire
en question se réduit à un point. » En eilet, dans un tel
laboratoire, le caillou reste immobile. Ou bien: 21 «Dans un
svstème de coordonnées lié invariablement au Soleil, la trajectoire

envisagée est une courbe fermée assez compliquée,
semblable à celle décrite précédemment. » Ou bien : 3) « Dans un
svstème de coordonnées lié invariablement à la constellation
d'Hercule, la trajectoire envisagée est une courbe très compliquée

et sans doute non fermée.» Ou bien: 4/ «Dans un
svstème de coordonnées lié invariablement à l'étoile Sirius, la

trajectoire en question est une courbe dont actuellement on ne
saurait écrire l'équation sans faire des hypothèses sur le
mouvement de Sirius par rapport au Soleil. » — Et ainsi de
suite. Toutes ces propositions sont justes. Elles ne se contredisent

pas el ont chacune un sens mathémathique nettement
défini. Elles ont aussi chacune un sens physique, et si l'on
imaginait des laboratoires géants, englobant tout le système
planétaire, avec des physiciens de taille proportionnée à

l'immensité du laboratoire, ces propositions seraient susceptibles
île vérification expérimentale.

E.ii résumé, vous voyez que la forme de la trajectoire de

mon caillou cylindrique dépend du système de coordonnées
auquel on la rapporte, ou du laboratoire dans lequel on suppose
placé l'observateur. - Or, tous les systèmes de coordonnées
cartésiennes sont illimités dans leurs dimensions; tous les
niedres de référence s'étendent à l'infini; tous les «laboratoires

» dont nous parlons ici sont censés être également vastes
et bien aménagés. « Par quoi se distinguent-ils alors l'un de

l'aulre? » me demanderez-vous ; «est-ce par leur position
dans l'espace planétaire?» «Non», sera la réponse, « car
dès «pie deux laboratoires sont immobiles l'un par rapport à

l'autre, nous les envisagerons comme formant corps, comme
constituant un seul et même système invariable, un seul et
même laboratoire. L'unique différence qui entre ici en question
réside dans leur état de mouvement. » — Voici donc le résultat
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auquel conduisent toutes ces déductions : La forme de la
trajectoire dépend de l'état de mouvement de l'observateur.

Les considérations développées à propos de mon caillou
cylindrique peuvent être appliquées à n'importe quel mouvement,

aux lois du pendule aussi bien qu'aux orbites des
planètes. On voit que pour être précis et rigoureux dans
l'énoncé des lois mécaniques, physiques, chimiques, etc., il
faut, explicitement ou non, les rapporter à un système de
coordonnées bien déterminé. Le plus souvent, en décrivant les
phénomènes de la nature, on sous-entend qu'ils se passent
dans un « laboratoire » faisant corps avec la Terre et auquel
l'observateur est lié invariablement. Ce fut même toute une
révolution, inaugurée par Copernic, puis continuée par Kepler
et achevée par Newton, que de concevoir un observateur
immobile par rapport au Soleil, d'imaginer un système de
coordonnées héliocentrique. La notion de trajectoire ou d'orbite,

tout comme celle de mouvement, est essentiellement
relative et implique un trièdre de référence, sous-entendu ou
explicitement mentionné. Or, il en est de même de la notion
de temps. Au point de vue physique, « le temps en soi » n'a
pas davantage un sens net que « la trajectoire en soi ». Pour
donner à l'idée de temps un sens précis, il faut que le système
de coordonnées où opère le savant soit chronométré par une
méthode déterminée sur une horloge-étalon. (Voir p. 13-15.)

Dans la mécanique céleste fondée par Newton, une énigme
restait sans réponse définitive: le mouvement du périhélie de
la planète Mercure ç> En 1845 déjà, Leverrier, calculateur
aussi habile que persévérant, trouva que le dit périhélie, au
lieu de rester fixe, ou à peu près, se déplace constamment
dans le même sens, d'une quantité qu'il trouva correspondre
à un angle de 38" environ par siècle. La discussion approfondie

de toutes les observations a prouvé qu'en principe,
Leverrier avait raison, l'irrégularité constatée étant presque
30 fois plus grande que sou erreur probable, mais que l'écart
est de 43" + 5" par siècle. 11 est donc constaté irréfutablement:

1) que le périhélie de § se déplace, dans le sens du
mouvement de la planète autour du Soleil, plus rapidement
qu'il ne devrait le faire d'après la mécanique céleste de
Newton; 2) que cet écart entre le résultat du calcul et celui
de l'observation directe est de 43" par siècle, à très peu de
chose près.

Pour expliquer celte perturbation, on eut recours à
plusieurs hypothèses que je classe en deux catégories :

a) Le plus naturel était de répéter ce qu'avaient fait
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Leverrier et Adams pour expliquer les perturbations d'Uranus :

supposer l'existence de planètes « intramercurielles » encore
inconnues, c'est-à-dire de planètes dont l'orbite est entièrement

comprise entre '$ et le Soleil. Mais ce fut toujours en
vain que les télescopes les plus puissants fouillèrent le ciel
aux endroits que désignaient les calculateurs. 11 fallait donc
une hypothèse supplémentaire pour expliquer l'invisibilité
constante de la planète hypothétique.

P) On supposa qu'il n'y a pas de planètes intramercurielles,
mais que dans le voisinage du Soleil tourbillonnent des millions
de météores, attirés par la force de gravitation et décrivant
autour de lui les ellipses les plus variées. Des calculs laborieux
prouvent qu'on peut faire sur les masses, les positions et les
vitesses de ces innombrables météores des hypothèses tellement
appropriées qu'il en résulte, en vertu de la gravitation universelle

et des lois de la mécanique classique, précisément le
mouvement énigmatique du périhélie de ç Ici encore, il faut
une hypothèse supplémentaire pour expliquer l'invisibilité
constante et absolue de ces corps hypothétiques.

Href, pour rendre compte du fameux mouvement du périhélie

de Mercure, on était obligé d'avoir recours à des masses
encore inconnues du système solaire, et comme aucune
recherche télescopique ou autre ne venait confirmer l'existence
de ces masses, on expliquait leur invisibilité par de nouvelles
hypothèses imaginées ad hoc. et que l'on admettait faute de
mieux. Voilà où en était la mécanique céleste de Newton au
moment où Albert Einstein lança sa théorie de la relativité.

M. A. Einstein donna au principe spécial de relativité la
plus grande extension possible, en admettant que, dans le vide,
la lumière se propage toujours avec une vitesse constante <r

300000 km par seconde, la même dans toutes les directions.
H n'hésita pas à remplacer la mécanique galiléo-newtonienne
par une autre dite mécanique de la relativité, dont il établit
quelques théorèmes fondamentaux. Par un hasard des plus
heureux, M. H.-A. Lorentz avait déjà introduit certaines
notions nouvelles qui sont essentielles et qui ont rendu possible
la théorie de la relativité, par exemple l'idée de la contraction

longitudinale et d'autres formules encore. Il est juste de
dire que sans ces précurseurs, la nouvelle théorie ne se serait
pas édifiée si tôt. La mécanique de la relativité étant différente
de la classique, il va sans dire que si l'une est juste, l'autre
sera fausse. Mais en comparant les formules, on voit aussi que,
dans les conditions habituelles, la différence n'est que
théorique et imperceptible en pratique. Si la mécanique nouvelle
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décrit les phénomènes avec une exactitude mathématique, la
mécanique galiléo-newtonienne en est une approximation
extraordinairement bonne.

Exemple : le théorème d'addition des vitesses. En supposant

que les vitesses v et w aient même direction, la mécanique
classique donne pour la résultante c=v-\-w, tandis que la

mécanique de la relativité donne c — —^ v w
u a

où a, vitesse de la lumière dans le vide, est une constante
d'univers et 300 000 km par seconde.

Il est d'un haut intérêt de savoir laquelle des deux ciné-
matiques est juste. Seule, l'expérience peut nous l'apprendre.
Mais il n'est pas très simple d'imaginer des dispositifs permettant

de trancher la question avec certitude. L'un nous est
fourni par la célèbre expérience de Fizeau. Or, celle-ci donne
une réponse nettement favorable à la cinématique de la
relativité. Une autre confirmation expérimentale vint du domaine
astronomique et, chose inattendue, c'est la grande énigme du
mouvement du périhélie de Mercure qui reçut une solution
satisfaisante.

Pour simplifier, supposons le Soleil et la planète $ seuls
dans l'univers ou du moins, faisons abstraction des perturbations

qui proviennent de la présence d'autres corps matériels.
Newton enseignait que dans ce cas $, gravitant autour du
Soleil, décrira une ellipse dont le Soleil occupera l'un des foyers.
La nouvelle mécanique céleste, moins simple que la classique,
enseigne au contraire que, dans les conditions admises, la
planète gravitera autour du Soleil en décrivant une courbe très
compliquée dont je vais essayer de vous donner une idée.

Soit une ellipse ABC DE GE'D'C'B'A (fig. 4) tournant
autour de l'un de ses foyers, F, en restant toujours dans son
plan. Imaginons qu'un point mobile M parcourt cette ellipse
génératrice pendant qu'elle est animée du dit mouvement de
rotation. Quelle sera la résultante de ces deux mouvements
simultanés, la trajectoire du point M dans le plan de l'ellipse?
Pour fixer les idées, nous supposerons :

1) que l'ellipse génératrice tourne autour du point F dans
le sens des aiguilles d'une montre, avec une vitesse angulaire
<¦> constante et telle qu'une révolution complète soit exécutée
toutes les deux secondes ;

2) que le point M se meuve sur l'ellipse dans le sens des
flèches et avec une vitesse v qui lui fasse parcourir 1 fois par
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seconde exactement l'ellipse entière; que, de plus, les variations

de cette vitesse v soient telles que la rotation du rayon
vecteur r—FM autour du foyer F s'effectue avec une vitesse
angulaire tu' constante: on aura u/ !2(o;

3) qu'à l'instant / —o, le mobile M se trouve en A, sommet
le plus rapproché de F, et l'ellipse dans la position qu'indique
la lig. i. Nous allons raisonner comme suit:

*) Sans le mouvement rotatoire de l'ellipse, (si <» o), le
point mobile M décrirait, pendant la première demi-seconde,
la moitié de l'ellipse, soit l'arc ABC DE G; parti de A, il
atteindrait en G l'autre extrémité du grand axe. Or, «o n'étant
pas nul, l'ellipse, pendant cette première demi-seconde, exécute
le quart d'une révolution complète, par hypothèse. Le grand
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axe AFG vient en A, A'G, et le point mobile parli de A
aboutira non en G, mais en Gt, avant ainsi décrit l'arc
APMJE'GV

3) Pendant la deuxième demi-seconde, le grand axe A, FG,
tourne de nouveau de 90° autour de F et vient en AtFGa,
entraînant l'ellipse avec lui. Le mobile M parti de Gt, au lieu
d'atteindre en A, l'autre extrémité du grand axe, l'atteindra
en A2 et décrira ainsi l'arc Glt7,.B.PA2, symétrique du précédent

par rapport à la droite Gi F G3.

y) Pendant la troisième demi-seconde, le grand axe, partant
de la position A*FGa, tourne de 90° autour de F et vient en
A3F1T3, entraînant l'ellipse avec le point mobile M. Ce dernier,
parti de A2, au lieu d'atteindre en G2 l'autre extrémité du
grand axe, l'atteindra en G3 et décrira ainsi l'arc AÌJÌB' J, G3.

3) Pendant la quatrième demi-seconde, le grand axe, partant
de la position A3FG3, tourne d'un angle droit autour de F et
vient en AFG, entraînant dans son mouvement de rotation
l'ellipse avec le point mobile M. Celui-ci, parti de G3, atteindra
l'autre extrémité du grand axe non en A3, mais en A et
décrira ainsi l'arc G3EJJÎA, symétrique du précédent par
rapport à la droite GtFG3.

e) Au bout des deux premières secondes, l'ellipse aura de
nouveau la position qu'indique la fig. 4 et le point mobile se
retrouvera en A, comme à l'instant £ 0. Les mêmes mouvements

se répéteront périodiquement de deux secondes en deux
secondes. La trajectoire du mobile est donc, dans ces
hypothèses, une courbe gpt fermée ayant quatre points doubles,
deux axes de symétrie et un centre qui est le foyer F de
l'ellipse génératrice. Son équation r=/(e) en coordonnées
polaires rapportées à F comme pôle et T A comme axe polaire

est r — — çr-, où p bî:a représente le demi-para-
l + e. cos —

C
mètre et e=— l'excentricité numérique de l'ellipse, o<e<l.

a
Supposons maintenant w'—iia, en paroles: dans les

hypothèses sus-indiquées, faisons ce changement que l'ellipse met
quatre secondes à exécuter une révolution complète autour du
foyer F, tandis que le point mobile M parcourt une fois par
seconde l'ellipse entière (fig. 5). En une demi-seconde, le grand
axe AFG de l'ellipse tournera autour de F d'un angle de
45° et le point mobile décrira l'arc AJG{. En raisonnant
comme précédemment, on verrait que la trajectoire se compose
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de huit arcs égaux à A./(r, et symétriquement disposés, de
manière à former une courbe gpK fermée, ayant seize points
doubles, quatre axes de symétrie et comme centre le foyer F
de l'ellipse génératrice. L'équation de cette courbe, en coor-

/ 4e\
données polaires, est r p : 11 -f- e cos — I

On voit que, toutes choses égales d'ailleurs, la forme de la
trajectoire dépend du rapport des deux vitesses angulaires w
et t»'. La fig. 6 montre la trajectoire du point mobile M dans
l'hypothèse <o' 8u>, quand on suppose que l'ellipse met huit
secondes à exécuter une révolution complète autour du foyer
F, alors que le point mobile parcourt l'ellipse entière une fois
par seconde. En une demi-seconde, le grand axe AFG tourne
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autour de F d'un angle de 22'/a0 et le point mobile, parti
d'une extrémité de ce grand axe, décrit un arc égal à AJKGX.
La trajectoire entière gps se compose de seize arcs égaux à
celui-là et disposés symétriquement de manière à former une
courbe fermée ayant 64 points doubles, huit axes de symétrie
et un centre coïncidant avec F. Son équation en coordonnées

polaires est r p : 11 -f- e. cos — 1

Envisageons le cas général où <¦>' n. o ; le point mobile
parcourt une fois par seconde l'ellipse entière et celle-ci met
n secondes à faire une révolution complète. Nous supposerons
que n représente un nombre entier auquel nous attribuerons
(les valeurs de plus en plus grandes. A l'instant t o (v. fig. 6),
supposons le mobile à l'extrémité A du grand axe AFG et
l'ellipse dans la position AN GL A. Pendant la première demi-
seconde, le grand axe tourne autour de F d'un angle GFG{
égal à la nième partie de deux angles droits et le point mobile,
parcourant la première moitié de l'ellipse, décrit l'arc AJKG{
qui est la (2 »)ième partie de la trajectoire complète. Pendant la
deuxième demi-seconde, le grand axe vient de la position
A, FGt en A2FCr2 et le point mobile M, en parcourant l'autre
moitié de l'ellipse, décrit l'arc G{ J{ A2 symétrique du précédent

par rapport à l'axe A{F G{. — Ainsi, pendant la première
seconde, le mobile décrit la boucle AJKGiJlAr

Une boucle égale sera décrite pendant la deuxième seconde,
puis une troisième boucle égale pendant la troisième seconde,
puis une quatrième pendant la quatrième seconde, etc. ; enfin,
encore une boucle égale pendant la wiême seconde. Au bout de
n secondes, l'ellipse aura effectué une révolution complète,
occupera donc de nouveau la position AN GL A et le point
mobile M se retrouvera en A, comme à l'instant £ —o.

On voit que la trajectoire complète gpn est une courbe
fermée ayant n2 points doubles, a axes de symétrie et un
centre qui coïncide toujours avec le foyer F de l'ellipse
génératrice. On voit de plus que la courbe entière est située dans
une couronne circulaire comprise entre deux cercles concentriques

de centre F et dont les rayons sont AdF et GF, c'est-
à-dire a — c et a -f- c, où a représente le demi grand axe de
l'ellipse et c la distance de son centre à l'un de ses foyers. La
forme de la trajectoire dépend donc encore de l'excentricité

numérique e ^, nombre positif plus petit que 1: moins

l'excentricité de l'ellipse mobile sera prononcée, plus la cou-
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rönne circulaire en question sera étroite, puisque sa largeur
est (fl-f-Ç)- (fl -t') 2c, distance des deux foyers de l'ellipse.

J'ajoute en passant que si, l'hypothèse w' ».<«> étant
laite, ;/ esl un nombre rationnel fractionnaire, par exemple
itA—^p: m. où p et m représentent des nombres entiers premiers
entre eux, cela entraîne une complication de plus dans la
torme de la trajectoire: la courbe ne se ferme qu'après m
révolutions complètes de l'ellipse autour du foyer F. La trajectoire
est encore une courbe gp„ fermée, composée d'un nombre
lini de boucles superposables, courbe ayant un centre en F,
comprise entièrement dans la couronne circulaire de largeur
2c et possédant un nombre lini de points doubles et d'axes
de symétrie.

Enfin, si n n'était pas un nombre rationnel, il y aurait lieu
de distinguer suivant que n est irrationnel algébrique ou
irrationnel transcendant. Ces cas ont en commun que la trajectoire
complète du mobile M est une courbe gp„ transcendante non
fermée comprenant un nombre infini de boucles superposables
et différemment placées, un nombre infini de points doubles
et possédant un nombre infini d'axes de symétrie tous
concourants au foyer F qui est en même temps centre de la
courbe. Tous les points de cette courbe, remarquable à plusieurs
égards, sont situés dans la couronne circulaire de largeur 2 c

déjà plusieurs fois mentionnée. Cette couronne circulaire est
entièrement remplie par la trajectoire, c'est-à-dire que les

points de la courbe en question y forment, comme on dit, une
pantachie, un ensemble de points dense partout. L'équation
de la courbe gp„, en coordonnées polaires r, e, rapportées à

F comme pôle, est r=p : ll-f-e. cos-

Reprenons l'hypothèse de tout à l'heure, w' n.», et

supposons n entier et très grand ; prenons en particulier
n -=12 5.'18 800. Cela revient à dire que le mouvement rota-
loire de l'ellipse autour de son foyer F est très lent par rapport
au mouvement de circulation du point mobile M sur l'ellipse,
puisque ce mobile a le temps de parcourir l'ellipse entière
12 5118 8(H) fois pendant qu'elle effectue une seule révolution
autour de F. Si donc on suppose que M met une seconde pour
parcourir l'ellipse, celle-ci mettra 145 jours 3 heures, soit près
de cinq mois, pour exécuter une révolution complète autour
de F. En une demi-seconde, le grand axe tourne d'un angle
liés petit G FGt égal à 180.60.60 : 12 538 800 0",O5167.
L'arc ÂJKtif décrit par le point mobile (v. fig. 6) ressemble



31

\ /
<&

3/

V
¥ /\X 1a yS.a

Fig. 6.

donc énormément à une demi-ellipse, et la boucle AJKGiJ{ A2
ne se distingue presque pas d'une ellipse mathématique.

Quand le nombre n prend des valeurs de plus en plus
grandes, le mouvement rotatoire de l'ellipse autour de son
foyer devient de plus en plus lent en comparaison du mouvement

circulatoire du mobile M; l'angle GFG{ devient de plus
en plus petit, l'arc AJKGt de la trajectoire tend vers une
demi-ellipse, et la forme de la première boucle AJKG{ /4A2,
de même que celle de chacune des n boucles superposables,
tend vers celle de l'ellipse génératrice. Un observateur dont
les instruments de mesure ne seraient pas d'une précision très
grande, ou qui n'aurait pas eu le temps d'étudier à fond ce
mouvement, ne s'apercevrait peut-être pas du tout de la rota-
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lion de l'ellipse et croirait décrire la trajectoire exacte du point
.1/ en disant qu'elle est elliptique, alors qu'en réalité, comme
nous le savons maintenant, c'est la courbe fermée gpi2 53*m>
1res compliquée qui a 157"221 505-440 000 points doubles
et 12 538 800 axes de svmétrie tous concourants au centre F
Elle est du 25 077 602iè'me degré.

Observez que si l'on dessinait, même avec le trait le plus
mince possible, à côté de l'ellipse AN GL A de la fig. 6, la
première boucle AJKGiJiAi de cette courbe gp, l'angle
a=^GFG» étant de 0",10335 seulement, la différence entre
l'ellipse mathématique exacte et cette première boucle de
gp i2 53S noo serait totalement imperceptible à l'œil nu, à moins
de donner au dessin des dimensions extraordinairement grandes.

Ces résultats étant admis, nous allons reprendre l'hypothèse
qui fut le point de départ de toutes ces déductions
géométriques: le Soleil et la planète Mercure, supposés seuls dans
l'univers et soumis à la loi de gravitation universelle. Le foyer
F représente alors le centre du Soleil, le point mobile M le
centre de ci, le grand axe AFG devient la ligne des apsides ;

au lieu de 1 seconde, nous aurons 1 année de Mercure, savoir
87,97 jours terrestres — 7 600 608 secondes, disons, pour
simplifier, 88 jours.

Je répète que la mécanique céleste, fondée par Newton,
enseigne que dans ces conditions, étant donnée la masse du
Soleil, celle de 8. et la distance de leurs centres, 8 gravitera
autour du Soleil, que son centre décrira tous les 8§ jours une
ellipse mathématique dont le centre du Soleil occupera l'un
des foyers, que cette orbite conservera indéfiniment sa forme,
sa grandeur et sa position dans l'espace, du moins aux yeux
d'un observateur supposé immobile par rapport au Soleil.
Contrairement à cette doctrine, M. A. Einstein trouva, en appliquant

aux données astronomiques les formules de la mécanique
de la relativité, que pendant une révolution de 8. autour du
Soleil, donc en 88 jours, la ligne des apsides tourne dans le
sens du mouvement de la planète, d'un angle « égal à un
dixième de seconde, plus exactement <x 0",10335.

Faisons maintenant le calcul : en 88 jours, un dixième ou
0",l : en un jour, 88 fois moins; et en une année, 365 fois

365.0",! _plus, soit — Remarquant qu une année terrestre
88

compte .'165,25636 jours et une année de Mercure 87,97 jours,
on trouve pour cent années, en prenant les chiffres exacts,
100.0,10335.365,25636 : 87,97 42,91 secondes. Si l'on tient
compte des inévitables erreurs d'observation, on peut dire que
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cela fait, pour l'avance du périhélie de Mercure, juste le
montant dont l'observation a prouvé l'existence et qui constituait

la pierre d'achoppement de la mécanique céleste new-
tonienne. C'est une concordance frappante entre la théorie et
l'observation. Si l'on admet la mécanique de la relativité, il
n'est donc pas nécessaire d'avoir recours à des hypothèses
supplémentaires.' Le seul fait de la gravitation autour du soleil
suffit déjà pour rendre compte, avec une exactitude merveilleuse,

des mouvements des corps célestes réellement observés.
On ne saurait exagérer l'importance de cette constatation qui
vient militer de tout son poids en faveur du principe de
relativité.

Si la mécanique de la relativité est exacte, chaque planète,
pas seulement 8. doit présenter le même phénomène : une
avance du périhélie dans le sens du mouvement de la planète.
«Alors», objecterez-vous, «pourquoi n'a-t-on jamais constaté
chez les autres planètes cette rotation lente et séculaire de
toute l'orbite autour du Soleil?» — «Pour deux bonnes
raisons», sera la réponse. D'abord, le mouvement rotatoire en
question est d'autant plus lent que la planète est plus éloignée
du Soleil. Désignons par a l'angle G F G» dont tourne la ligne
des apsides pendant que la planète exécute une révolution
complète. M. Einstein a déduit de sa théorie la formule

24*3.a2
a (1)

IT*.<>*.(1 — e«)
V '

formule dite « de Gerber », en l'honneur du savant qui la
publia, en 1898, pour la première fois (v. Zeitschrift f. Math,
u. Phys. 43 (1898), p. 93-104). Dans la formule de Gerber,
* 3,1415926... est le rapport de la circonférence au diamètre;
d 300 000 km/sec est la vitesse de propagation de la lumière
dans le vide ; a représente, évaluée en km, la distance moyenne
de la planète au Soleil, distance égale à la longueur du demi

grand axe de son orbite, et e —, l'excentricité numérique de

l'ellipse ; enfin, T représente, évaluée en secondes, la durée
d'une révolution complète de la planète. Or, d'après la
troisième loi de Kepler, T* est proportionnel à a3 ; la formule de
Gerber peut donc s'écrire

_ constante
a —

a.a«.(l — e8) '
ce qui montre bien que o diminue quand a augmente.

" BULL. T. XLV
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Comme 7 3.10"' et e < 1, le facteur i-(l — e1) est de

l'ordre de grandeur de cent milliard, et ce nombre déjà
grand doit encore être multiplié par a qui est pour Vénus de
Ì08 000 000 km : pour la Terre, de 149,5 millions ; pour Mars,
de 22S millions de kilomètres, etc. La formule (2) a donc,
pour les trois planètes énumérées (et à fortiori pour les
suivantes), un dénominateur de l'ordre de grandeur de
K)n 10s IO19, soit de dix trillions, d'où l'on conclut aisément
à l'excessive petitesse de a. C'est la première raison pourquoi
l'on ne s'aperçoit pas si facilement de cette rotation séculaire
des orbites planétaires autour du Soleil : son excessive lenteur
jointe aux inévitables erreurs d'observation.

En prenant pour Mercure les données astronomiques :

0 57 900 000 km, T 7 600(500 secondes, e 0,206 d'où
1—e8 0,957564, on trouve

_
24 g 57 900 OOO2

__
8 *3. 57,92

a ~~ T^ÏOOTiOO2.9. 10"». 0,957564 ~ 76 0062. 3 95,7564

Ce nombre donne l'angle a en radiants; pour l'exprimer en
degrés, minutes et secondes, il faut se rappeler que tc radiants

• ,o^ ¦ • • l80° ¦ al80°
correspondent a 180°, donc un radiant a et a, a

a. 180. (K). 60 Dsecondes. Remplaçant a par la valeur ci-dessus,

n2 5792 432
on trouve après réduction <x= — ' ' =0",10335...F 38 0032. 9,57564

C'est bien le montant annoncé par M. Einstein.
La formule de Gerber, appliquée à la planète Vénus qui

parcourt son orbite en 225 jours environ, donne o 0",047,
soit à peu près 7",8 par siècle. Pour la Terre, on trouve
environ 3" par siècle, pour Mars un peu plus d'une seconde

par siècle. Soit v la vitesse de la planète gravitant autour du
Soleil; le montant que donne la formule de Gerber est
pratiquement égal à 6ni'*:»8 radiants par révolution.

Cette lenteur excessive du mouvement du périhélie n'est
qu'une première cause de ce qu'il a passé inaperçu pour les
planètes autres que £ Une deuxième cause réside dans la
forme de l'orbite. A part précisément £ l'excentricité de

l'ellipse planétaire est très petite. On le voit par le tableau
suivant qui contient, pour les huit grandes planètes et pour
la petite planète Eva n° 164, les éléments nécessaires au calcul
de l'angle a par la formule (1):
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Noms
Durées des révolutions sidérales

Distances moyennes

au soleil Excentricités

numériques

des ellipses

e

0,2056048
•0,0068433
0,0167701

0,0932611
0,048251!)
0,0560713
0,0463402
0,0089646
0,3471007

des planètes en années juliennes
en années sidérales :

o, :„„__.„.„.et en jours moyens

la distinct moyenne
de la Terre aa soleil
étant priai comme

unité

en millions

di
kilomètres

a
58

108

149,5
227,8
778

1426
2869
4500

393,3

Mercure ^
Venus Q

1.a Terre g
Mars tf
lupiter %
Saturne î)
l'ranus
Xeptune
Kva 164

0 an 240 843
0 » 615 186
1 »

1 » 880 832
11 ans 861 965

29 » 457 176
84 » 020 233

164 » 766 895

87,9693 jours

224,7008 »

1 an 0,006374 »

1 » 321,72965 »'

11 ans 314,8382 »

29 » 166,9864 »

84 » 7,3904 »

164 » 280,1132 »

4 » 98,123 »

0,3870987
0,7233322
1

1,5236913
5,202800
9,538861

19,18329
30,05508
2,631434

L'excentricité numérique de l'orbite de la planète Vénus
étant 0,0068, il s'en suit que si l'on construit une ellipse
semblable à cette orbite et dont le grand axe ait une longueur de
un mètre, la distance des deux foyers ne sera que de 6,8
millimètres. Telle sera donc aussi la largeur de la couronne circulaire

mentionnée à plusieurs reprises, à l'intérieur de laquelle
se trouve la courbe gp. Si donc je traçais devant vos yeux, sur
le tableau noir, à la craie, l'ellipse en question, puis, concentrique

à elle, le cercle ayant un diamètre de un mètre, l'épaisseur
du trait vous empêcherait de distinguer l'une de l'autre

ces deux courbes. Cette image vous fera mieux comprendre
l'erreur de Copernic qui disait que Vénus, en gravitant autour
du Soleil, décrit une circonférence de cercle. — Or, quand
l'excentricité est si petite, il est difficile d'indiquer avec
précision où se trouve le périhélie. Cette incertitude dans la
position exacte du périhélie augmente en valeur absolue avec
les dimensions de l'ellipse. Comme ces dimensions atteignent
des centaines de millions de km, il s'en suit qu'actuellement
encore, malgré tout le perfectionnement des instruments
astronomiques et des méthodes de calcul, la position du périhélie
de Vénus est assez mal connue. Or, quand on connaît la
position d'un point à quelques centimètres près seulement, il
est impossible de dire si elle a varié, oui ou non, de quelques
millimètres.

La même chose pourrait se dire des autres planètes, sauf
peut-être de Mars dont l'orbite présente une excentricité qui
est presque quatorze fois plus grande que celle de l'orbite de
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Vénus. Après $ c'est Mars qui a, de toutes les grandes
planètes, l'orbite la plus excentrique; c'est donc, après $ de
Mars que l'on connaît le plus exactement le périhélie, que l'on
pourrait par conséquent avec le moins d'incertitude dire si le
périhélie est en mouvement ou non. Les astronomes indiquent
pour le périhélie de Mars une avance d'environ 9" par siècle;
d'après la théorie de M. Einstein, ce périhélie ne doit avancer
que de 1" à 2" par siècle; comme les observations astronomiques

avant Tycho Brahé et Gaulée (XVIIme siècle)
n'atteignent pas la précision voulue, la question n'a pas encore
pu être tranchée.

On voit que la probabilité de l'exactitude de ce genre
d'observations dépend de deux facteurs essentiels qui sont :

I l'excentricité numérique de l'ellipse, soit e ; 2) la vitesse du

mouvement du périhélie, soit -A. Pour juger du degré de

confiance ii accorder aux résultats de ces observations, il faut,
d'après Newcomb, faire le produit de ces deux facteurs et le
comparer à son erreur probable. Pour les quatre premières
planètes, ces indications se trouvent résumées dans le tableau
que voici :

PLANÈTES
du î

c dt

Mercure § 8,48 + 0,43
Vénus 9 — 0,05 -f 0,25
Terre 5 0,10 + 0,13
Mars cf 0,75 + 0,35

On constate que, abstraction faite de Mercure, l'erreur
probable est du même ordre de grandeur que le produit de
Newcomb (pour Vénus, l'erreur probable est même supérieure
à la grandeur envisagée). Conclusion : un mouvement du périhélie

n'est irréfutablement démontré jusqu'ici que pour Mercure

(pour Mercure, le produit de Newcomb est vingt fois plus
grand que son erreur probable). Ainsi, dans la question du
mouvement du périhélie, pour Mercure, c'est l'observation qui
a devancé la théorie ; pour les autres planètes et pour les
comètes, ce sera la théorie qui aura devancé l'observation.

Encore quelques remarques sur les orbites planétaires. Il
résulte des considérations précédentes que si le Soleil et $
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étaient seuls dans l'univers : 1) le centre de $ décrirait une
courbe ressemblant fort à la courbe gpn «as soo aux 12 538 800
axes de symétrie, toujours sous-entendu : aux yeux d'un observateur

supposé immobile par rapport au Soleil ; 2) que pour
parcourir cette orbite une fois, la planète mettrait plus de
30 000 siècles, savoir 3 019 877 années terrestres correspondant

aux 12 538 800 années de §. En eifet, la ligne des apsides
de § tourne en une année mercurienne de a 0", 10335...
et c'est précisément la grandeur que j'ai prise pour l'angle
GFGt en définissant la courbe gp.

Pour plusieurs raisons, l'orbite réelle de ^ n'est pas
géométriquement semblable à la courbe gp 12 ms soo- D'abord, à

cause des perturbations provenant de la présence des autres
corps célestes. Ensuite, parce que le mouvement de ^
stilline boucle quasi-elliptique de son orbite ne s'effectue pas,
comme je l'ai supposé, avec une vitesse angulaire o constante,
mais avec une vitesse aréolaire constante (deuxième loi de
Kepler), c'est-à-dire que la vitesse angulaire u> est variable de
telle façon que les aires balayées par le rayon vecteur de la
planète en des temps égaux sont égales. Cependant, l'inlluence
de cette cause n'est guère plus sensible que celle des
perturbations, vu l'excessive lenteur du mouvement rotatoire de
l'orbite et enfin, elle est peut-être contre-balancée par les
variations encore inconnues de ce mouvement rotatoire lui-
même que j'ai supposé uniforme.

En troisième lieu, et c'est la raison principale, l'hypothèse
laite en posant (/ ».10 et prenant « 12 538 800 n'est sans
doute réalisée qu'approximativement. J'ai pris pour n ce nombre
de 12 538 800 parce que, l'avance du périhélie de ^ étant
de <x 0",10 335... par année mercurienne, une circonférence
entière comprend 12 538 800 angles de cette grandeur a. Or,
observateurs et théoriciens s'accordent à dire que <x 0",10335
est très approché, mais pas rigoureusement exact. Si l'on
admet, d'après les connaissances actuelles, que la valeur de «
est comprise entre 0",10 335 et 0"10 336, le nombre n, d'après
la théorie, doit être compris entre 12 538 699 et 12 539 912.
En tenant compte des perturbations dues à la présence des
autres corps célestes, on peut dire que si la courbe gp aux
12 538 800 axes de symétrie n'est pas semblable à l'orbite
réelle, elle en est du inoins une représentation beaucoup plus
approchée que l'ellipse képlérienne.

La forme de l'orbite dépend du nombre u qui lui-même
dépend de a, et cet angle, comme le montre la formule de
Gerber, est fonction de plusieurs grandeurs dont l'état actuel
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de la science ne permet que des évaluations plus ou moins
approximatives. Si l'on prend a 0",10 336 exactement, on

300.00. <*) 81.5.107 ,ORQÖ„m223 „.trouve /< — 12 538 699 —. Cela
0,10 330 323 323

donne comme trajectoire encore une courbe gp à centre,
composée d'un nombre tini très grand de boucles superposables,
mais qui se ferme seulement après 323 révolutions de l'ellipse
génératrice. Comme chacune de ces révolutions dure plus de
30 000 siècles, g emploierait plus de 97 551 490 000 années
(terrestres) à parcourir une fois son orbite. — Si a, et par suite

1 ^96 000
n X est un nombre rationnel, la courbe gp corres¬

si

pondante, donc aussi l'orbite de $, est fermée. Mais il est
possible, voire même probable, que a soit irrationnel. Dans ce
cas, la courbe gp, donc aussi l'orbite de $, serait une courbe
à centre, non fermée. — Des déductions analogues peuvent se
faire à propos des autres planètes.

En admettant le principe de relativité, on arrive donc, en
mécanique céleste, aux conclusions suivantes: 1) l'orbite d'une
planète, abstraction faite des perturbations, est une courbe gp
à centre, en général très compliquée, composée de boucles
égales et symétriquement disposées, boucles dont l'ellipse
képlérienne est une représentation très approchée ; 2) l'orbite
planétaire est située entièrement à l'intérieur d'une couronne
circulaire dont la largeur est égale à l'excentricité linéaire de

l'ellipse képlérienne et qui est comprise entre deux cercles
concentriques au Soleil ; 3) si l'orbite est une courbe fermée,
il faut à la planète un temps excessivement long, des milliers
de siècles, pour la parcourir une fois entièrement; 4) il est
probable que l'orbite réelle est une courbe non fermée qui
remplit entièrement la couronne circulaire susmentionnée et
dont le Soleil occupe le centre.

De ces conclusions, je retiens un point: l'orbite planétaire
possède toujours un centre et c'est le Soleil qui l'occupe.
X'avez-vous jamais réfléchi sur ce qu'il y a de curieux dans
l'une des conclusions de la mécanique classique? Le Soleil,
dont la puissance d'attraction dirige planètes, comètes et
météores, le Soleil, qui est le centre physique et mécanique de
notre univers planétaire, n'en est pas le centre géométrique!
Le besoin de symétrie inné à l'esprit humain ferait décrire aux
astres des cercles autour du Soleil comme centre, ainsi que le
taisaient déjà les Anciens, et s'il doit absolument y avoir des

ellipses, que le Soleil en occupe au moins le centre et non l'un
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des foyers. Personnellement, j'ai toujours trouvé très curieux
ce phénomène d'asymétrie qu'implique la mécanique new-
tonienne et si les déductions mathématiques n'étaient irréfutables,

j'aurais eu quelque peine à croire à cette position excentrique.

La mécanique de la relativité vient satisfaire ce besoin
de symétrie d'une manière inattendue : elle enseigne que les
orbites des planètes ont un centre et qu'il coïncide toujours
avec le centre du Soleil D'après la nouvelle théorie, le centre
physique et mécanique de notre monde planétaire en devient
aussi le centre géométrique.
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