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Une application du principe de relativité

PAR

L.-Gustave DU PASQUIER, professeur a I'Université

Jie

Comme les circonstances ne permettent pas de publier in
extenso les deux conférences que j’ai faites a la Société neu-
chateloise des sciences naturelles sur

Le principe de relativité
el ses rapports avec la géométrie non-euclidienne,

Jen donne ici un extrait: la partie qui se rapporte a la vraie
forme des orbites planétaires telle qu’elle résulte de la nouvelle
meécanique céleste (ue le principe de relativité substitue a la
mécanique classique. |

Dans I'évolution historique de la théorie de la relativité, on
distingue nettement deux phases :

1. La théorie de la relativité spéciale, ou restreinte. Elle
postule, ou admet que, dans le vide, la lumiére se propage
toujours en ligne droite et avec une vitesse constante, la méme
dans toutes les directions.

J’ajoute d’emblée qu’au point de vue physique ce principe
spécial de relativité ne touche pas a la théorie de la gravi-
tation ; par contre, il renverse la cinématique et la mécanique
classiques établies par GALILEE et NEWTON. Au point de vue
mathématique, il permet de maintenir la géométrie eucli-
dienne dans toute sa rigueur et sa belle simplicité.

2. La théorie de la relativité générale. Elle n’admet plus
lia constance de la vitesse de propagation de la lumiére dans
toutes les directions et en ligne droite. Au contraire, d’aprés
cette théorie générale, la lumiére, bien entendu dans le vide,
peut se propager en ligne courbe et méme le fait quand elle
passe dans le voisinage de corps matériels qui ont une masse
suffisante. J'ajoute dés maintenant qu’au point de vue physique
le principe général de relativité modifie trés profondément la
doctrine classique de la gravitation. Il oblige d’abandonner non
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seulement la mécanique galiléo-newtonienne comme non rigou-
reuse, mais méme la géométrie euclidienne. Si 'on admet le
principe général de relativité, il en découle comme consé-
quence logique et nécessaire l'impossibilité de la géométrie
ordinaire, du moins dans un espace soumis a des forces de
gravitation. C'est la géométrie non-euclidienne qui est imposée.
Mécanique et géométrie classiques ne sont plus que des appro-
ximations, d ailleurs trés bonnes, de la réalité.

Dans 1'étude des phénoménes, toute description qui ne
donne aucune indication relative au temps est par la méme
partielle. Ce n’est qu’en introduisant le temps qu’on arrive a
la notion de vitesse si essentielle dans les sciences exactes.
Vous allez voir que le probléme de la mesure du temps est un
peu moins simple que celui de la mesure de 1'espace.

Un observateur N muni d’'un chronometre et qui se trouve
en un endroit donné, disons a Neuchatel, peut déterminer a
quels instants précis ont lieu les événements dans son voisi-
nage immeédiat, mais il n’en est pas de méme des événements
qui se passent dans des régions frés lointaines, p. ex. sur
I'étoile Véga éloignée de nous d’environ 204--000 000-000 000
de km, distance que la lumiére emploie plus de 21 ans 8 mois
a parcourir. Si I'observateur N note l'instant auquel lui par-
vient le rayon lumineux qui lui apporte la nouvelle d'un
événement E ayant eu lieu en un point B trés éloigné, cet
instant est postérieur a I'instant ¢ ou I'événement E s’est passé
réellement, puisque le rayon lumineux a mis un certain temps
pour arriver de B a I'eeil de 1'observateur N. Comment déter-
miner 'instant ¢{? Notre savant N pourrait le calculer grice a
ses observations chronométriques, s’il connaissait la vitesse de
propagation de la lumiére dans la direction B N. Or, mesurer
cette vitesse n’est possible que si I'on sait déterminer: 1) la
distance B N, 2) I'instant du départ de B et 3) 'instant d’arri-
vée en N du rayon lumineux. Cela suppose donc que 1'obser-
vateur N a déja résolu le probléme de la détermination de
I’heure au point B. Vous voyez qu’on tombe dans un cercle
vicieux. Pour en sortir, il faut faire des hypothéses. La suivante
est trés plausible: dans le vide, un rayon lumineux mel le
méme temps pour aller de B en N que pour se propager de
N en B. Cette hypothése (car malgré sa simplicité, c’est une
hypothése) permet effectivement de régler, méme sans con-
naitre la vitesse de propagation de la lumiére, des chrono-
métres trés éloignés U'un de I'autre. Voici comment :
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Deux observateurs munis chacun d’'un chronometre, I’'un
<e trouvant a 'origine des coordonnées O, I'autre en B, ont
convenu de s'envoyer mutuellement un bref signal lumineux
i 'instant précis ou leurs chronometres marquent 3 heures,
de noter 'heure de réception du signal envoyé par l'autre,
puis de se communiquer leurs observations. La distance O B
(qui les sépare est supposée rester constante.

 Premier exemple. Supposons la distance O B de 1 milliard
620 millions de km (Terre-Saturne). 1) le signal envoyé par B
(2 I'instant ou le chronométre B marque 3 h. précises, comme
convenu) parvient a I'observateur O quand le chronométre de
celui-ci marque par exemple 5h. 10”5 — 2) le signal envoye
par O (a I'instant ou le chronometre O marque 3 h. précises)
parvient a 'observateur B au moment ou le chronométre de
celui-ci marque 3 h. 50’. Je représente ces suppositions par le
schéma (ue voicl:
0 B |
3h. —> 3 h. 50’
5h. 10’ <— 3 h.

(Cet exemple donne lieu au calcul suivant:
“h. 10’ — 3h. 50’ =1 h. 20’ = 80", dont la moitié est 40 minutes.
L'observateur O télégraphie a B de faire avancer de 40 mi-
nutes les aiguilles de son chronométre, puis de recommencer

I'expérience. On se convaint que, ce changement étant fait,
I'expérience donnera lieu au schéma

| O B |
3h.—> 4h. 30’
A4h.30"<—3h.

En effet, a 'arrivée du rayon lumineux en B, le chrono-
métre v marquera 3h. 50" 4 40" = 4h. 30/, puisque les
aiguilles v ont été avancées de 40”; pour cette méme raison,
le signal lumineux qui part de B a 3 h., part en réalité 40’
plus tot que la premiére fois, donc arrive aussi 40’ plus tot
en O, soit a Dh. 10" — 40’ =4 h. 30".

Les chronomeétres sont maintenant réglés Uun sur Uaulre,
en vertu de 'hypothése faite tout a I’heure sur la propagation
de la lumiére entre O et B. On voit que le procédé ne suppose
pas connue la distance O B.



Deuxiéme exemple. Soit O B =180 millions de km. (Terre-
Vénus). Supposons que I'expérience fournisse le schéma
| 0 B
3h. —> 4 h. 10’
2 h. 10" «<— 3 h.

(voir le premier exemple). Calcul: 2 h. 10’ -——4h.10’—=—2h.
dont la moitié est — 1 h. O télégraphiera donc a B de retarder
son chronométre de 60 minutes. I.’expérience étant alors
recommencée, donnera le schéma

-0 B

3h.—> 3 h. 10’
3h.10" «<— 3 h.

qui prouve que maintenant les chronométres sont réglés I'un
sur l'autre.

Cette hypothése et le procédé qui en découle et que je
viens d’illustrer par des exemples permettent de « chrono-
mélrer l'espace par la voie optique », c’est-a-dire de régler
I'un sur I'autre des chronomeétres placés a des distances quel-
conques, et cela sans connaitre ni la vilesse de propagatlion
de la lumiére ni la distance des chronométres. Pour des dis-
tances moins grandes, on supposera les horloges munies
d’aiguilles indiquant les secondes, les dixiémes et les centiémes
de secondes ; pour des distances trés grandes, d'aiguilles mar-
quant les jours, les mois, les années.

Ce procédé résout le probléme de la détermination de
I'heure par la physique expérimentale. Pour connaitre I'instant
précis ¢ d’'un événement quelconque E, il faut: 1) supposer
une horloge a I’endroit B ou se passe 1’événement K, ou dans
le voisinage immédiat de B; 2) supposer qu’elle ait été réglée
par la voie optique sur le chronomeétre-étalon qui se trouve a
I'origine O du systéme de coordonnées. L’indication de I’hor-
loge B sera l'instant cherché &. _

Vous pourriez me demander: « Qu’y a-t-il la de particulier?
Tout cela est si naturel et évident! » Pourtant, en y regardant
de pres, on voit que la définition de I'heure a laquelle nous
sommes arrivés, n’a pas un caractére absolu; cette définilion
du temps se rapporte au contraire & un systéme d’horloges
réparties dans I’espace, bien réglées sur un méme chronometre-
étalon et, chose capitale, supposées foufes tmmobiles les unes
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pur rapport aux aulres, liées invariablement au chronometre-
élalon O avec lequel elles forment un systeme rigide. On voit
<ans peine que deux horloges réglées sur le méine chronomeétre
<ol aussi réglées Uune sur Uautre. Cest pourquol I’on appelle
le temps ainsi défini le temps propre, ou temps local du systéme
en (question. De méme, 1'heure indiquée par une horloge en
un point B lié invariablement a ce systéme est dite I'heure
locale. Flle est aussi relative, parce qu'elle présuppose que le
systéme de coordonnées auquel on a rapporté B, a été chrono-
métré par la voie optique sur une horloge-étalon placée a I’ori-
cine des coordonnées. |

Imaginez un grand laboratoire magnifiquement outillé ot
Je nombreux savants étudient les lois de la nature. Ce labora-
toire numéro I sera porteur d'un systéme de coordonnées car-
tésiennes lié invariablement a Ini. Comme les axes du triédre
Jde référence devront s'étendre jusque dans les espaces inter-
planétaires, nous pouvons d’emblée lui attribuer des dimensions
colossales. Dans ce vaste laboratoire S, sont répartis des
observateurs munis chacun des appareils les plus perfectionneés,
entre autres d’un chronomeétre réglé sur 'horloge-étalon qui
st en O,, origine des coordonnees. Cet ensemble d’horloges
ol de chronometres définit le temps dans S, et sert a le
mesurer, en donnant 1’heure locale en chaque point. C'est ce
double ensemble: systéme de coordonnees cartésiennes et
systéme de chronamétres bien réglés que nous entendrons en
parlant du Systéme S; ou Laboraloire S,. Les savants qui
travaillent dans S, peuvent décrire complétement les phéno-
menes cinématiques, mécaniques, physiques, chimiques, etc.,
puisqu’ils ont les moyens d’indiquer pour tout événement E:
1) 'endroit précis B o il se passe, en mesurant les trois
coordonnées x,, ¥y, z; du point B; 2) I'instant précis ou il a
lieu, en notant I'indication ¢, de I'horloge placée dans le voisi-
nage immédial de B. Tout événement E, par exemple toute
coincidence de points, est ainsi caractérisé par quatre nombres
&0y Yyy 2 by, relatifs au systéme Sy, nombres déterminables
expérimentalement et dont chacun a un sens physique bien
défini. J'appelle ces quatre nombres «les coordonnées lopo-
chroniques de 1'événement E dans le systéme S, », en particu-
lier: a,, y,, 2, les coordonnées spatiales et {, la coordonnée
temporelle de E.

Il y a une vingtaine d’années a peu prés que, voyageant en
Allemagne, je me trouvais dans un petit chemin de fer. Le



Lrain avait a sa gauche une grande forét vert sombre dont il
longeait la lisiére, tandis qu’a sa droite s’étendaient des prai-
ries entrecoupées de champs. La voie ferrée s’allongeait en
ligne droite & perte de vue, si bien que les rails semblaient
concourir en un point, comme les paralléles i l'infini dans la
géométrie euclidienne. Le train roulait & une allure trés
modérée, parce qu’on réparait la voie non loin de cet endroit ;
a quelques kilométres de distance, on pouvait discerner des
équipes d’ouvriers occupés aux travaux de réfection. En regar-
dant par la fenétre, j’apercus par hasard, peinte sur la paroi
extérieure du vagon, une mince ligne droite verticale.

J'eus I'idée de faire une expérience de physique et-de véri-
fier si les corps tombent toujours en ligne droite. J'avais encore
en poche un caillou dont la forme cylindrique et les couleurs
particuliéres avaient attiré mon attention et qu’a cause de son
poids spécifique, qui m’avait paru considérable, j’avais ramassé
en cours de route. Je sortis donc mon caillou, puis, le tenant
entre le pouce et I'index, aussi prés que possible de la paroi
du vagon, je I'abandonnai & ’action de la pesanteur et observai
attentivement sa chute, oubliant tous les reéglements de la
police des chemins de fer. Je constatai qu’il suivit exactement
la mince ligne droite verticale peinte sur la paroi du vagon. Il
n’y avait pas le fort courant d’air que le voyageur ressent
habituellement quand il regarde par une fenétre de vagon: le
train, j’en ai dit la raison, marchait a une allure trés modérée
et par hasard dans la direction méme du vent. Mon petit caillou
étant relativement trés pesant, tout concourait a la réussite de
I'expérience. Pour bien observer, je tins fermé mon il gauche,
de fagon a avoir la vision monoculaire de la trajectoire. Je
constatal donc, de mon ceil droit, que la trajectoire était bien
une ligne droite, jusqu’'au moment ot mon caillou disparut
dans une touffe d’herbe prés du talus.

Ce méfait eut un témoin : un homme était apparu a céte
d’un bosquet d’arbres, non loin de la voie ferrée et observait
le phénoméne, les yeux grands ouverts. Ce témoin me reconnut.

vétait un jeune fonctionnaire allemand, mais c’étal.t aussi un
ancien camarade d’école, heureusement pour moi. Quelque
temps aprés, il m’ayait retrouvé et me parlait des conséquences
qu'entraine l'inobsérvation des réglements de la police des
chemins de fer en Allemagne. Je lui racontai I’expérience de
physique que j’avais faite, ajoutant que je n’avais enfreint
aucun réglement, puisque je n’avais rien «lancé » par la fenétre
du vagon, que j’avais abandonné le caillou 4 l'action de la
pesanteur sans lui communiquer de vitesse initiale. Pendant

[
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qu'il réfléchissait encore sar le distinguo inattendu que je
venais de faire et pour détourner la conversation du brulant
terrain juridique, je lui posai la question : « Quelle est la vraie
lrajectoire de mon caillou? » Je me rappelai trés a propos que

e 4

Fig. 1.

mon ancien camarade d’école s’était toujours beaucoup inté-
ressé 4 la philosophie et aux mathématiques. « Pour moi »,
ajoutai-je, « qui ai observé le phénoméne attentivement de mon
wil droit, avec toute I'exactitude possible, j'ai constaté que la
trajectoire en question était une ligne droite. » — « Erreur »,
répondil-il, « tu oublies décidément que tu étais en chemin de
ler : Moi qui ai observé le phénoméne de mes deux yeux,
meéme grands ouverts, j’ai vu que ton caillou n’a pas suivi la
ligne droite marquée par le poteau télégraphique devant lequel
tu passais justement ; j'ai constaté que la trajectoire était un
are de parabole ; je la vois encore quand je le veux, se proje-
tant sur le fond vert sombre de la forét. D’ailleurs, ton caillou
evlindrique a fini sa trajectoire depuis qu'’il s’est échoué pres
des rails. » — « Erreur », répliquai-je & mon tour, « tu oublies
que la Terre tourne. La vraie trajectoire, si elle n’était pas un
seament de droite comme je I'ai constaté de visu, n’était en
lout cas pas un arc de parabole. D’ailleurs, mon caillou ne
<'est pas brisé en tombant pres des rails; il est donc loin
davoir fini sa trajectoire. Méme s'il était tombé au pole nord,
il décrirait encore une ellipse dont le Soleil occuperait I'un
des fovers: mais comme nous ne sommes pas au pole nord,
<a vraie trajectoire est-plus compliquée. Elle résulte des deux
mouvements que notre globe exécute simultanément dans
I'espace : 1) rotation diurne sur son axe ; 2) révolution annuelle
autour du Soleil. » — Et nous voila lancés dans une longue
discussion sur la forme de la vraie trajectoire de mon caillou
cvlindrique.

Si la Terre exécutait une révolution annuelle en 365 jours
oxactement, la trajectoire en question serait une courbe fermée
composée de 365 boucles.

l.a fig. 1 en représente une partie; mais en réalité —
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comme on le voit immédiatement pour des points situés pres
du pole nord ou dans le voisinage du pole sud — la trajectoire
ne présente pas de boucles ; ce serait une épicycloide elliptique
raccourcie, courbe qui serpente entre deux ellipses concen-

! Figc. 2.

triques, sans points doubles et dont la fig. 2 représente une
partie. Cependant, dans la fig. 3 et pour les déductions du
texte s’y rapportant, j’ai laissé subsister les boucles et les
points doubles, vu que cela facilite ’exposé et qu’il ne s’agit
pas d’une description de la trajectoire rigoureusement exacte,
mais uniquement d’un schéma destiné a en donner une idée
générale.

Or, une révolution de la Terre autour du Soleil dure a peu
prés 365 jours et six heures. Représentons par le point A
(fig. 3) le point de 1’espace planétaire ou vint choir mon caillou
cylindrique pres des rails. Sa trajectoire passera par A D B E
C G..., chaque boucle correspondant a I'espace parcouru en
24 heures. Au bout de 365 jours précis, ayant exécuté 365
boucles semblables, le caillou se trouvera non en 4, mais en
A, ; au bout de la premiére année exactement, le centre de la
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Terre occupant de nouveau la méme position, le caillou sera
dans le voisinage de A, disons en J, puis, continuant sa trajec-
toire, passera par Dy By E, C, G,... Au bout de 365 nouvelles
circonvolutions, il se trouvera en A, pour continuer par
D, B, E, C, G,... Avant exécuté pour la troisiéme fois 365 cir-
convolutions en 365 jours, il se trouvera en Aj et continuera
par D, By E, €y G, enfin, aprés avoir fait pour la quatriéme
fois 36D boucles en 365 jours, il se trouvera en A, ; continuant
alors par D,, il viendra en A emboiter exactement la trajec-
toire commencée quatre ans auparavant. — Voila quelle serait
la trajectoire, si I'année comptait exactement 365 jours six
heures.

Or, on sait que l'année sidérale comprend 365,25636 jours,
s0it 365 jours 6 heures 9 minutes et 9,504 secondes, et I'année
tropique 365,2422166 jours = 365 jours 5 heures 48 minutes
48 secondes. Vous voyez dans quelle discussion astronomique
autanl que mathématico-philosophique cette question nous
lanca. Nous finimes pourtant, en nous disant adieu deux jours
plus tard, par tomber d’accord : en supposant rigoureusement
exactes les données qui servaient de base a nos déductions et
faisant abstraction des perturbations astronomiques, la vraie
trajectoire de mon caillou cylindrique serait une courbe fermée
trés compliquée et que le centre de gravité du dit caillou
meftrait 250 siécles & parcourir une fois. Tous les 25 000 ans,
il recommencerait a coincider périodiquement avec les mémes
points de I'espace planétaire. Tel fut le résultat de nos calculs
et de notre longue discussion.

[>rreur ! puis-je dire aujourd’hui. Ignorants que nous étions,
nous supposions que le Soleil reste en place, immobile au centre
de I'univers. On sait aujourd’hui qu’au contraire, le Soleil est
lancé dans les espaces cosmiques, dans la direction de la cons-
tellation d'Hercule, avec une vitesse qui dépasse 80000 km a
I'heure. entrainant avec lui tout notre systéme planétaire. Dans
cos circonstances, la vraie trajectoire de mon caillou ne saurait
otre une courbe fermée du genre de celles que je viens de
décrire, puisqu'en une année, le Soleil se déplace d’environ
{00 millions de km, que par conséquent le caillou, parti de 4,
he se retrouvera au bout de I'année sirement pas dans le voi-
sinage de A. Si le Soleil file en ligne droite, la trajectoire du
caillou n’est pas une ligne fermée. Mais le Soleil, et tout notre
monde planétaire avec lui, ne gravite-t-il fpas plutot autour
A'un astre de la constellation d’Hercule, mettant peut-étre des
millions d’années a parfaire une révolution? Mystére! Tout
ce que nous savons aujourd’hui, c’est que la distance du Soleil



a la constellation d’Hercule diminue a raison de plus de
80 000 km par heure. Qui nous dit que la constellation d’Her-
cule reste immobile? Et si ce n’est pas le cas, est-ce cette
constellation qui fuit devant le Soleil, pour étre un beau jour
rattrapée par lui, aprés des millions ou des milliards de siecles ?
Ou est-ce notre Soleil qui fuit devant elle, comme s’il cherchait
A échapper? Encore une fois: mystere! Je pense que ni l'un
ni lautre n’est le cas. Le Soleil et les astres de la constellation
{’Hercule décrivent chacun son orbite, et ces orbites, trés
probablement, se croisent dans 1’espace et ne se coupent pas.
Il n’y aura donc trés probablement jamais cette catastrophe
de tamponnement stellaire.

Mais alors, quelle est donc la vraie trajectoire de mon
caillou eylindrique? Mesdames et Messieurs, je vous pose la
(question. Quelle est sa trajectoire réelle, sa trajecton‘e absolue,
indépendante de la Terre et du Soleil et de la constellation
d’Hercule et de tous les astres de I'univers?. Quelle en est
la trajectoire en sot?

Aprés réflexion, vous arriverez au résultat que, posée en
ces termes, la question n'a pas de sens précis. En eflet, I'idée
d’une « trajectoire en soi décrite par un point » n’a aucun sens
mathématique ni physique. — Je laisse ouverte la question du
sens metaphysique, me bornant a rappeler la définition que
donnait VoLTAIRE de la métaphysique: Deux interlocuteurs A
et B discutent; si A ne comprend pas ce que dit B, mais
comprend ce qu’il dit lui-méme et que, réciproquement B ne
comprenne pas ce que dit A, mais comprenne ce qu’il dit lui-
meéme, alors c’est de la phllosophle si au contraire, A ne
comprend ni ce que dit B ni ce qu il dit lui-méme, et que,
réciproquement, B ne comprenne ni ce que dit A, ni ce qu’il
dit lui-méme, alors c¢’est de la métaphysique.

Pour donner a la question posée un sens physique et ma-
thématique, il faut et il suffit qu’on mentionne un systéme de
coordonnées, ou qu’'on le sous-entende ; en langage populaire :
il faut pla(,er I'observateur dans un laboratoire déterminé. —
Envisageons d’abord la trajectoire parcourue par mon caillou
dépuis Tinstant oui ma main le licha jusqu’au moment ou il
atteignit le talus. On pourra répondre en disant: «dans un
systéme de coordonnées lié invariablement au train, la trajec-
toire en question est un segment de droite » ; ou bien en disant:
« dans un systéme de coordonnées lié invariablement a la sur-
face terrestre, la trajectoire en (uestion est un arc de para-
bole. » Les deux propositions sont justes. Elles ont chacune
un sens mathématique nettement défini; toute apparence de



contradiction a disparu: elles ont aussi un sens physique: si
nous disons « laboratoire » au lieu de « systéme de coor-
données », un physicien muni des appareils nécessaires et
placé dans ce laboratoire pourra, par des manipulations ap-
propri¢es, véritier I'exactitude de la proposition dans les
deux cas. _

Envisageons maintenant fa (rajectoire du caillou a partir
de Uinstant on il resta enfoncé dans le talus. On peut répondre
i la question posée en disant : 1] « Dans un systéme de coor-
données lié invariablement a la surface du globe, la trajectoire
en question se réduit 4 un point.» En eflet, dans un tel
laboratoire, le caillou reste immobile. Ou bien: 2] « Dans un
svsteme de coordonnées lié invariablement au Soleil, la trajec-
toire envisagée est une courbe fermée assez compliquée, sem-
blable & celle décrite précédemment. » Ou bien : 3) « Dans un
svstéme de coordonnées lié invariablement a la constellation
d'Hercule, la trajectoire envisagée est une courbe trés compli-
quée et sans doute non fermée.» Ou bien: 4/ «Dans un
svsteme de coordonnées lié invariablement a I’étoile Sirius, la
trajectoire en (uestion est une courbe dont actuellement on ne
saurait écrire I'équation sans faire des hypothéses sur le
mouvement de Sirius par rapport au Soleil. » — Et ainsi de
suite. Toutes ces propositions sont justes. Elles ne se contre-
disent pas el ont chacune un sens mathémathique nettement
défini. [lles ont aussi chacune un sens physique, et si 'on
imaginait des laboratoires géants, englobant tout le systeme
planétaire, avec des physiciens de taille proportionnée a 1'im-
mensité du laboratoire, ces propositions seraient susceptibles
de véritication expérimentale.

En résumé, vous vovez que la forme de la trajectoire de
mon caillon evlindrique dépend du systéme de coordonnées
auquel on la rapporte, on du laboratoire dans lequel on suppose
placeé I'observateur. — Or, tous les systémes de coordonnées
cartésiennes sont illimités dans leurs dimensions; tous les
triedres de référence s'étendent a Pinfini; tous les «labora-
toires » dont nous parlons ici sont censés étre également vastes
el bien aménagés. « Par quoi se distinguent-ils alors I'un de
'autre? » me demanderez-vous ; «est-ce par leur position
dans I'espace planétaire? » -~ « Non», sera la réponse, « car
dés que deux laboratoires sont immobiles I'un par rapport a
I"autre. nous les envisagerons comme formant corps, comme
constituant un seul et méme systéme invariable, un seul et
meéme laboratoire. L unique dilférence qui entre ici en question
reside dans lenr état de mouvement. » — Voici donc le résultat



auquel conduisent toutes ces déductions: La forme de la
trajecloire dépend de U'état de mouvement de l'observateur.

Les considérations développées a propos de mon caillou
cvlindrique peuvent étre appliquées a n’importe quel mouve-
ment, aux lois du pendule aussi bien qu’aux orbites des
planétes. On voit que pour étre précis et rigoureux dans
I’énoncé des lois mécaniques, physiques, chimiques, etc., il
faut, explicitement ou non, les rapporter a un systéme de
coordonnées bien déterminé. Le plus souvent, en décrivant les
phénomenes de la nature, on sous-entend qu’ils se passent
dans un « laboratoire » faisant corps avec la Terre et auquel
I’observateur est lié invariablement. Ce fut méme toute une
révolution, inaugurée par COPERNIC, puis continuée par KEPLER
et achevée par NEwTON, que de concevoir un observateur
immobile par rapport au Soleil, d’imaginer un systéme de
coordonnées héliocentrique. La notion de trajectoire ou d’or-
bite, tout comme celle de mouvement, est essentiellement
relative et implique un triedre de référence, sous-entendu ou
explicitement mentionné. Or, il en est de méme de la notion
de temps. Au point de vue physique, «le temps en soi» n’a
pas davantage un sens net que «la trajectoire en soi». Pour
donner a I'idée de lemps un sens précis, il faut que le systéme
de coordonnées ou opére le savant soit chronométré par une
méthode déterminée sur une horloge-étalon. (Voir p. 13-15.)

Dans la mécanique céleste fondée par NEWTON, une énigme
reslait sans réponse définitive : le mouvement du périhélie de
la planéte Mercure 3. En 1845 déja, LEVERRIER, calculateur
aussi habile que persévérant, trouva que le dit périhélie, au
lieu de rester fixe, ou a peu preés, se déplace constamment
dans le méme sens, d’une quantité qu’il trouva correspondre
aun angle de 38" environ par siécle. La discussion appro-
fondie de toutes les observations a prouvé qu’en principe,
LEVERRIER avait raison, I'irrégularité constatée étant presque
30 fois plus grande que son erreur probable, mais que 1’écart
est de 43” 4 5" par siécle. 1l est done constaté irréfutable-
ment: 1) que le périhélie de 3 se déplace, dans le sens du
mouvement de la planéte autour du Soleil, plus rapidement
quil ne devrait le faire d’aprés la mécanique céleste de
Newlon ; 2) que cet écart entre le résultat du calcul et celui
de Uobservation directe est de 43" par siécle, a trés peu de
chose pres.

Pour expliquer cette perturbation, on eut recours a plu-
sieurs hypotheses que je classe en deux catégories :

2) Le plus naturel était de répéter ce qu’avaient fait
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LLEVERRIER et ADAMs pour expliquer les perturbations d’Uranus:
supposer l'existence de planétes « intramercurielles » encore
inconnues, c'est-a-dire de planétes dont 'orbite est entiere-
ment comprise entre 3 et le Soleil. Mais ce fut toujours en
vain (ue les télescopes les plus puissants fouillérent le ciel
aux endroits que désignaient les calculateurs. Il fallait donc
une hypothése supplémentaire pour expliquer Iinvisibilité
constante de la planete hypothétique.

3) On supposa qu’il n’v a pas de planétes intramercurielles,
mais que dans le voisinage du Soleil tourbillonnent des millions
de météores, attirés par la force de gravitation et décrivant
autour de lui les ellipses les plus variées. Des calculs laborieux
prouvent qu'on peut faire sur les masses, les positions et les
vitesses de ces innombrables météores des hypothéses tellement
appropriées qu'il en résulte, en vertu de la gravitation univer-
selle et des lois de la mécanique classique, précisément le
mouvement énigmatique du périhélie de G . Ici encore, il faut
une hvpothése supplémentaire pour expliquer Iinvisibilité
constante et absolue de ces corps hypothétiques.

Bref, pour rendre compte du fameux mouvement du péri-
hélie de Mercure, on était obligé d’avoir recours a des masses
encore inconnues du systéme solaire, et comme aucune
recherche télescopique ou autre ne venait confirmer I'existence
de ces masses, on expliquait leur invisibilité par de nouvelles
hypothéses imaginées ad hoc et que I'on admettait faute de
mieux. Voila ot en était la mécanique céleste de NEWTON au
moment ot ALBERT EINSTEIN lanca sa théorie de la relativité.

M. A. EixsTeIN donna au principe spécial de relativité la
plus grande extension possible, en admettant que, dans le vide,
la lumiére se propage toujours avec une vitesse constante o
— 300 000 ke par seconde, la méme dans toutes les directions.
Il n’hésita pas a remplacer la mécanique galiléo-newtonienne
par une autre dite mécanique de la relativité, dont il établit
quelques théorémes fondamentaux. Par un hasard des plus
heureux, M. H.-A. LorenTz avait déja introduit certaines
notions nouvelles qui sont essentielles et qui ont rendu possible
la théorie de la relativité, par exemple I'idée de la contrac-
tion longitudinale et d’autres formules encore. Il est juste de
dire que sans ces précurseurs, la nouvelle théorie ne se serait
pas édifiée si tot. La mécanique de la relativité étant différente
de la classique, il va sans dire que si I'une est juste, I'autre
sera fausse. Mais en comparant les formules, on voit aussi que,
dans les conditions habituelles, la ditférence n’est que théo-
rique et imperceptible en pratique. Si la mécanique nouvelle



95

décrit les phénoménes avec une exactitude mathématique, la
mécanique galiléo-newtonienne en est une approximation
extraordinairement bonne.

Exemple : le théoréme d’addition des vitesses. En suppo-
sant que les vitesses v et w aient méme direction, la mécanique
classique donne pour la résultante c=v+4 w, tandlq que la

v+ w
e

ou o, vitesse de la lumiére dans le vide, est une constante
d’univers et = 300 000 km par seconde.

Il est d’un haut intérét de savoir laquelle des deux ciné-
matiques est juste. Seule, I’expérience peut nous$ I’apprendre.
Mais il n’est pas trés 51mple d’imaginer des dispositifs permet-
tant de trancher la question avec certitude. L’'un nous est
fourni par la célébre expérience de Fizeau. Or, celle-ci donne
une réponse nettement favorable a la cinématique de la rela-
tivité. Une autre confirmation expérimentale vint du domaine
astronomique et, chose inattendue, c’est la grande énigme du
mouvement du perlhehe de Mercure qui l‘B(‘llt une solution
satisfaisante.

Pour simplitier, supposons le Soleil et la planéte 8 seuls
dans I'univers ou du moins, faisons abstraction des perturba-
tions qui proviennent de la présence d’autres corps matériels.
NEWTON enseignait que dans ce cas 8, gravitant autour du
Soleil, décrira une ellipse dont le Soleil occupera I'un des foyers.
La nouvelle mécanique céleste, moins simple que la classique,
enseigne au contraire que, dans les conditions admises, la
planéete gravitera autour du Soleil en décrivant une courbe tres
compliquée dont je vais essayer de vous donner une idée.

Soit une ellipse ABCDE GE'D'C'B’A (fig. 4) tournant
autour de 'un de ses foyers, F, en restant toujours dans son
plan. Imaginons qu’un point mobile M parcourt cette ellipse
generatrice pendant qu’elle est animée du dit mouvement de
rotation. Quelle sera la résultante de ces deux mouvements
simultanés, la trajectoire du point M dans le plan de I’ellipse ?
Pour fixer les idées, nous supposerons :

1) que !’ellipse generatnce tourne autour du point F dans
le sens des aiguilles d’'une montre, avec une vitesse angulaire
w constante et telle qu'une révolution compléte soit exécutée
toutes les deux secondes;

2) que le point M se meuve sur l'ellipse dans le sens des
fleches et avec une vitesse v qui lui fasse pdlCOllI‘ll" 1 fois par

mécanique de la relativité donne ¢ =
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seconde exactement ellipse entiére ; que, de plus, les varia-
lions de cette vitesse v soient telles que la rotation du rayon
vecteur r=F M autour du foyer F s’eflectue avec une vitesse
angulaire o’ constante : on aura o’ =2uw;

3) qu'a l'instant {=o, le mobile M se trouve en A, sommet
le plus rapproché de F, et I'ellipse dans la position qu’indique
li fig. % Nous allons raisonner comme suit :

2) Nans le mouvement rotatoire de Iellipse, (si w=0), le
point mobile M décrirait, pendant la premiére demi-seconde,
la moitié de I'ellipse, soit 'arc A BCDE G; parti de A, il
attemdrait en 7 Nautre extrémité da grand axe. Or, » n’étant
pas nul, I'ellipse, pendant cette premiére demi-seconde, exécute
le quart d'une révolution compléte, par hypothése. Le grand
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axe AF G vient en A, F G, et le point mobile parti de A
aboutira non en G, mmq en (v,, avant ainsi décrit l'arc
APMJE'G,. |

8) Pendant la deuxieme demi-seconde, le gr md axe A4, FG,
tourne de nouveau de 900 autour de F' et uent en A, FG.:,,
entrainant I'ellipse avec lui. Le mobile M parti de G, au lieu
d’atteindre en A, l'autre extrémité du grand axe, I'atteindra
en 4, et décrira ainsi 1'are G,J, BPA;,. svmétrique du préceé-
dent pal rapport a la droite G1 F G,. :

Y) Pendant la troisiéme demi-seconde, le grand axe, partant
de la position A, F G,, tourne de 900 autour de F et Vient en
A, F Gy, entrainant 'e ellipse avec le point mobile M. Ce dernier,
partl de A,, au lieu d’atteindre en G, l'autre extrémité du
grand axe, latteindra en G, et décrira ainsi I'arc A,J, B’ J, Gj.

3) Pendant la quatriéme demi-seconde, le grand axe, partant
de la position A; F G4, tourne d’un anﬁle droit autour de F et
vient en A F (’ entrainant dans son mouvement de rotation
I'ellipse avec le pomt mobile M. Celui-ci, parti de Gy, atteindra
I'autre extrémité du grand axe non en Aj, mais en A et
décrira ainsi 'arc GJEJJ A, symétrique du précédent par

apport a la droite G, F G,.

) Au bout des (leu\ premiéres secondes, I’ ell:pse aura de
nouveau la position qu’indique la fig. 4 et le point mobile se
retrouvera en 4, comme a I'instant ¢ — 0. Les mémes mouve-
ments se répéteront périodiquement de deux secondes en deux
secondes. La trajectoire du mobile est donc, dans ces hypo-
théses, une courbe gp, fermée ayant quatre points doubles,
deux axes de symétrie et un centre qui est le foyer F de
I'ellipse génératrice. Son équation r=/(6) en coordonnées
polaires l'apporl;ées a F comme pole et F'A comme axe polaire

est r— P 98 on p—>b%:a représente le demi-para-
1-}e.cos Y '
metre et e=— l'excentricité numérique de I'ellipse, 0 <e<1.
a

Supposons maintenant o’ = 4w, en paroles: dans les hypo-
theses sus-indiquées, faisons ce changement que l'ellipse met
quatre secondes a exécuter une révolution compléte autour du
foyer F, tandis que le point mobile M parcourt une fois par
seconde I’ ellipse entiére (fig. 5). En une demi-seconde, le grand
axe A F (v de l'ellipse tournera autour de F d’un angle de
45> et le point mobile décrira I'arc AJG,. En raisonnant
comme précédemment, on verrait que la trajectoire se compose
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de huit ares égaux 4 AJ G, et symétriquement disposés, de
maniere a former une courbe gp, fermée, ayant seize points
doubles, quatre axes de symétrie et comme centre le foyer F
de Vellipse génératrice. L’équation de cette courbe, en coor-

46

données polaires, est r=p: (1 -} e . cos i_)—)

On voit que, toules choses égales d’ailleurs, la forme de la
lrajectoire dépend du rapport des deux vitesses angulaires w
et o’. La fig. 6 montre la trajectoire du point mobile M dans
I'hypothése o' —=8w, quand on suppose que I’ellipse met huit
secondes a exécuter une révolution compléte autour du foyer
k. alors que le point mobile parcourt I’ellipse entiére une fois
par seconde. En une demi-seconde, le grand axe A F GG tourne
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autour de F d’un angle de 221/,0 et le point mobile, parti
d’une extrémité de ce grand axe, décrit un arc égala AJK G,.
La trajectoire entiére gp; se compose de seize arcs égaux a
celui-la et disposés symétriquement de maniére a former une
courbe fermée ayant 64 points doubles, huit axes de symétrie
et un centre coincidant avec F. Son équation en coordonnées

polaires est r=p: ('l ~+e.cos %)

Envisageons le cas général ol ' =mn.w; le point mobile
parcourt une fois par seconde ’ellipse entiére et celle-ci met
n secondes a faire une révolution compléte. Nous supposerons
(que n représente un nombre entier auquel nous attribuerons
des valeurs de plus en plus grandes. A I'instant ¢ =o (v. fig. 6),
supposons le mobile a I'extrémité A du grand axe AFG et
I'ellipse dans la position AN G LA. Pendant la premiére demi-
seconde, le grand axe tourne autour de F d’un angle G F G,
égal a la ni*me partie de deux angles droits et le point mobile,
parcourant la premiére moitié de ’ellipse, décrit I'arc AJK G,
qui est la (2 w)yéme partie de la trajectoire compléte. Pendant la
deuxiéme demi-seconde, le grand axe vient de la position
Ay F Gy en Ay F Gy et le point mobile M, en parcourant I'autre
moitié de Iellipse, décrit 'arc G,J, A, symétrique du précé-
dent par rapport a I'axe A, F G,. — Ainsi, pendant la premiére
seconde, le mobile décrit la boucle AJK G, J, A,.

Une boucle égale sera décrite pendant la deuxiéme seconde,
puis une troisiéme boucle égale pendant la troisiéme seconde,
puis une quatriéme pendant la quatrieme seconde, etc.; enfin,
encore une boucle égale pendant la ni®me seconde. Au bout de
n secondes, l'ellipse aura effectué une révolution compléte,
occupera donc de nouveau la position A NG LA et le point
mobile M se retrouvera en A, comme a l'instant {=o.

On voit que la trajectoire compléte gp, est une courbe
fermée ayant »® points doubles, n axes de symétrie et un
centre qui coincide toujours avec le foyer F de l'ellipse géné-
ratrice. On voit de plus que la courbe entiére est située dans
une couronne circulaire comprise entre deux cercles concen-
triques de centre F et dont les rayons sont A F et G F, c’est-
a-dire ¢ —c et a-}c, ou a représente le demi grand axe de
I'ellipse et ¢ la distance de son centre a 'un de ses foyers. La
forme de la trajectoire dépend donc encore de I’excentricité

e __cC s : :
humerique e=-, nombre positif plus petit que 1: moins

I'excentricité de I’ellipse mobile sera prononcée, plus la cou-



— 3 —

ronne circulaire en question sera étroite, puisque sa largeur
est (af¢)- (@ —e¢)=2¢, distance des deux foyers de |'ellipse.

Fajoute en passant que si, I'hypothése o'=mn.w étant
laite, » esl un nombre rationnel fractionnaire, par exemple
n==p:m, on p et m représentent des nombres entiers premiers
entre eux, cela entraine une complication de plus dans la
tforme de la trajectoire : la courbe ne se ferme qu’aprés m révo-
lutions complétes de 'ellipse autour du fover F. La trajectoire
est encore une courbe gp, fermée, composée d’'un nombre
lini de boucles superposables, courbe avant un centre en F,
comprise entiérement dans la couronne circulaire de largeur
2¢ et possédant un nombre fini de points doubles et d’axes
de symétrie.

Fnfin, si # n'était pas un nombre rationnel, il y aurait lieu
de distinguer suivant que n est irrationnel algébrique ou irra-
tionnel transcendant. Ces cas ont en commun que la trajectoire
compléte du mobile M est une courbe gp, transcendante non
fermée comprenant un nombre infini de boucles superposables
el différemment placées, un nombre infini de points doubles
el possédant un nombre infini d’axes de symétrie tous con-
courants au foyer F qui est en meéme temps centre de la
courbe. Tous les points de cette courbe, remarquable a plusieurs
¢oards, sont situés dans la couronne circulaire de largeur 2 ¢
déja plusieurs fois mentionnée. Cette couronne circulaire est
entierement remplie par la trajectoire, c’est-a-dire que les
points de la courbe en question y forment, comme on dit, une
pantachie, un ensemble de points dense partout. L’équation
de Ta courbe ¢gp,, en coordonnées polaires r, 8, rapportées a

F' comme pole, est r=p: (’l +e. cos "o )
n—41

Reprenons I’hypothése de tout a I'heure, o' =n.w, et
supposons n entier et trés grand; prenons en particulier
=12 538 800. Cela revient a dire que le mouvement rota-
loire de I'ellipse autour de son fover F' est trés lent par rapport
au mouvement de circulation du point mobile M sur 'ellipse,
puisque ce mobile a le temps de parcourir l'ellipse entiére
12 538 800 fois pendant qu’elle effectue une seule révolution
autour de F. Si donc on suppose que M met une seconde pour
parcourir I'ellipse, celle-ci mettra 145 jours 3 heures, soit pres
de cing mois, pour exécuter une révolution complete autour
de F. En une demi-seconde, le grand axe tourne d’un angle
reés petit G F () égal @ 180.60.60 : 12 538 800 = 0”,05167.
I are L K G déerit par le point mobile (v. fig. 6) ressemble
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donc énormément a une demi-ellipse, et la boucle AJ KG,J, A,
ne se distingue presque pas d’une ellipse mathématique.
Quand le nombre n prend des valeurs de plus en plus
egrandes, le mouvement rotatoire de |’ellipse autour de son
foyer devient de plus en plus lent en comparaison du mouve-
ment circulatoire du mobile M ; 'angle G F' G, devient de plus
en plus petit, 'arc AJ K G, de la trajectoire tend vers une
demi-ellipse, et la forme de la premiére boucle AJ K G, J, A,,
de méme que celle de chacune des n boucles superposables,
tend vers celle de 'ellipse génératrice. Un observateur dont
les instruments de mesure ne seraient pas d’'une précision trés
arande, ou qui n’aurait pas eu le temps d’étudier a fond ce
mouvement, ne s’apercevrait peut-étre pas du tout de la rota-
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tion de 'ellipse et croirait décrire la traje(,toile exacte du point
M en disant qu’elle est elhpthue alors qu’en reéalité, comme
nous le savons maintenant, c¢’est la courbe fermée gp 42 538 s00
lrés mmphquee qui a 157 221 50 440 000 points doubles
et 12 538 800 axes de symétrie tous concourants au centre F.
Elle est du 25 077 602@me degré.

Observez que si 1'on dessmdlt méme avec le trait le plus
mince possible, a coté de 'ellipse A NG LA de la fig. 6, la
premiére boucle AJK G, J, A, de cette courbe ¢gp, I'angle
a= (1 F G, étant de 0", 10335 seulement, la différence entre
I'ellipse mathématique exacte et cette premiére boucle de
yp 12 53 x0 Serait totalement imperceptible & I'eeil nu, @& moins
de donner au dessin des dimensions extraordinairement grandes.

(ies résultats étant admis, nous allons reprendre I’ hypothese
qui fut le point de départ de toutes ces déductions géomeé-
triques: le Soleil et la planéte Mercure, supposés seuls dans
['univers et soumis a la loi de orawtatlon universelle. Le foyer
F représente alors le centre du Soleil, le point mobile M le
centre de 3, le grand axe A F G dev ient la ligne des apsides ;
au lieu de 1 seconde, nous aurons 1 année de Mercure, savoir
87,97 jours terrestres — 7 600 608 secondes, dlsons, pour
simplitier, 88 jours.

Je répéte que la mécanique céleste, fondée par NEWTON,
enseigne que dans ces conditions, étant donnée la masse du
Soleil, celle de 3 et la distance de leurs centres, 3 gravitera
autour du Soleil, que son centre décrira tous les 88 j jours une
ellipse mathématique dont le centre du Soleil occupera 'un
des fovers, (ue cette orbite conservera indéfiniment sa forme,

sagrandeur et sa position dans I'espace, du moins aux yeux
d'un observateur supposé immobile par rapport au Soleil. Con-
trairement @ cette doctrine, M. A. EINsTEIN trouva, en appli-
quant aux données astronomiques les formules de la mécanique
de la relativité, que pendant une révolution de 3 autour du
Soleil, done en 83 jours, la ligne des apsides tourne dans le
sens du mouvement de la pldnete d’'un angle « égal a un
dixieéme de seconde, plus exactement « = 0", 10335.

Faisons maintenant le calcul: en 88 jours, un dixiéme ou

0”12 en un jour, 88 fois moins; et en une année, 365 fois
. 365,071 o :

plus,  soit T Remarquant qu'une année terrestre

compte 365,25636 jours et une année de Mercure 87,97 jours,

on trouve pour cent années, en prenant les chiffres exacts,

100. 010335 . 365,256: — 42, M1 secondes. Si I'on tient

compte des inévitables erreurs d’observation, on peut dire que
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cela fait, pour Uavance du périhélie de Mercure, juste le
montant dont U'observation a prouvé l'existence et qui consti-
tuait la pierre d’achoppement de la mécanique céleste new-
tonienne. C'est une concordance frappante entre la théorie et
I’observation. Si I'on admet la mécanique de la relativité, il
n'est donc pas nécessaire d’avoir recours a des hypothéses
supplémentaires. Le seul fait de la gravitation autour du soleil
suffit déja pour rendre compte, avec une exactitude merveil-
leuse, des mouvements des corps célestes réellement observés.
On ne saurait exagérer I'importance de cette constatation qui
vient militer de tout son poids en faveur du principe de rela-
tivité.

Si la mécanique de la relativité est exacte, chaque planéte,
pas seulement 3, doit présenter le méme phénomeéne: une
avance du périhélie dans le sens du mouvement de la planeéte.
« Alors », objecterez-vous, « pourquoi n’a-t-on jamais constaté
chez les autres planétes cette rotation lente et séculaire de
toute 1’orbite autour du Soleil?» — «Pour deux bonnes
raisons », sera la réponse. D’abord, le mouvement rotatoire en
question est d’autant plus lent que la planéte est plus éloignée
du Soleil. Désignons par « 'angle G F' G, dont tourne la ligne
des apsides pendant que la planéte exécute une révolution
complete. M. EINSTEIN a déduit de sa théorie la formule

2473, a?

T e (1—e) | M

formule dite « de GERBER », en I'honneur du savant qui la
publia, en 1898, pour la premiére fois (v. Zeitschrift f. Math.
w. Phys. 43 (1898), p. 93-104). Dans la formule de GERBER,
©=23,1415926... est le rapport de la circonférence au diamétre;
¢ =300 000 km/sec est la vitesse de propagation de la lumiére

dans le vide; a représente, évaluée en km, la distance moyenne
de la planete au Soleil, distance égale a la longueur du demi

" . 5 " . _ C . . ’ [ .
grand axe de son orbite, et =y I’excentricité numérique de

I'ellipse ; enfin, T représente, évaluée en secondes, la durée
d’une révolution compléte de la planéte. Or, d’aprés la troi-
siéme loi de KepLER, T est proportionnel a a?; la formule de
GERBER peut donc s’écrire

constante

a:a.ce.(-lmee) @)

ce qui montre bien que « diminue quand a augmente.

3
BULL. T. XLV
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Comme s=3.10% et e <1, le facteur o*(l — ¢e?) est de
I'ordre de grandeur de cent milliard, et ce nombre déja
orand doit encore étre multiplié par a qui est pour Vénus de
108 000 000 km; pour la Terre, de 149,5 millions ; pour Mars,
de 228 millions de kilomeétres, etc. La formule (2) a donc,
pour les trois planétes énumérées (et a fortiori pour les
suivantes), un dénominateur de l'ordre de grandeur de
10" 108 =10, soit de dix trillions, d’ot I’'on conclut aisément
a I'excessive petitesse de «. C'est la premiére raison pourquoi
I'on ne s’apercoit pas si facilement de cette rotation séculaire
des orbites planétaires autour du Soleil : son excessive lenteur
jointe aux inévitables erreurs d’observation.

En prenant pour Mercure les données astronomiques :
a=>57 900 000 km, T=7 600 600 secondes, ¢e=10,206 d’on
1 —e2—=0,957564, on trouve

o 2% =3 . 57 900 0002 B 8 =3 . 57,02
T7600 60D, 9. 1010 0,957564 76 0062 . 3. 95,7564

(e nombre donne l'angle = en radiants; pour l’exprimer en
degrés, minutes et secondes, il faut se rappeler que = radiants

: .. 1800 . a. 1800
correspondent a 1800, donc un radiant & — et «, a ped i

N w
a. 180.60.060

19

secondes. Remplacant « par la valeur ci-dessus,
=2 . 5792 . 432
38 0032 . 9,57564

(Vest bien le montant annoncé par M. EINSTEIN.

La formule de GErRBER, appliquée a la planéte Vénus qui
parcourt son orbite en 225 jours environ, donne «=0",047,
soit a peu prés 77,8 par siécle. Pour la Terre, on trouve
environ 3” par siécle, pour Mars un peu plus d’une seconde
par siécle. Soit v la vitesse de la planéte gravitant autour du
Soleil; le montant que donne la formule de GERBER est prati-
quement égal a 6= v?:4? radiants par révolution.

Cette lenteur excessive du mouvement du périhélie n’est
quune premiére cause de ce qu’il a passé inapercu pour les
planétes autres que 8. Une deuxiéme cause réside dans la
forme de l'orbite. A part précisément §, lI'excentricité de
I'ellipse planétaire est trés petite. On le voit par le tableau
suivant qui contient, pour les huit grandes planétes et pour
la petite planéte Eva ne 164, les éléments nécessaires au calcul
de I'angle = par la formule (1):

— 0”,10335...

on trouve apres réduction a =
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X Durées des révolutions sidérales n“m;fl“s:;:iylm” Excentricités
oms .
; ? o g la distance Omlll? en millions num‘ﬂqﬂes
e Pkl | années sidérales ::l ::n;:n‘l“rlgl;::: ‘:u';t'%'::;:{ - l::“ des ellipses
a a e
| Mercure g | Oan 240 843 87,9693 jours| 0,3870987 | 58 | 0,2056048
Venus © 0 » 615 186 224,7008 » | 0,7233322 | 108 | 0,0068433
» La Terre & 1 » 1an 0,006374 » 1 -1 149,5 | 0,0167701
Mars G| 1 » 880832 1 » 321,72965 » | 1,5236013 | 227,8 | 0,0932611
Jupiter 9| 11 ans 861 965 | 11ans 314,8382 » | 5,202800 | 778 | 0,0482519
- Saturne hH | 29 » 457 176 | 29 » 166,9864 » | 9,538861 | 1426 | 0,0360713
. Uranus 8 » 020233 | 84 » 7,3904 » |19,18329 | 2869 | 0,0463402
Neptune 164 » 766 895 |164 » 280,132 » |30,05508 | 4500 | 0,0089646
kva 164 4» 98,123 » | 2631434 | 393,3 | 0,3471007

L’excentricité numérique de l'orbite de la planéte Vénus
étant 0,0068, il s’en suit que si 1’on construit une ellipse sem-
blable & cette orbite et dont le grand axe ait une longueur de
un metre, la distance des deux foyers ne sera que de 6,8 milli-
métres. Telle sera donc aussi la largeur de la couronne circu-
laire mentionnée a plusieurs reprises, a 'intérieur de laquelle
se trouve la courbe gp. Si donc je tracais devant vos yeux, sur
le tableau noir, a la craie, I'ellipse en question, puis, concen-
trique a elle, le cercle ayant un diamétre de un métre, 1I’épais-
seur du trait vous empécherait de distinguer I'une de I’autre
ces deux courbes. Cette image vous fera mieux comprendre
I’erreur de CopERNIC qui disait que Vénus, en gravitant autour
du Soleil, décrit une circonférence de cercle. — Or, quand
I"excentricité est si petile, il est difficile dindiquer avec
précision ouw se trouve le périhélie. Cette incertitude dans la
position exacte du périhélie augmente en valeur absolue avec
les dimensions de 'ellipse. Comme ces dimensions atteignent
des centaines de millions de km, il s’en suit qu’actuellement
encore, malgré tout le perfectionnement des instruments astro-
nomiques et des méthodes de calcul, la position du périhélie
de Vénus est assez mal connue. Or, quand on connait la
position d'un point & quelques centimeétres prés seulement, il
est impossible de dire si elle a varié, oui ou non, de quelques
millimétres.

La méme chose pourrait se dire des autres planétes, sauf
peut-étre de Mars dont I'orbite présente une excentricité qui
est presque quatorze fois plus grande que celle de 1’orbite de
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Vénus. Apres 8, c’est Mars qui a, de toutes les grandes
planétes, 'orbite la plus excentrique; c’est donc, aprés 3, de
Mars que 'on connait le plus exactement le périhélie, que I'on
pourrait par conséquent avec le moins d’incertitude dire si le
périhélie est en mouvement ou non. Les astronomes indiquent
pour le périhélie de Mars une avance d’environ 9” par siécle ;
d'aprés la théorie de M. EINSTEIN, ce périhélie ne doit avancer
que de 1" a 2” par siecle; comme les observations astrono-
miques avant Tycuno Braui et GALILEE (XVIIme siécle) n'at-
teicnent pas la précision voulue, la question n’a pas encore
pu étre tranchée. | :

On voit que la probabilité de l'exactitude de ce genre
d'observations dépend de deux facteurs essentiels qui sont:
1) I'excentricité numérique de ’ellipse, soit e; 2) la vitesse du
mouvement du périhélie, soit ﬁ; Pour juger du degré de
confiance a accorder aux résultats de ces observations, il faut,
d’aprés NEwcowss, faire le produit de ces deux facteurs et le
comparer a son erreur probable. Pour les quatre premiéres
planétes, ces indications se trouvent résumées dans le tableau
que voieln

e B

| PLANETES e dn

: s O - - d?
_—

~ Mercure 8 8,48 + 0,43

- Vénus Q@ | — 0,06 +
Terre & 0,10 + 0,13
Mars J 0,75 -+

On constate que, abstraction faite de Mercure, I’erreur pro-
bable est du méme ordre de grandeur que le produit de
NewcoMmB (pour Vénus, I’erreur probable est méme supérieure
a la grandeur envisagée). Conclusion: un mouvement du péri-
hélie n’est irréfutablement démontré jusqu’ici que pour Mer-
cure (pour Mercure, le produit de NEwcomB est vingt fois plus
arand que son erreur probable). Ainsi, dans la question du
mouvement du périhélie, pour Mercure, c’est 1’observation qui
a devancé la théorie ; pour les autres planétes et pour les co-
métes, ce sera la théorie qui aura devancé |’observation.

Encore quelques remarques sur les orbites planétaires. Il
résulte des considérations précédentes que si le Soleil et 8
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étaient seuls dans l'univers: 1) le centre de 8 décrirait une
courbe ressemblant fort & la courbe gp iz 538 s0 aux 12 538 800
axes de symétrie, toujours sous-entendu : aux yeux d’un obser-
vateur supposé immobile par rapport au Soleil ; 2) que pour
parcourir cette orbite une fois, la planéte mettrait plus de
30 000 siécles, savoir 3 019 877 années terrestres correspon-
dant aux 12 538 800 années de 8. En effet, la ligne des apsides
de 8 tourne en une année mercurienne de « = 0",10335. ..
et c¢’est précisément la grandeur que j’ai prise pour l'angle
G F G, en définissant la courbe gp.

Pour plusieurs raisons, I'orbite réelle de 8 n’est pas géo-
métriquement semblable a la courbe ¢p 12 538 80. D’abord, a
cause des perturbations provenant de la présence des autres
corps célestes. Ensuite, parce que le mouvement de 8 sur
une boucle quasi-elliptique de son orbite ne s’effectue pas,
comme je 1’ai supposé, avec une vitesse angulaire » constante,
mais avec une vitesse aréolaire constante (deuxiéme loi de
KEPLER), ¢’est-a-dire que la vitesse angulaire w est variable de
telle facon que les aires balayées par le rayon vecteur de la
- planéte en des temps égaux sont égales. Cependant, I'influence
de cette cause n’est guere plus sensible que celle des pertur-
bations, vu l’excessive lenteur du mouvement rotatoire de
I'orbite et enfin, elle est peut-étre contre-balancée par les
variations encore inconnues de ce mouvement rotatoire lui-
meéme que j’al supposé uniforme. ,

En troisieme lieu, et c’est la raison principale, I'hypothése
laite en posant o' =1 .w et prenant n—=12 538 800 n’est sans
doute réalisée qu’approximativement. J’ai pris pour n ce nombre
de 12 538 800 parce que, l'avance du périhélie de 8 étant
de «=0",10 335... par année mercurienne, une circonférence
entiére comprend 12 538 800 angles de cette grandeur «. Or,
observateurs et théoriciens s’accordent a dire que « =0",10335
est tres approché, mais pas rigoureusement exact. Si 1'on
admet, d’aprés les connaissances actuelles, que la valeur de «
est comprise entre 0”,10 335 et 0”10 336, le nombre n, d’apres
la théorie, doit étre compris entre 12 538 699 et 12 539 912.
En tenant compte des perturbations dues a la présence des
autres corps célestes, on peut dire que si la courbe ¢gp aux
12 538 800 axes de symétrie n’est pas semblable a I’orbite
réelle, elle en est du moins une représentation beaucoup plus
approchée que I'ellipse képlérienne.

La forme de l'orbite dépend du nombre » qui lui-méme
dépend de a«, et cet angle, comme le montre la formule de
(GERBER, est fonction de plusieurs grandeurs dont I’état actuel
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de la science ne permet que des évaluations plus ou moins
approximatives. Si I'on prend «=0",10 336 exactement, on
'STeTE 3 » 1

.3{_)0.()0.(“)0:81.5.10 — 192 538 699 22_‘3 Cela
0,10 336 323 323

donne comme trajectoire encore une courbe gp a centre, com-
posée d'un nombre fini trés grand de boucles superposables,
mais qui se ferme seulement aprés 323 révolutions de I'ellipse
génératrice. Comme chacune de ces révolutions dure plus de
30 000 siécles, 3 emploierait plus de 97 551 490 000 années

trouve n ==

(terrestres) a parvcourir une fois son orbite. — Si a, et par suite
1296 000 .
n—  —— = est un nombre rationnel, la courbe gp corres-

a
pondante, donc aussi I'orbite de 8, est fermée. Mais il est
possible, voire méme probable, que = soit irrationnel. Dans ce
cas, la courbe gp, donc aussi I'orbite de 8, serait une courbe
a centre, non fermée. — Des déductions analogues peuvent se
faire & propos des autres planetes.

En admettant le principe de relativité, on arrive donc, en
mécanique céleste, aux conclusions suivantes : 1) I'orbite d’une
planéte, abstraction faite des perturbations, est une courbe gp
a centre, en général trés compliquée, composée de boucles
écvales et svinétriquement disposées, boucles dont [lellipse
képlérienne est une représentation trés approchée ; 2) I'orbite
planétaire est située entiérement a l'intérieur d’'une couronne
circulaire dont la largeur est égale a I’excentricité linéaire de
I'ellipse képlérienne et qui est comprise entre deux cercles
concentriques au Soleil ; 3) si I'orbite est une courbe fermeée,
il faut 4 la planéte un temps excessivement long, des milliers
de siécles, pour la parcourir une fois entiérement; 4%) il est
probable que I'orbite réelle est une courbe non fermée qui
remplit entiérement la couronne circulaire susmentionnée et
dont le Soleil occupe le centre.

De ces conclusions, je retiens un point: l'orbite planétaire
possede towjours un centre et c’est le Soleil qui Uoccupe.
N'avez-vous jamais réfléchi sur ce qu’il y a de curieux dans
I'une des conclusions de la mécanique classique? Le Soleil,
dont la puissance d’attraction dirige planétes, comeétes et
météores, le Soleil, qui est le centre physique et mécanique de
notre univers planétaire, n’en est pas le centre géométrique!
l.e besoin de symétrie inné a I’esprit humain ferait décrire aux
astres des cercles autour du Soleil comme centre, ainsi que le
faisaient déja les Anciens, et s’il doit. absolument y avoir des
ellipses, que le Soleil en occupe au moins le centre et non I'un



des fovers. Personnellement, j'ai toujours trouvé tres curieux
ce phénomeéne d’asymétrie qu'implique la mécanique new-
tunienne et si les déductions mathématiques n’étaient irréfu-
tables, j’aurais eu quelque peine a croire a cette position excen-
trique. La mécanique de la relativité vient satisfaire ce besoin
de symétrie d’'une maniére inattendue: elle enseigne que les
orbites des planétes ont un centre et qu’il coincide toujours
avec le centre du Soleil! D’apres la nouvelle théorie, le centre
physique et mécanique de notre monde planétaire en devient
aussi le centre géométrique.
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