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Sur les Théorémes de Sylvester
et 1a Regle de Newton,

dans la théorie des équations algébriques & coeificients réels.

Par Emize MARCHAND

Rty

AVANT - PROPOS

En 1637, Descartes publiait dans sa Géomeéirie sa fameuse
régle, connue depuis sous le nom de Reégle des signes de Des-
cartes, et qui permet de déterminer une limite supérieure du
nombre des racines positives d’'une équation algébrique par
I'unique examen des signes des coefficients de cette équation.

Newton, dans ses legons, alors qu’il était professeur & 1'Uni-
versité de Cambridge, donna une régle qui permet de préciser
les résultats obtenus par I'application de la Regle de Descartes,
en faisant intervenir, non pas seulement les signes des coeffi-
cients de l'équation, mais aussi la valeur elle-méme de ces
coefficients. En 1707, Newton publiait sa régle, sans démons-
tration, dans 1'Arithmetica universalis.

Dans le courant du XVIIIme siécle, et dans la premiére moi-
tié du XIXme, plusieurs mathématiciens distingués essayérent
de la démontrer; on peut citer, en particulier, Maclaurin, Camp-
bell, Waring, Euler; leurs efforts échouérent.

Voici ce que dit M. Cantor dans ses Vorlesungen iiber Ge-
schichie der Mathemaitik (1898) t. 3, p. 554, en parlant des travaux
de Maclaurin et de Campbell, & ce sujet:

« Diese Abhandlungen (de Maclaurin et de Campbell) brach-
ten Erlduterungen zu Newton’s Regel fir die Auffindung der
Anzahl complexer Wurzeln einer gegebenen Gleichung, behaup-
teten auch seine Regel beweisen zu konnen, blieben aber that-
sdchlich den Beweis schuldig und beriihrten nicht einmal die
Schwierigkeit der Ausnahmsfille. »

Il faut attendre jusqu'en 1864, époque ou Sylvester alors
professeur de mathématiques, & la « Royal Military Academy »,
de Woolwich, publia plusieurs travaux a4 ce sujet. I! commenca
a donner la démonstration de la Regle de Newton pour quel-
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ques equations de degré inférieur, dans un mémoire publié dans
les Philosophical Transactions of the Royal Sociely of London.
(1864), vol. 154.

Poursuivant ses recherches, il trouva le principe d’une dé-
monstration nouvelle, et découvrit une série de théoremes, qui
sont exactement a la Régle de Newton, ce que le théoréme de
Budan-Fourier est 4 la Regle de Descartes, la Reégle se dédui-
sant des théorémes comme un cas particulier. Sylvester publia
ses travaux dans diverses revues anglaises; spécialement dans
The Transactions of the Royal Irish Academy, vol. 24, et dans
The Philosophical Magazine, 4. série, vol. 31,

Budan, en 1811, et Fourier, en 1831, en généralisant la
Régle de Descartes, ont donné leur nom au théoréme. Il est
donc de méme juste et logique de faire une distinction entre,
d'une part, la Regle de Newton, et, d'autre part, les théorémes
de Sylvester, et de ne plus les comprendre dans l'appellation
commune de théoréme de Newton.

Depuis Sylvester, plusieurs mathématiciens se sont intéres-
sés a cette question et ont publié divers articles, soit dans des
revues scientifiques, soit dans des traités d’algébre supérieure.
Leurs buts ont été, en général, non de refaire le travail de
Sylvester, mais de 1’exposer.

On peut mentionner:

Avuc. PouLain (Revue hebdomadaire des sciences Les Mondes,
1866, vol. 11).

A. GeNoccHL (Nouwvelles annales de mathémaliques, 2w série,
t. 6, 1867).

LAGUERRE. (Euvres.

M. pE JonqQuitres (Compies rendus hebdomadaires des séances
de I’ Académie des sciences, 1884, t. 99, quatre articles).

JuL. PETERSEN (Theorie der algebraischen Gleichungen, 1878).
HeiNricH WEBER (Lehrbuch der Algebra, 1898).

Le but de cette étude a été de refaire complétement le tra-
vail de Sylvester, en ne faisant aucune restriction au sujet des
fonctions qui interviennent, et en attachant une importance
spéciale & l'examen de certains cas particuliers, pas méme
mentionnés par Sylvester, et qui, jusqu'a aujourd’hui, n’ont,
comme il semble, jamais été traités avec rigueur. Il s’agit, en
particulier, de ce que M. Cantor, dans la citation ci-dessus,
appelle « die Schwierigkeit der Ausnahmsfille ».

6 BULL. SOC. SC. NAT. T. XL
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M. H. Weber dit aussi dans son Lelrbduch der Algebra, en
parlant des théorémes de Sylvester:

« Ob der Satz bei richtiger Zihlung der mehrfachen Wurzeln
auch noch im IFalle mehrfacher Wurzeln giltig bleibt, mag
dahin gestellt bleiben.»

Ce travail comprend trois parties:

I. Le premier et le deuxiéme théoréme de Sylvester.
II. La Regle de Newton.
ITI. Compléments aux théorémes de Sylvester.




PREMIERE PARTIE

Le premier et le deuxiéme théoreme de Sylvester.

CHAPITRE PLEMIER

Notions préliminaires. — Enoncé des théorémes.

§ 1.

Introduction.

Soit f(x)=o0 une équation algébrique a coefficients réels
du née degré.

Le probléme qui fait Uobjet de cette étude consiste a dé-
terminer une limite supérieure du nombre des racines de
cette équation comprises dans un intervalle réel donné ; il
s’agit de préciser le théoréme de Budan-Fourier 1.

[(x), et ses dérivées successives,
@), ["@), oo [N,
fournissent une premiére série de fonctions.
A cette série, adjoignons-en une seconde :

Fo(x)a Fi(&ﬂ), FQ(CB)J v ,l‘!,,(:l‘),
ou les fonctions sont définies comme suit :
o(®)=[f(z)]?

p(2) =1 fP) |2 — rpa| [ () || [ ()
1* n(%) = [f"Nx)]?
p pouvant étre 1, 2, ...., (n—1).

1 Au sujet du théoréme du Budan-Fourier, voir le travail de M. A. HurwiITz,
dans les Mathematische Annalen, vol. 71 (1911
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La double série de fonctions
@), '@, ... . [ ]
Fo(x), Fy(z), . ..., Fu(®) |
joue un réle prépondérant dans les théorémes de Sylvester.

Les constantes 7, p=0,1, ..., (n—1)., introduites ci-
dessus, sont assujetties a satlcsfalre deux conditions :

a) ces constantes doivent étre positives
I >0 p=0,1,2,...., (n—1).

b) pour arriver a la deuxiéme condition, on peut remar-
quer que, lorqu’on se propose de déterminer F »(Z), on ren-

contre I'expression

QTP_TP...I

et, dans le but de simplifier les expressions des dérivées des
fonctions Fy(z), on assujettit les constantes 7, a satisfaire la
formule de récurrence :

11 rppr=2r,— 1. p=1,2, ..., (n—2).

Telles sont les deux conditions pour la détermination des r,.

A T'aide de II, on peut exprimer 7y, 73, ..., r_3, €n fonc-
tion de r, et de r,.

,. ) g »
rg=2r,—1,

£ b ul
rq=31r,— 21,

.........

............

Tt =M —"1)r, —(n-—2)7,.

Tp=pry— (p =) o=+ p(ry—190) =7, +ap.
Ty, T4y ..., Tnoy doivent étre positifs; 1l faut alors que o soit

plus grand que : 7"01 (cx > " )

Les fonctions [P x), p=1, 2, ...., n, ne peuvent pas étre
identiquement nulles ; il en est autrement de F,(z), p=1, 2,
oy (B—1).
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On peut montrer que les deux conditions nécessaires et
suffisantes pour que la fonction F,(x) soit identiquement nulle
sont :

—
1. a, la constante de la formule des r,, doit étre « = —".
"
2. f—Y(zx) doit étre de la forme
flo=(z) =7(z
¢ désignant une constante, positive ou négative.

)

Supposons,
Fp(x) = rp[f(2)]* — rp—s fO=D(@). [P+ 2)=0
f(p) (a:) /‘(p+ 1) (g;)
" e =
d’ou, par intégration, ¢ désignant une constante,

[f(p——l)(x)]rp = c[f(zi)(;z:)]"p—] (1).
[P—1(z) et fP)(z) sont des polynomes dont le degré est respec-
tivement (n—p-+1) et (n —p). L’identité précédente exige
done

rp(n —p+1) = r,—1(n—p) ou
(rgf-ap) (0 —p+4-1) = [y +a(p—D](n —p)
- C.Q.F.D.

d’on o=
"

Il est facile, de plus, de montrer que l'identité (1) exige
encore

fr=9(g) = 7 (x—a,y 7.
?"0

En effet, cette identité (1) devient, pour « = —

[flr=D@)] =P = o [f(P(@)|"—r+! ¢y=—const. == 0.
Si, pour un instant, on pose
[e=Y@)=y, ona [W@)=y,
et 'identité ci-dessus devient
Y = ey Yy

n—p .
d’out Yy = ¢y yrn—pi1 g, = Bamgk, ==,

p—n
dy . yn—p+1 = ¢, . dx.
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d’ot1, par intégration.

R | A
! ‘ ! ﬂ

T T = ; w
yr—rtt =, x4 C ¢==const. =0

Si x, désigne une racine de y = [»—1(x)=0),
(=—F.a,
et W= [rVay ==¢ (w—a,y P
C. Q. . D.
1 est aisé de démontrer que, réciproquement, lorsque

fr=%a) = ¢ (r—a, )y —rH

on a Fur)=0, dans le cas ot a=—
i

On voit ainsi yue, lorsque 1',(z) =0, on a nécessairement
Fopie) =0, ..., F,_yax)y=n

I’expression génerale des constantes r, est donc

| , S
P, ==y~ ) o
! L n—1
ry étant une quantité positive, d’ailleurs quelconque, comme
v . . _74)
toujours, du reste, dans la suite. Mais, pour a= et
- 7

seulement pour cette vuleur particuliére, une [I,_:()] ou
plusieurs fonctions I, (x) peuvent étre identiquement nulles.

Pour la clarté Jde la démonstration des théorémes de Syl-
vester, 1l est alors utile de traiter spécialement ce cas parti-
culier, et de considérer :

.__."'

a) a>—= impossibilité de Fy(x) =0 p—=1, ... (n —1),

b a— ‘%L possibilité de F(x) =0 p=1, ..., (n —1),
— ')‘ P "

c) UL EE 1]

© Re==1 )"

Disons, tout e suite, que ce dernier cas ne présente
aucun intérét pour les théorémes de Sylvester, et, qu’a l'ave-
nir, on considérera les constantes r, données par la formule

——

."',, A J'“ ~! o j o —

e 7




§ 2.
Définitions et conventions.

Considérons, au point de vue des signes, les deux séries
de nombres réels

bovs Pay Bow moovn P & o
r? r} r: 7r1 )]-{'
r,,T,. Ty ..., ,lnﬁ
Supposons t,70 et T, 0, et désignons cette double série
R par I'expression double série primaire.

) t?‘
S'il se trouve un couple d’éléments correspondants T, tel
que t,7=0 et T, =0, on pourra décomposer R en deux groupes
secondaires R’ et R”:

l(J'J t.la lgq T t)‘ ) 1{’ (3 l;-., l,-_!,,], “ e ey tn 2 !{”
To, Ty Too oo, T T T Ty o T

/

On écrira alors symboliquement R=R'-R". R" et R”
pourront aussi a leur tour étre décomposés.
Considérons, dans ce qui suit, 'un des groupes ainsi for-
més, par exemple, R’:
N Y
L TysTa - - T "

Une succession de deux elements peut présenter une varia-
tion ou une permanence. Le nombre total des variations dans
la ligne supérieure sera désigné par »(R’); p(R’) sera le
nombre des permanences; V(R’) et P(R’) seront les nombres
analogues relatifs a la ligne inférieure.

L iy
T: Tiyy
peut présenter quatre combinaisons, qu'on appellera perma-
nence-permanence ou double- permanence variation-variation
ou double-variation, variation-permanence, et permanence-
variation.

l.es nombres qui expriment combien de fois chacune de
ces combinaisons se trouve répétée dans les deux suites
accouplées, seront représentés par les notatlonb pP(R’), vV(R’),
vP(R") et pV(R").

Il est évident que P'on a

vP(I) =+P(R") 4 vP(R”), ete.

Chaque couple de successions correspondantes,
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Il peut arriver que, parmi les nombres ¢; et T;, un ou plu-
sieurs d’entre eux soient nuls. Il s’agit maintenant d’expliquer
comment on les interprétera.

Les conventions au sujet des zéros, qui vont suivre, pour-
ront paraitre quelque peu arbltralres On les préférera cepen-
dant a d’autres par le fait quune partie d’entre elles ont été
établies par Newton lui-méme, dans son Arithmetice univer-
salis, et qu’elles permettent de démontrer la Régle de Newton
Jusque dans ses moindres détails.

Si, pour le premier couple d’éléments correspondants
tO
T,
ment ce couple; et, ainsi de suite, jusqu’a ce qu'on arrive a

tel que £;=0 et T;==0.

on a, soit {, =0, soit T;=0, on supprimera tout simple-

Li
un couple T
L

A ) ) , Li , o
Lorsqu’il n’existe qu'un couple T g, tel que I'on ait simulta-
£y i s g
nément {0, et T; =0, a savoir .0 on aura, par définition,

r /

p(R)=0 p(R)=0 pP(R)=0 vP(R")=0, etc.

Pour plus de simplicité, on remettra maintenant a la place
de {; ) Ly )
rl s ]1 SS‘

Entre le couple ainsi défini

en supposant donc {,5=20 et T;=0.

by | oy
-[\ \ .51
des nombres intermédiaires ¢ ou T peuvent étre nuls. Par
convention, on considérera ces zéros-la, suivant les cas, soit
comme quantités positives, et on les écrira, @), soit comme
quantités négatives, .

un ou plusieurs

Formulons les conventions suivantes A et B.

A. Supposons que

tm—lio tm:tm-}—l: . -:tm—i—m'—lzo tm—}—m'io
quels que soient les T correspondantq, m étant I'un des nom-
bres 1, 2,..., {r—1), et m', I'un des nombres 1, 2,...,

(r—m), ce que, a I'avenir, on écrira
m=1,2,..., (r—1)

=] ,2, ce ey (r— ).
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On donnera alors aux zéros représentant f,, tmi1, .
b tm'—1, le méme signe que celui de Ly 4w
B. Supposons que

T;4220 Ti=Thi=...=Tpi 1= Tigr=0
1=1,2, ..., 01
Pty B i o oy (Bl
En général, on donnera

au zéro représentant T, ,_, le signe contraire de celuide T4
» » - Tiyp_s,le méme signe que » » »
» » Tiyr_s, le signe contraire de » » »

et ainsi de sulte, en variant toujours les signes.
Il 'y a deux cas d’exception :

Premier cas d’exception.

Supposons qu’on ait simultanément :

1720 L=tp1=...=bp1=0 lpypr7=0
Tp—l#o Ty=Tpi=...=Tp-1=0 Tppps=0
p=1,2,...,(r—1)

p ‘“‘"lv"‘)"'a(fr__'p)'

Pour les zéros de la série des ¢, on a la convention pré-
cédente A: tous les zéros prennent le méme signe que celui
de tp+p'.

Pour les zéros de la série des T, on donne au dernier,
Ty4p'—1, le signe contraire de celui de Tpypr; @ Toypr—s, le
méme signe que celui de T,y ; etc., comme l'indique la
convention précédente B3, sauf dans le cas ol bp—1 €t gy

sont de signes contraires,
b1 by <V

Dans ce cas, il faut que le zéro représentant T, ait le
méme signe que T,_;.

Ainsi, lorsque

t—1 >0, by15>0, T,y >0, T,_5>0, on a
+ ® @ ® @ ® +
+ & ® o d 8 +
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tandis que, lorsque
lp_.1 > 0. {p+5<07 rl‘p_1 > 0, rff,+5>0, on a
+ O 0 Q09 —
+®®0®0+

Deuzieme cas d’exceplion.

(e cas d’exception est trés particulier; il ne se présente
jamais pour un groupe secondaire, mais seulement pour la
double série primaire, et seulement lorsqu’on a:
= : L.

1U;C/() _[1: [‘2:. . .:[7;_110 1);#0 s

Dans ce cas, trés particulier, les zéros représentant T, T,,

vy Tu_e, Tu_1, seront tous considérés comme des quantités

positives
T}l :TQ: P :-rl‘gg_ul':@.

Telles sont les conventions qui seront maintenues dans
tout le cours de ce travail.

§ 3
Principe de la démonstration des théorémes de Nylvester,

Considérons les deux séries de fonctions, introduites

au §1, |
flw), @), ["@), ..., [O))
Foz), F,(@), Fy), ..., Fz))

Remarquons que f®™(x) est une constante différente de
zéro, et que F.(z)==[f®™(z]® est constamment positif.

Pour une valeur bien déterminée z, il est clair que pP,
vP, vV, pV correspondant a cette double série ont des valeurs
bien déterminées. Lorsque z varie, pP, vP, vV, pV varient
également, de sorte qu'on peut envisager ces expressions
comme des fonctions de x.

Ainsi se trouvent définies les quatre fonctions pP(z), vP(),
vV(z) et pV(z), par rapport aux séries (1).

Cee qui sera dit dans la suite de ce paragraphe de »P(x)
sappliquera aussi a pP(x), vV(x) et pV(x).

().
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Dans les séries (1), faisons z=X,, X, réel; on a vP(X,);
pour une deuxieme valeur réelle de z, x=1X,, X,>X,,
on a vP(X,). Supposons que dans lintervalle X, ... X,
(X, =z =<X,), aucune des fonctions f, aucune des fonctions F
ne s’annule; il est évident, en vertu de la continuité des
fonctions f et I que

vP(X,)) =vP(X,).

S1 on se propose de représenter graphiquement la fonc-
tion vP(z), dans un intervalle réel, «...b, « <b, on a:

o

Pb)

a ¥ € T, T b

Ty, Loy T3, ..., & 6lant les seules valeurs de z de l'intervalle
... b, (a=x=05) qui annulent une ou plusieurs fonctions
f ou F. Ces racines sont nécessairement en nombre fini,
d’aprés la nature des fonctions [ et F. (Lorsqu'une ou plu-
sieurs fonctions I sont identiquement nulles, on les consi-
dere comme constantes, positives ou négatives).

Pour les théorémes de Sylvester, il est de premiére im-
portance de chercher a déterminer vP(a) — vP(b).

Soit, par définition,
By=vP(wx;—h)— vP(x;+h)y i=1,2,.. .,k
i étant un infiniment petit, comme toujours dans la suite.
On voit alors que

...k
vP() — »P(h) ::2 Ay
Examinons de tres prés 4. |
Par hypothése, une ou plusieurs valeurs de la double
sulte
I K A O R L O I
Folz), Fia), Folxs), ..., Fula) )
sont nulles.

L2, k.
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On décompose cette double série, en un certain nombre
de groupes v; et en un certain nombre de groupes ¢;, de la
méme fagon qu’on a décomposé R en (R’ R’””) an commen-
cement du § 2.

Pour la distinction des groupes y; et ¢;, on observe les
regles suivantes:

A) pour les groupes y;, tous les éléments doivent étre diffé-
rents de zéro.

B) pour les groupes g;, les éléments des couples extrémes
doivent étre différents de zéro (sauf toutefois dans le cas ou
f(x:)=20; il suffit alors que les éléments du dernier couple
soient différents de zéro); pour les couples intermédiaires, il est
nécessaire qu'un au moins des éléments soit nul.

Par exemple, on peut avoir:
TR G LU TN TAMN T AR/ FLL R FRC08
La différence des variations-permanences, par rapport a
un groupe ¢/, pour (z;— k) et (x:-+ h) est désignée par
& g4] f=1.92 ..., %2
on définirait, d’'une maniére analogue,
3 yitt] h=1, 3, .. B
On peul remarquer que [v{]=0, d’aprés la loi de for-
mation des groupes y.
A; devient

1...m

8= Dalg).

l
1...k 1. ..m
&0t oPla) — vP(b)= ' D3]

Donc, la détermination de vP(¢)— vP(b) revient a celle des
. =1, 2, ..., .
g (l) b 3 H
191] i=1,2, ...,k

Quelle pourra étre la constitution de ces groupes ¢:9?
Elle ne varie pas a l'infini, et on répartit les groupes ¢ en
trois catégories.

Pour la distinction qui va suivre, il est nécessaire de se
rappeler la loi de formation des groupes g¢; et la définition des
fonctions Fy(z), F,(z), ..., Fuz).

"



Catégorie 1.

Cette catégorie ne renferme que les groupes, tels que les -
éléments du premier couple du groupe soient nuls. On a

donc
flz:)) =0
Fo(@:) =[flz) =0
Supposons [(z;)7=0; alors
Fy(@) =r [["(@0]? T flze) [ (@) =7y [f"(2:)]* >0,
et le groupe ne se compose que de deux couples.
Si f"(x;) =0, alors F (@) =r, [f'(#:)]2==0, et ainsi de suite.
On reconnait que tous les éléments du groupe, a I'excep-
tion de ceux du dernier couple, sont nuls.
Par exemple :
Azyr=0 FEy=0 .., [F=We) =0 0(3)=0
Fo@g=0 Fzy=0 ... Fe_ottij=0 Fod:)s=0
?'.._.—:1, 2, S — k.
pre=l, By cay B
Pour les deux catégories suivantes, les éléments des cou-
ples extrémes des groupes, sont différents de zéro; les grou-

pes qui rentrent dans 'une ou 'autre des catégories 1I et III
ont, au minimum, trois couples.

Catégorie 1.
On répartit les groupes de cette catégorie en deux sous-
catégories :

ITa. — Les groupes de cette sous-catégorie ne sont com-
posés que de trois couples; le premier élément du couple
intermeédiaire est nul. On a donc:

fo=x)=0  fO(z;) =0 [P A0(z:) 520
Fp_i(zi) > 0 Fp(m)=—17,_1 [*—(z)) . [@+(2;)5£0 F, 1 1(z;) > 0.
p=1,2,...,(n—1)
==, 2y s ooy
Il résulte donc que le second élément du couple inter-

médiaire est différent de zéro, puisque [P—V(z)z=0 et
f”’+1)k’17:) ssfel), :
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I10. — Les groupes de cette sous-catégorie ont au mini-
mum quatre couples d’éléments correspondants; le premier
élément du premier couple intermédiaire est nul. On a donc:

f([‘\_l)(xi) ;,_»4 O f([')(LE;) = O
Fp_l(x[) > “
Quant d Fox) = " [f(p).(x?.)]:? — gy {2 =(x;) f('ﬁ+1)<lgji) e
= — 1 [P N(x;) [Pt a), sielle est différente de zéro, 1l faut

que
[P (x) =0 dou K, (i) = rpq1 [P (x:) 2> 0,

et le groupe ne serait composé que de trois couples et ren-

trerait dans la sous-catégorie Ila.

Il faut donc supposer ici F,(z;)=0, ce qui entraine
f@H(z;) =0, puis

Fppa(@) = rppr [P |2 — 1y [Pa3) fP () = 0.
Si on suppose [(P+2(x;) == 0, alors
Fyp o)) = 1p 4o [0 @) P — 1ppoa [0 ews) [OHI(ati) =
— s [0 @) > 0
et le groupe est composé de quatre couples.
Si fr+9(x)=0, on a aussi F, q(x,)=0; et, ainsi de
suite.

On reconnait que tous les éléments d’un groupe de IIb
sont nuls, a I'exception de ceux des couples extrémes.

Par exemple :

f('p~1)(g;i) —() f(ﬂ)(xi):f(f" + ML Y ey == f(1’+’”—1)(x5):0 f(p+?')(xi)7g()
Fp_ (@) >0 Fy)= Fppi@)= ... =Fpir—1(2:) =0 Fpy lzc:) >0.
pe=1 % ... (1—2)
r—=2,3, ..., (n—p)
=1, 2, , . &

)

Catégorie 111

Pour les groupes de cette catégorie, le premier élément
du premier couple intermédiaire est différent d@zéro. On a
donc: |

[e=Yx;) =0 [ x)z=0
P’p._ 1(5(7;) ?/—_ ()‘
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En vertu de la loi de formation des groupes ¢, il faut
qu'un élément au moins du ou des couples intermédiaires
soit nul. Il faut donc, dans ce cas, que

Fy(@i) = 1y [[P () P — rp o [0 D) . [P 1) =0
ce (ui entraine, puisque fP(x;) =0,
flr+0(2;) =4 0.

Si Fpii(z;) est différent de zéro, le groupe se compose
alors de trois couples.

+1(a;) =0, entraine [(?+2(x;) =0, et ainsi de suite.

On reconnait donc, que tous les éléments du groupe sont
différents de zéro, a lexceptlon des seconds éléments de tous
les couples intermédiaires.

Par exemple:

f(P—=D(a;) 520 [P ac) =0 /’(1’1+1)(a’;i)¢0 L. /'(p+r—1)(;1;i)¢0f(p+r)(xi)¢0
Fp_1(x:) 520 Fp() = Fpyo() = ... = Fpypr_s(2:) =0 Fpy (i) =0
p=1,2, ..., (n—1)
r=1,2,..., n—p)
=1, 2 ...k

Tous les groupes ¢ rentrent dans l'une de ces catégo-
ries; il ne peut pas se présenter d’autres alternatives.

On sait que pour évaluer vP(a) — vP(b), il faut avant tout
déterminer $[g;?], et on reconnait maintenant qu’il suffit de
calculer ¢[g¥] pour quatre groupes seulement, représentant
les catégories précédentes.

Sans 'avoir spécialement formulee on a pourtant fait la
supposition que pour x=ua et x=2>,, aucune des fonctions I
aucune des fonctions F ne s’annule. On peut se débarrasser
de cette restriction. -

Posons:
8[g:"] = ¢,[:D] - 8| 9.7 ].

8,19.] est la différence des variations-permanences, par
rapport au groupe g, pour (x; — h) et x;; 3[g:"] est la dif-
férence des variations-permanences, par rapport au méme
groupe ¢, pour x; et (x;—| h).
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Il est évident qu’on aura alors:

Lt .mtt

a'P(a)WUP(b)_ES ] 4_223[9@ +23 [s™].

Ire

g.%) étant 'un des m' groupes ¢ que présente la double

serie :
fla, / (@), f"(@), ..., [“a))
F(@), Fy(@), Fyfa), - .., Fula) §
¢,'" se définirait d’'une maniére analogue.

L’objet des calculs des chapitres sunivants est précisément

la détermination des §,[¢{"] et des 8,[¢/], qui conduira aux
théorémes de Sylvester.

Remarque.

A Tavenir, dans les séries (1), on négligera I'argument x,
et par raison de symétrie, on posera:

f@)y="ly, ["@)=f, ["(@)=fq,...,[P@)=/fp, ..., [O(x)=fn
Fo(x)=Fo, Fy(x)=F, Fo(x)=TF,, ..., Fp(@) =1, ..., F(x)=F..

§ 4.
Enoncé des théorémes de Sylvester.

Les théorémes, qu’il s’agit de démontrer dans toute leur
généralité, peuvent s’énoncer de la facon suivante:

Premzer théoréeme de Sylvester.

Soit N le nombre de racines de I'équation algébrique a
coefficients réels du n®™ degré

flx)=0
qul appartiennent a l'intervalle réel
a<ax="0.

Chaque racine étant comptée autant de fois qu’il y a
d’unités dans son ordre de multiplicité.

Formons les deux séries de fonctions suivantes :

va fi? fEb /’”
FO& Fh FQ? g F?!
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ou les foncti(')ns sont définies comme suit:
@) fo=fx) f[h=[P(x) p=1,2,
b)  Fo=[? Fp=rfi—rp_rfo—1fp+1 Fu=/[s
p=1,2 ..., (n—1)

ou les quantités r, sont des constantes positives, dont 'expres-
sion générale est

rp=r,—ta.p p=1,2, ..., n—1).
r, > 0 absolument arbitraire

—7
0- 5 3 .
a> —— rationnel ou irrationnel.
"

Soit alors vP(z) le nombre de variations-permanences que
présentent les deux séries

fOﬂ fd? fQ? sl ke fn
F, F, Fy, ..., F,

avec les conventions exposées précédemment au sujet des
Z6ros.

On a la formule
N =vP(a) — vP(b) —2p.

i étant un nombre entier non-négatif.

Devazieme théoréme de Sylvester.

Soit N’ le nombre de racines de 1’équation algébrique a
coefficients réels du n® degré

f(a) =0,
qui appartiennent a l'intervalle réel
a=ux<b.

Chaque racine étant comptée autant de fois quil y a
d’unités dans son ordre de multiplicité.

Soit pP(x), le nombre de permanences permanences que
présentent les deux séries

for Tts [y -ovs [
Fo, Bty Foy ooy Fu
ou les fonctions sont définies comme ci-dessus, et avec les

conventions exposées précédemment aun sujet des zéros.
On a alors la formule:

N'=pP(b) — pP(a) —

v étant un nombre entier non-négatif.

1
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CHAPITRE 11

—
0
o>

n

Dans ce chapitre, les constantes », sont données par
—r
rp=r;+t+ap a> —n—o P="1y 2y s ny(M—1),
Aucune fonction F ne peut étre identiquement nulle.
On pose, par définition,
rw=1ryFan +,>0
et les fonctions I' peuvent, dans ce chapitre, étre définies
comme suit:
Foﬂfo2 Fp:"pfpg—"“p—lfp—lfp—H
p=1,2,..., (n =1), n.
r, étant positif, il importe peu pour notre étude que F,=/f.2
- ou Fo=nr.f:2 (fa31=0).
1l faut déterminer
2 [g]=1P(x — h) — vP()
et 8,[¢g]=vP(x) — vP(x 4 k)
(on supprimera l'indice a x)
pour les quatre groupes g suivants, représentant les catégo-
ries établies au chapitre premier.

1. fp—1¢0 .fp:O f;v-l-l#O
Foprr >0 Fp20 Fop>0
p=1,2,..., (n—1).

2. [r—170 fr="lr1=...=fo4r1=0 fp4, 520
]‘},--1#0 | pF1=— ... = p—{—r—l:O Fp+r;é0
p=1,2,...,(n—2)
r=2.3,...,(n—np).
3. wafl—fQ_ -:fr—l:O fr750
FossF==Pyes. exFy gl Fppi0

r—=1,9, ...
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4. fp—lio f:oio f;'ﬂ—i-i =] VP fp+r-1¢0 fP—H =0
Fp__1¢0 Fp: pF1=.. .:Fp+r._120 Fp+,~¢0
p=1,2,...,(n—1)
r=1,2, ..., (n—p).

§ 1.
fo—170  fy=0 fry1520.

On suppose que, parmi les fonctions

f07 fia R fna

fr—15%0 fp=0 fo4:120 p=1,2, ..., (n—1)

pour une certaine valeur x (e ==x<0); et on examine ce que
sont les fonctions

on ait

fp——lﬁ fPa f}?+1
Fp"—lanaFP+1
pour (x — h), « et (x4 h), quant aux signes.
La formule de Taylor donne:

. ] 2
f@ 0 =loth forit forat- .

or /,=0, donc .
h
et =hfprit5 forat -

On choisit A trés petit, de telle sorte qu'on peut se borner
a écrire le premier terme du développement suivant les puis-
sances croissantes de h, celui qui donne son signe a la fonc-
tion; de méme f,_(x+ k) et f,11(c+ k) conservent le méme
signe que f,—1 et fp 1.

Rappelons que
Fpsv=rp b1l —1s—2fo—2fo
¥o=ry [ —1p—1fp—1lp41
Fpri=rppa [for1P—1lofo+: p=1,2,..., (n—1)
(pour p=1, on a, par définition,
Tp—g=7_ =1 € f_g==] =10}
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Pour (x-}- k), on peut former le tableau suivant, en écri-
vant les fonctions uniquement quant aux signes, ce qui seul,
pour cette étude, est intéressant:

fos@+0) | foos [romslomP—nl ] | Foiteon)
fot by ot [ ok fy B —rp—s fys s | Enl—t- 1)
fors@+ ) | fogr |7l =Ll | Fupae o)

ou encore, plus simplement,

fo—i(@+h) | [p-1 >0 Fo_i(x—h)
fole—=h) | hfpgr | = foei-fog1 | Folx )
frtrx—+h) | foa > () Fpy (- h).

Remarquons que, dans ces tableaux, comme du reste
dans les suivants, h est une quantité trés petite quelconque,
tandis que, dans les expressions vP(x-h), vP(x —Fk), dont
nous allons nous occuper, h désigne une quantité trés petite
posttive. :

- Déterminons vP(x - k), vP(x— k), puis vP(x).

Py — L0 o Foa] A—signlfy . fol
2 2
stgn [r] a ici, comme dans la suite du reste, la valeur 1,

lorsque » est positif ou P, et la valeur —1, lorsque » est
négatif ou .

vP(x - h) e lipml fo1] (1).

-

Py TSI o foya] A sigullp—s-foal | 1 —signlfo—s.foss

2 2 2

UP((IJ-—- h):1 —Sig?l [gﬂ——l 'fp-i-l] (2)

Pour « lui-méme, on a

fos 0 fots
Bp—1lfp—1l? —r—ifor fot1 Tppa[foa]®
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ou, en tenant compte uniquement des signes, et en faisant
usage des conventions au sujet des zéros:

fp—l fp+1 fp+1

+ — fo—1 o1 +
d’ou  vP(x) :1-—Sig??,[f§_1,f[,+1] . 1—sign [’:;—1 fo+1]
vP(x):1m8i9n[g"“'fp+l-l 3).

Des expressions (1), (2) et (3), on conclut:
S g]=vP(x —h) —vP(x)=0)
%[g]=vP(@) — vPx 4 h) =0}

Ainsi, pour un point 2, qui n’est que racine simple d’une
ou de plusieurs fonctions f intermédiaires, le passage par
zéro de ces fonctions n’a aucune influence sur la fonction

vP(x).
§ 2

[r—17=0 fo=frpr1=....=fopr1=0 fp4.7=0.
On suppose que, parmi les fonctions

. fO? fh er v E R ey
on ait

fo—17=0 fr=ft1=. .. =fppr—1=0 fp4.5=0
Pe=1, D, oo w1 ==B)
r=2,3,...,(n—p)
pour une valeur bien délerminée x, (¢ =<2 < H); et on examine
ce que deviennent les fonctions
fP—lv fpa fp-l—la  wn g fp+r—1a fp-!—?" g
Fp_]_, Fp, :[(1])_!._.1, oy I(-‘p_I._r._j, Fp+r ’
pour (x-+h), (x —h) et x; et, comme c’est le signe de ces

fonctions qui est avant tout intéressant, on se borne a écrire
le premier terme du développement suivant les puissances
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croissantes de h, étant donné que pour des valeurs suffisam-

ment petites de’ h, le premier terme donne son signe a la
fonction.

D’aprés Taylor, on a

h h? hr
fp(x_"—h):f})‘l“/l—‘fp—l—l‘}“%fp-]-z‘i— . .+———fp+r—|—

fo1( J»+h)—~fp+1+1 ,fp+z+o,fp+s—|— + fo+r+- -

1)!

h h?
fotr—d2+ 1) = fotr—e gy fotr—1 gy fotr 1 -
h
Iptr—1@+ W) =fptr—1 477+t

mais f}g:f}7+1“——2 . :fp+r 1:0' donc
bt Iy=" fyyr .
hr 1

oo+l =7 “ﬁ+%—

[‘2
@M4@+m:gﬁww«n
frara@ AR =h . fryrt. ..

Pour les I, rappelons que
Fp=rpfp® —vp—1fp—1fpt1 ,

On peut former le tableau suivant:



(y+a)y+a
(yay =ty

U+t

(y +-2ptig

@y +aytia

(4 +x)y
+2)=d

|

i

€= )

T—u mQ L

o LB

ﬁ

et

L4 ,m; J+.§....—. T sy
# wtd ﬁm e .
+o* Y] EH_ + ﬂ e t -
i (G—)

oty D

+§I.ﬁ el Y] mA 5—df

u—|dr (

1—JY

z !&me\\ 2

1—aYf

(1—)

ﬁl&l*lowe&

m..!.thaf_

)
)
Tgiﬁ el ()]

it A A R

L L
e utdf gy

" IT;.TQV@

; .I*IaL_n@E

g— Y
(1=

,l..&
T Y
ety

o for—df

(y+-a)+Y
(y 4oy —td

(4=t

(o)t
()

(y+4x)Y
(-t
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On peut faire les remarques suivantes au sujet des fonc-
tions I de ce tableau :

a) L’expression de F,(x-} &) contient un terme en A*" et
un terme en A"—'; on peut négliger le terme en h%", h étant
suffisamment petit.

b) Les fonctions
p+1(ﬂ/+h>, p_i._‘)(’l’ —|—h), ET F})_Fg-#l(m-*l’-h)

peuvent s’écrire :
hiF—t

Fpyile4h)y=r,. [((

fu2r—2i
— rp+i~1|:(1,____i_|_.1)1(r . i——’l)! [fp+?,]2—|~, ]

73:1,2,_. cy (—2)
r W_Q 3,...,(nh—p)
=1,2,...,(r—1) (0!:1)
pie—i 1
Fp+i(5‘7+h)% )1 (r— “,lfp—k] N (r—il 1y
s [ Fopd i(r—z—|—1)—-1p+f,_1(1 — D]+ .-
mais Fpti="1, 1 a(p-+1%) {
Tppi—1=Tyta(pt+i—1)
car (p+ Dmas=n—1
et (P41 — Dmin="1.
h2Cr—9) 1
(r—o)! (r— 1)|[ﬁ,+ ] a)(im?—l—i)
oo P+7‘)]+- :
mais (P~ Pmae =10
et (p—+ Muun=3
donc ro+a(pFry=r,4, >0.
d’aprés ’hypothése en vigueur dans ce chapitre. |

) T ]

Fpplx+-h)=
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Ainsi, on reconnait que, pour A suffisamment petit,
Foyde4+h)>0 p=1,2,...,(n—2)

r—2,3,...,(n—p)

‘ 1=1,2,...,0F—1).

quel que soit le signe de A.

On peut écrire a nouveau, le tableau précédent qui de-
vient, en négligeant les facteurs positifs :

fo—i(4-h) | fo—1 >0 | Fpa(z+-h)
fo(x =R W fpgr | =W fomt fpir | Fplet-h)
free4h) =l >0 | Fppa(e+h)
foelx—-h) |2 o >0 | Foro(-h)
[odr—d-0) | Bfpgr [ >0 | Fpprs(@h)
foir—1(@+h) | hfyqr >0 | Fppralmth)
[orle-h) | fotr >0 Fpyi(—+-h).

Déterminons  vP(x |- h), vP(z— h) et vP().
UP(QC‘I— h):/l _Sig'n[h’r fP“‘lfP‘I—’I ; Il_ Sign [h?“—-—-l fP““l fF‘I‘T]

2 2 R
_|_’1-~sigf;[h2"—1] A—sign [h’;’ fp=letr] | 1*‘?@'97;["’%3]+ §
ot -.—sign’[hﬁ] 4o —S;gn 2]
WP hy= - " [pr_l fote]
P By 1—sign [(—; Y fo—1[ptr] 1—sign [(12)’"1 fo-slptr] -+
L 1 — sign [(— 1;’"—1-fp~1 fo++] dr—,

P 1 G il Y 0 Y

8 RULYL. SOC. SC. NAT. T. XL
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11 faut faire une distinction suivant que r est pair ou
impair.

T pair.

Fe=2n N

vP(x - h)= 11— sugn [Qf”“" fotr]

WP — Iy 5" gp—l foirl L g,y

Pour « lui-méme, les séries se présentent comme suit :

frei 00 0 . . . 00 0 [
rpeilfp—sF 0 0 0 . . . 0 0 0 14 [fpl

Eu égard uniquement aux signes, et d’apres les conven-
tions, elles deviennent :

fp—l fp+r fp+r fp+?‘ & & ® fp—l-?’ fp—l-r fp-l—?" fp-i-r
+ &® o ® ... 0 ® 6 -+
tor by ol o]
et enfin,

Py — By LTS [gpflrm] A —sign [ép_lfpm L.

vP(x — h) — vP(x) =2V
vP(x) — vP(x -+ h)=0

O]:l V’ =] 3 ‘I’ Ty O

T impair.

r=94+1 x>,

UP(.(E—‘}— h) :/l - Sign [pr_l fP"‘“T}

oP(a — h):)l — stgn [2]”},_1 fp+?"]+2;.
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On fera une distinction, suivant que

sign [fp—1fp4r] =1 ou
$ign [fy—sfypyr] =—1.
0 sign[fymsfprr] =1
vPlx+ h)=0
vP(x — h)=2v.

Pour x, les séries sont :

free 00 0 . . . 0 0 foys
roeilfy—FO 0 0 . . . 0 0 rpy[fyyrl?
et d’aprés les conventions, |
[o=t Totr fovr fotr o« o fotr fotr [or
+ B8 & 8 s« @ 8 -
vP(x)=0.
done, vPe — h) —vP(x)=2v | v=1.
vP(x) —vP(x -+ h)=0 |
b sign[fpsfpprl=—1.
vP(x 4 h)=1

vP(e — h)=2v-}-1.

Pour z, les fonctions deviennent, quant aux signes et
d’aprés les conventions:

fo—=1 fotr Totr fotr -« fotr [otr [p4r
+ ® ® © ... & O -+
. vP(x) =1.
donc, vP(x — h) — vP(x) =2 % v,
vP(x) — vP(x -+ h)y=0

En résumé, on voit que, quel que soit r, pair ou impair,
5,[g]=vP(x — k) — vP(x) = 2)
3,[9]=vP(x) —vP(x+ h) =0

A0,
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| § 3.
h=fi=t=....oof=07220
On suppose que, parmi les fonctions
fO’ fh f@? - g f My
on ait, pour une certaine valeur x, (¢ = x < b)
fO:flzfQ:' . :f’i“l:OfT¢0
pe=1,9,.

et, on examine ce que deviennent les fonctions
f0° fln er # o8 my fifilin f?" g
F0, F'l’ FQ, vy Fr_]_, F'p

pour (x k), (x — k) et z, quant aux signes.

On peut se servir des calculs précédents du § 2; il suffit
de faire

p=0cetf,_1=0.

Le tableau des fonctions, pour (x| &), de la page 105,
devient, en se souvenant que

F,>0 lorsque f;,7=0:

folx—+h) b fr >0 Fo(x+ k)
flx+h)y | b= fs >0 Fi(x+ k)
flatty |w=pn| >0 | Feth

frms 1) | BT, >0 Fr—s(4-h)

foosh) | B, > 0 Fy—s(a—-h)
fia+n | f, >0 F.(w -+ h)

Déterminons vP(x -} k), vP(x—h), puis vP(x).

VP ) “g'i,“”%_”ﬁ“Si“”;“‘% A L

WP =0
vP(x—h)=r.

1— Szgn [h]
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Pour x lui-méme, les fonctions deviennent :

00 . .00 f
00 . .00 rfe

D’apreés les conventions, il faut, dans ce cas, faire abstrac-
tion des zéros; donc

vP(x) =0.

Pour la suite, il est intéressant de déterminer pP(x - 1),
pP(x — h) et pP(x). ‘

1+4-sign[h*—]  1-J-sign[h*—2] 1+ sign[h]

pP(x—+-h)= 5 +- 5 o+
PP+ by =r
pP(x — h)=0
pP(x)=0.
En résumé, lorsque, pour x,
h=lh=l=...=_1=0f0 r=1,2,...,n
on a: vP(x — h)—vP(w)=r
vP(x) — vP(x -} h)==0 % |
et pP(x—+ k) — pP(x)=r
pP(a) — pP(x—h)=0 2

r est 'ordre de multiplicité de la racine considérée x de
Péquation f(x)=—=0. ~

§ 4.

Théoréme auxiliaire.
Lorsque
Fpe1720 Fo=F,=...=F,4,—1=0 Fp4,50,
on peut toujours supposer maintenant
foo170 f,520 fog1520 .. fopr1520 [fr10520;

sinon on serait alors ramené aux cas traités aux paragraphes
précédents.
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Dans ce chapitre, par définition,

Fp —=Tp fp2 — P p—1 fp——l’(:p—}—l P :’l, Q, Ce ey (n — ’l), 7.
Démontrons que la dérivée d’ordre r de F,, F,©, a comme
expression |
R N e
[otr r=1,2,...,(n—p)

pour une valeur x, telle que

[r—17Z0 70 [p41520 ... foqr—1520 frpr20
et F,=F,/—=F,— ... —F—9—.

FP:rpfpg—"TPmlﬁh—l ﬁp—l—l p:’l, 27 ¢ 8 '7(n""1)1n
Fp'=[2rp— 1ol fp fot1—rp—1Tp—1fp4e
or, 2rp—rp_1=rpy1 p=1,2,...,(n—1) (dans ce chapitre).
Fp=rpp1fpfotr—ro—1fp—1fp4 p=1,2,...,(n—1)
o1 Ep=1pp1[p[fp4:1]? —Tpﬁlfp—lfp+lfp+2+7"pfp [p+2—Tp[p*[p+2
[t Fp=foi2. Fp+fo . Fyp.

lryp—fp‘l'z p+ fp

F
forr D fpn
Fo=% . Fp1 77— f Fpt1 (/‘l) p:172:7(n“1)
fp+i

en introduisant de nouvelles fonctions, ¢,, définies par la for-
mule,

[p+e
fp+1

= p:’l,Q,.\.,(nw‘l) [fn-|"'1:0]

Il est important de remarquer que les fonctions ¢p, 41,
.+ $p4r—1 Sont finies pour la valeur finie z considérée.

n peut dériver l'expression (1) un certain nombre de
fois.

Supposons qu’aprés (r — 2) dérivations, on arrive a

=9 = A FytB. Fppa o M. Ty s 22
/p+f‘71

p:’1)2: i ')(71_T+1)

r=1,2,...,(n—1), n.

k p+r—1
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et supposons, de plus, que A, B, ..., M soient des fonctions

rationnelles des f,, fp+1, - -+, fp4r—1, [p4+r, dont les dénomi-
nateurs se présentent comme produits des fonctions fp41,
[pt2y - - -5 [p4r—1, toutes différentes de zéro; donc, ces coeffi-
cients ont des valeurs finies pour z. Desmnons par A’ B,

M’ les premiéres dérivées de ces fonctions rationnelles A
B, ..., M; A", B, M’ sont des fonctions rationnelles des

- fp+1, 'y f,,+r+1 “dont les dénominateurs se présentent
comme produits des fonctions

fp—Hv fp+2s v ey f;o—l-f'—lv
toutes différentes de zéro.

Ces fonctions sont donc finies pour z.

On peut former F,0:
F,N=A"F,+A . F4-B". Fp+1+B F’p+1+ M. Fpprat

M. prﬂ ) Fypprs + Flptrs
fp+r—-1 fp—[—r—l
p=1,2,...,(n—r)
r—1,2,...,(n—1)
et, en remplagant ¥',, ¥y, ..., F/p4r—(, par leurs valeurs,

tirées de (1),:
Fp(ﬁi):A’-Fp+A[?p p"]’ N Fp-l-l]‘l—B"Fp—H‘l_
p 1

+B ["”p+1 Fp s ‘I‘prrI ‘27+2]‘|_ oML

fp+2 ,
+“[‘Pp+r—°[ +r-2+fp+r*2Fp+q—1]+< L )-Fp+r—1+
T fer frr
% . l‘?pntrwleJrr—l—l—pr—l Fp*"f]‘
prrv"—l fp r
Bo—| Ao [Ept| 4 BB |t
fp+1 ] [ fp+'f 2 ( Ip )'
B F 9 M
[ fP+3+ i + + : f;p—H" + fp'—l—r—l +
[v
r—1 F r—171 7 FP re
T fp+f--1(?p+ ] rt fo+r i3
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- Designons les coefficients de Fy, Fyyq1, .., Fpp,r1, par Ay,

By, .., M,. Ces coefficients sont des fonctions rationnelles des
fos fp+1,. .y [p4+r41, dont les dénominateurs se présentent
comme produits des fonctions fp44, .., fp4r, toutes différen-

tes de zéro; ces cofficients ont donc des valeurs finies
pour z.

On peut donc écrire :

():AiFﬁ_I—B Fp—}—l'—l_ +.VI P“I"_‘I—I_?_ ptr (2)

ptr

A,, B,, .., M, finis pour z
p==1,2, ,., (B—¥)
Pl By wny (8 =1)
ou ce qui revient au méme |
Cop=1,2, .., (n—1)
r=1,2, .., (n—p).

Or, pour r=1, la formule (1) montre que 1'’expression
précédente (2) est valable; de r=1, on passe, a 'aide des
considérations précédentes a r==2; puis, par induction, de
proche en proche, a r quelconque.

M=r=mn—p); 1=p=(m—1)].
Supposons que I,=F,”=20; alors
F,11=0 dapres (1)

de méme, F=F,’=F," =0 entraine I, ,==0.

Fp=F/=...=F-Y=0entraine ¥,=F, ,=.=F, . 1=0
et ainsi, lorsque pour z,

fp+1¢0 fp7ﬁ0 fp+19ﬁ0 .- fp+r—1¢0/p+?"¢0
Fp=F/=...=F—9=0

F,» devient, d’apres (2),
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Coro
ot

Fp_1¢0 Fp: _p_|_1'—"' e e . — err—l:O Fp+r¢0.

On suppose que

fr—170 520 o410 .. fo4r 3520 f4,520
Fp 1 =20 == . =F, 1=0F4, 0.
| p=1,2,..., (n—1)
r=1,2,..., m—p).

pour une valeur bien déterminée x, (¢ =x <), et on exa-
mine ce que deviennent

fp—ls fps fp+17 e o5 fotr— fP-H
FP—17 FP: FP+17 £y FP+?‘-1: FP-i-?’
quant aux signes, pour (x - h), (x — k) et z.

Il faut remarquer d’abord que

g.

Fo=rplp—1p—1fp—1fp4+1=0, d'ou fp4,, méme signe f,_,
Fprr=rpq1llp1P—1pfp o4 =0, [ot2 v » [

Il y a une distinction & faire, suivant que r est pair ou
impair. '

T oparr. [r41, méme signe que [, _;
fore, > > > f
ﬁ9+3’ n > 5 fp—l
fotr—2, > n > [
frvrmiy > > > fo
fotr, » » » [p.

T IMpaLr. fo+1, méme signe que [,y
fodes s » » > [
fp+3 ) » » » fzﬂ“l
fotr—2, 2 » fp—1
fotras > > > [
fp-}—r " » » » ﬁ,.._l.

9 BULL. 80C. SC. NAT, T. XL
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Quant aux fonctions I, la formule de Taylor donne :

Fy(z+h) = Ford 5 Fh# Fw+ -+ Fm+

h/?‘-—l

P‘{‘l(fn—l—h)—"— P+1+ Fp+1+21F P+1+ + 1)] p+1

, ko,
Fpiral@e+h)=Fppr 1+ 1 Foprat..

On sait que

By = Epgu=— : s=Fpga==0, gntraine
F=F= . =E5Ff-7=0

r—2
Fppi=Fppa=... =F =0

Fp-}-rnz === F’p»{—rw? =0

Fp—[‘r-—_-—l —_ O
On peut appliquer le théoreme auxiliaire du § précédent :
v
I, —= F "
TR p=1,9,...,(n—1)
r=1,2,..,(n—p)
On a alors:
h £ .
(‘I:—I— )”—T"_T fp 4y p—|—r—!—
hr—1 fp+1

5 h? y—
Fptr—s(@—+h)= 51" ﬁ;:; -
yi r

Fpprmalo-b =
ptr

Fppr+..

Fr =

..I_
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Il faut traiter d’une facon tout a fait distincte, les deux
€as :

a) T pair.
b) r tmpair.

r por.

=29 e

On peut établir le tableau suivant pour (z-}- /), en suppri-
mant les facteurs positifs:

fo—s(x—+h) fp—1 | Fp—1 Fp_s(x—h)
Lath | b W Fpr Fo(w+h)
fo1(—+h) fp—1 | W= Ko foafo | Fppa(x—t-h)
fo+e(t—-F) Ir hr =2 ¥p . Fpp o+ h)
fotr—2(@z+h) | f | B.Fpy, Fpyr—o(4-h)
fotr—@-+h) | fo—s h. ¥oir fp—1fp | ¥pir—s(th)
forr(x—h) [ Fpir Fpr(—h)

Déterminons vP(x -+ k), vP(z — k), puis vP(z).

vP(x_’_h):/l_Sng;[fP—ifP]l1_-I—Slgn[hr2FP—1 P‘H’]_{_

A ] A

+ 14 Sig”éh fp—1 fp]J .

vP(x k) zi _ S£g7;[fi9m1 fv] _1 +-sign []-;p—-l N

Pty L5 [ f] [1+sign[Fp_1- ] +]

._[_

2 2

D’aprés les conventions au sujet des zéros, il faut distin-
guer deux cas, pour la détermination de vP(z):
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100 p=1; r==1,2,..,(n—2).
p=2,3,.., (n—1); r=1,2,.., (n—p).
%) p=1;r=n—1.

10y p=1; r=1,2,.., (n—2).
p=2,3,.., (n—1); r=12,.., (n—p).

Pour z, les fonctions se présentent comme suit, abstrac-
tion faite de facteurs positifs :

fP—“17 fP’ fP“'17 fP? LELE fp'—ir fP
F,_y, O, 0, O0,.., 0, TF,p,

et, d’apres les conventions :

fp——l’ fpa fp—h fpv iy fp—la fP

Fp1, Fptrs —Fpgry Fptry -y —Fpipr, 1y
d,Oil vp(m):/‘l——sv’.gn[fp—lfp] 1+Sig7?;[Fp_1 p<|—'7"]

2 ' 2
et enfin, | sion
wP(2 — k) — vP(2) = _“gz[fp“l fl
vP(x — h) — vP(x)=2v’ od , {0 /<0
vP(z) — vP(z + h) =0 v =
) p=1; r=n—1.
vP(x—|»h):'1"8zg; Lo /2] (Fo>0 Fn>0)
vp(w_h)_i—sz’ggn[f(}fi] ( +1)

Pour z, les fonctions se présentent comme suit, abstrac-
tion faite de facteurs positifs:

fO: fh fO’ Tt fir an f{
F,, 0, 0, ..., 0, 0, Fy.
et d’aprés les conventions,
va f-fv f()a oy fia f()a fi
+ & ® .- DD+
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vP(z) — 1— Sig; Lo /1] (1)
done, vP(x—h)—vP(x)=0 ) (¢ o
UP(.’E)—-—’UP(QC—{-[@):QV”S L “‘av éo

r impair. ,
r—=2v-+|+1 v 0.

On a le tableau suivant pour (z-} k), en supprimant les
facteurs positifs.

fr—1(@—+h) fo1 | Fpy F,_(z | h)
fo(z - h) fo b Fpprfp—1ly Fp(z—+ )
fp+1(z - h) fo—1 | W1y, Fpyi(z—-1)

fostoth) | f | Ty | Faysath)

fp+?”——2(x+h) fp-——l h? Fp—}—r Fp_|_r_g(£€—|—h)

forras@+m) | £ | b Fopefosfy | Forroaloth)
foret0) | foes Fpir Fy-i(@+ )

Calculons vP(z - h), vP(z — k), puis vP(z).
— sign | [p—1 5] [1 +-stgn [ fp—1 [p Fp—1¥p 1]

vP(x -+ h)= ! +

2 2

s i) | A i fpmlpr].

WP h)— "“9?"2%—1 ol 1—sign [;*p_l Fpr]

Pl — hy— ] — sign[fo—1fy] [1+sz‘gn [Fp—1 Fpir] +7~]_

2 2

Pour la détermination de vP(z), il y a, de nouveau, deux
cas a considérer:

19) p=1,; r=1,2,.., (mn—2)
p=2,3,.., (n—1); r—="1,2,.., (n—p).
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Les fonctions deviennent, quant aux signes,

fp—la fpa ﬁo—la Y fp: fp—lv
Fpty —Fppr, Fogr, ooy —Fpiry, Fpgr
’UP(a?):/l_—Sign [fp—ifp] 1 —Sﬁg'n [Fp_l Fp‘{"r]

d’ou 5 .
-donc ‘ .
wP(@ — K — vP()— 0 ?;[fp._1 f»] [’1 + sign [;pml By}
i 1 sn [gp-l FM]
vPl@ —h) —P@)=2v) = (0
vi=—4dv v/ ().
vP(z) — vP(@ 4 h) =0 ou ?7+1 ~0

2) p=1;r=n—1.
vP(x+h)=0

WPl — By '_Si“f)" Folil g g,

Les fonctions deviennent, quant aux signes :

f(): f{a va e fia fO
+ @& B ..., B +
1 —sign|f,f]

’Up(ﬁ) === ) (T + 1 ) .
donc, vP(x —h) —vP(x)=0 ) : \-,,A_,‘O 77~ 0
WP) — P hy=257y O (e

En résumé, lorsque
f:p.__17f:0 fpio /p-l—l"?‘to s fp+?'—1;i0 prrriO)
Fp—170 F'p = Fpp1= .. =Fp,1=0 Fp-i-riosg.
p=1,2, .., (n—1)
r=1,2, .., (n—p).
pour une valeur déterminée «x, on a
S[g]=vP(x — h) —vP(x) =2V >0
blg] = vP(@)— P4 hy =27y V0.
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CHAPITRE 111

_7"0
o —

H

Le cas ou les constantes r, sont données par

Py =y ap p=12,..,(n—1)

ou — 7y

o= —

n

se présente trés souvent dans les applications des théorémes

de Sylvester. 11 mérite une attention toute particuliere, par le

fait qu'une ou plusieurs fonctions ' peuvent alors étre iden-
tiquement nulles.

La constante r,,

]

="y an,
introduite uniquement pour le chapitre précédent, serait ici
| rp,=20.
Le plan de ce chapitre est le méme que celui du cha-

pitre II; on se servira, dans une large mesure, des calculs
effectués dans les pages précédentes.

§1.
[r—170 fp=/[pr1=... -:fp+f*1:0 fpt+»7=0.

Le cas ou, pour une valeur déterminée «, (@ =z <),
fr—170 fp=0 fp417=0 |
p=—1,2,..,(n—1)
se traiterait absolument de la méme maniére qu’au § 1 du
chapitre précédent; il est inutile d’y revenir.
A la page 103, on a établi le tableau des fonctions
fp—iv fpa fp—l—i? <ty fP-—i—"—iv fP-%*T‘ : |
Fp—s, ¥, Fogr, ooy Fpgrs, Fpyps
p=1,2,..,(n—2)
=833k & s (B —=p)
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pour (z—- k), évidemment aussi valable dans le cas considére
dans ce chapitre. Il en est de méme de la remarque a) qui
suit; reprenons la remarque &).

b] Les fonctions

Fops(@+h), Fpra(@—-h), ...y Fppros(@—+h)
peuvent s’écrire:

r—1

Fppi(e+h)y=ry [((T%——-i)!)g[f}aw]g =+ ] —

per—2i )
—TP+ZM1|:(T_Z+1)!(T_1_W1)![fp'f‘"] _l_ ]
p=1,2,.., (n—2)
r=2,3,..,(n—p)
e=1,2,..,(r—1) (0!=1)

; R Tp4i Tpri1
Pp+l(m+h):(T~a)! (7"_'@."'—/1) ] [fp“i"?’]g[r_ T _{— .

. r—i-H1
Fri@t-h)= r—a) ! (r—i—1)! [For]? (r—1) (r—i+1)
Arppir— i) —rppia(r — 1]+
mais = b))
pbima =7y a(p-i—1)
car (p 4+ Dmge=—n—1
et (p=+1i —Dpin=—1.
-~ fiotr=) , 1
fp+i(x+h>:(i'~i)! ity UetrT (r— 1) (r—i4-1)
[y F o)+
Or S3=p-+r=mn;
il faut distinguer deux cas:
L S=p+r=n—1

IT. p—+r=n.
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L. 3=p-+r=n—1.
ro+a(p+1r)=rp4»>0.
et, dans ce cas, pour h suffisamment petit,
Fp_|_i(.56—‘—hr)>0 p= ’1,2, — (11—3)
r=2,3,..,(n—p—1)
1=1,2,..; r — L)
quel que soit le signe de h, et on terminerait de la méme
facon qu’'au chapitre précédent.
II. p+r=n
F, +{x - h) devient
F ’ h‘l(?’—i) 5 /1
p+i% ?')_(r——i) i —1)] [ i T [r, +an].

1l faut remarquer que, dans ce cas, ¥,z h) ne pos-
séde qu'un terme, en f;? (fip1=/fag:=..=0).

Or, ro+oan=>~0

donc Forde+h)=0 p=1,2,..,(n—2)
Pe=mn-—p
e=1,2,...,m—p-—1).

ce qui eut été, du reste, facile de prévoir d’apres les consi-
dérations du § 1 du chapltre premier.

Dans ce cas, le tableau de la page 105 se présente comme
suit :

[p—1(x |- k) fp—1 >0 Kz h)
fethy i fo | —w=tfosfi | Fatn)

fopslo—y | =1, =0 [ Bstetn
frta-HB) |12 =0 [Frsteth
foa(@ —I—h) oy =] n_no(ﬁ—‘l—h)
fsoth) [ B f, = Fu_1(z4-h)
fue - h) A >0 Fo( - h).

Il faudra faire usage des conventions au sujet des zéros,
et distinguer les cas suivant que r est pair ou impair.
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ropair.

Le tableau ci-dessus devient, en supprimant les facteurs
positifs :

fr—1(x 4 h) [p—1 >0 Fp_(z—+h)
fatny | f | =nhf | Fa@dn

forset b | B O | Bt
fovsot0) | 1 ® | st
fostot ) | 1 ® | Pt
facilz+R) | hfs S Frn_1(x—h)
fulx— h) e >0 Fu(x+ k)

Déterminons vP(z - h), vP(x — ), puis vP(x).
A —sign{fy—1£] 1—sign[hfo—if

vP(x -+ h)y= 3 3 -+
+’1—sign[h] 1 fsign[hfo—1]fn]
2 ' 2
1 —sign [fr—1fa
oP (- h)— %97; [fo—1Fn]
WP — h):’l ——szgv;[fp__l fn].
Pour z lui-méme, les séries sont
frei O 0 .. 0 0 f
F,_v 0 0 .. O OF,

et, d’aprés les conventions,

foi B B »x B B b
+ @O .- ®O +
vP() = 1— sig?; [/o—1 1]

donc vP(2 —h)— vP(x)=0
vP(x) — vP(x+h)=0)"
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r Ampair. |

Le tableau des fonctions devient :

o FR) | foes >0 Fy_i(x4-h)
[o(x—1) hf — [p—1fn | Fp(z—-h)
fora@x--h) | 1 ©, Fpto(x+h)
forex—+h) | ki S Fpie (W‘I‘h)
fo—s(x—-0) | fa. ® Ko ?(a:—|—h)
fos@ 4R | hf O | Fuwth
fn(x‘l,‘h) fn >0 Fn(.%' "I"h)

Déterminons vP(z -} k), vP(x — h), puis vP(x).

\—sign [h frs fu] 1 — sign [fp—1f]

vP(w - h) — : 5 +
1—signh] 1 —sign|f,—1/s]
+ 9 ) 9 .
VP h)— szgn [fp_.i fn]
(o — ) — — sign [fp 1 n]

9

i

1l faut faire une dlstlnctlon suivant que

@ signlfy—sfil =1
b  sign{fo—1fa]=—1.

0)  sign[fp—s fl=--1.
vPlx—+h)=0

vP(x — h)=0

Pour z lui-méme, les séries sont:
fp—1 0 0 0 .. 0 0 f
Fpy O 0 0 .. 0 O0F,
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et, d’aprés les conventions,

fP-*i /;l f" fn R fn fn fn-
T OO0 .- ® 0 +
vP(z) =0.
done, vP(x — h) —vP(x) =0
wP(x) — vPr 4+ hy=0 4"
bl signlfp—1fa]=—1.
vPx -4 h) =1
vP(x — h)=1.

Pour z lui-méme, et avec les conventions au sujet des
zéros, les séries se présentent comme suit:

fo—y f fo fo ~o fo [ [n
T @0 .. ® 0o+

vP{e) ==1.
donc vP(x —h)— vP(2)=0 |
vP(x) — vP(r 4+ h) =04’
On reconnait donc, en résumé, que lorsque a= ﬂ, et

n
que, pour une certaine valeur z, (u =<z =<1¥b), on a
fp—l 70 /}v ::f}9+1 == ﬁ9+r—1:0 fp+"¢0
p=—1,2, .., m—1)

r=1,2, .., (m—p).
on a aussi
vPir— h) —oP(x)=24) 3=0.

vP(x) — vP(x -+ h) =0

y 2.

fi=h=l=....=f—1=0f30.

On peut se baser sur les calculs du paragraphe précédent;
il suffit de faire ‘
p=0 et f_1=0.



On reconnait facilement que, lorsque
1=r=n—1,

on a les mémes considérations qu’au § 3 du chapitre II; tan-
dis que, lorsque
e—F3

Fi=F=..=F._.=0.

Or, d’aprés les conventions au sujet des zéros, il faut con-
sidérer ces zéros-1a, comme quantités positives ), lorsque

fo 20 20 . | 220 520,
ce qui aura précisément lieu pour (z -+ h).

Ainsi, dans le cas ott r=mn, on est aussi ramené aux cal-
culs et aux résultats du § 3 du chapitre II.

§ 3.
Théoréme auxiliaire.
Examinons ce que devient le théoréme auxiliaire démon-
tré au § 4 du chapitre précédent.
On a, par définition,
Fp=rpf? —1p—1fp—1fpts p=1,2,..,(n—1).

On démontrerait de la méme facon qu’au paragraphe cité
que .

fp n
F, 0 — Y
D fp+r -+ ( p
1

pour une valeur z, telle que

frma 70 f,720 oo fopris 20 fryr =0
Fp=Fp=..=F,r—9—=0,

Il reste a étudier spécialement le cas ou
Sp:1,2, ey (n—1)
(r=n —p.
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Montrons, tout d’abord, que F,_, est une constante, c’est-
a-dire que F’,,_l—O

rn—l*ﬂ*')n-—l [ffz——l]g_rn—z fn—2 fn

F’n——lz n—lfn [9 /'"n—l_frn—Z]
or, Thn—g="y4a(h—2) et rp_1=r;+an—1)
. —7
d’ou 2 Pyt — oo =7y an==0, car g=—-".

T
Donc F',_{ =0, et F,_; est une constante.

En s’appuyant sur les considérations du § 4 du chapitre
précédent, on peut écrire I’expression suivante, valable aussi
pour ce cas,

' Fp(?l—P—l):A.E‘p+B‘FP+1 —'}'—M Fn 2+ fp *
-
p=1,2, .., (n—1).

A, B, .., M étant des fonctions finies pour la valeur x consi-
déreée.

Dérivons :
Fo—n=A F,}A.F —|— M. F— 2+(ffp ) F._1.
n—1

ou, en remplacant ces dérivées, par l’expression (1) de la
page 110, valable aussi dans ce cas, pour p=1,2, .., (n —2),

Fo—P=A.F,+B.Fp1+..+M.F,_o+N.F._,. (2)
p=1,2,.., (n—1).

A, B, .., M, N étant des fonctions finies pour la valeur z con-
sidérée (voir § 4 du Chap. II).

Si, pour z, on a

Fy=F,=..=F*?r-1=0 p=12,..,(n—2)
ce qui entraine, d’aprés (1), pour z,
Fp:Fp+1:. :‘:Fn_1=0

d’ou, d’aprés (2), F,*—P =0, pour .
On a donc le théoréme suivant:
Lorsque ¥p=1,fp* —1p—1fo—1fpt1 p=1,2,..,(n—1)

—7 .
ou r,=r,tap et a:TO; et si, pour une valeur z, on a
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fp—l?ﬁo fp¢0 e fu—liio fnio

I“p:: Fp’i o g == Fp(n—‘p—l) )
on a aussi, pour cette méme valeur z,
F o= tle=i) p=1,2,..,(n—1).
On verrait de méme, que, toujours pour x défini ci-dessus,
Fyla—mrd) =) p=1,2,..,(n—1)
Fyn—2+2 =
S 4.
Fp.._]_?éo Fp:Fp+1:....: p+r_1:O Fp_*_r;éo-

On suppose que, pour x, (a =<z =b),

fP—'lio fp?éo fp+1?é0..f:p_§.r_1¢0 fp—FT#O
:Fp-——1¢0 FI: g T o PR P+"_1:O Fp—{—r;ﬁo-
p=1,2,..,(n—1)

r=1,2,..,(n—p).
Le cas ou
p=1,2,..,(n —2)

r=1,2, .., (n—p—1)
ne présente aucun intérét spécial; les calculs seraient en

tout point semblables & ceux exposés au § 5 du chapitre II, la
formule

, f;
Iﬂp(r): s Fp,_i_r
fo+r
pour une valeur #, telle que
Fp:F, = . :Fp('r_l)::()?

conservant toute sa rigueur.

Dés lors, on s’occupe uniquement du cas ou °
p=1,2,..,(n—1)
gt o r=—mn—p.




NN £ J—
c’est-a-dire, ou, pour x
fr—1720 f,=0 41720 .. fa120 fn;é())(
Fom1 720 Fy = Fppy=..=F,y=0F,>0)"

p:/Ja 27 é -7(77’_ fl) :
La formule de Taylor donne:

: , hr—p—1 o
Bfo =Ty kPt ok ey e
il F.(a—p) hr—p F,(n—p+1)
=t =P .o
Ta—p T T T
On a tout d’abord
fo
F.— F,., |
N p=1,2,..,(0 —2)

74:’17 27 * 0y (7l_p_1)
et, d’aprés cette formule, on constate que

Eo=—=Fpgam=t s o= B,y e=il) entraine
Epe= Wy =, ;== ff—p— T

et alors, on sait que dans ce cas,
F0—P=F,0—r+) =F -2+ = =0.
Donc, Fyz+ h)=0,

On verrait de méme que

For1=Fpe=. . =F,_1=0
ce qui confirme, ce qui a été dit au § 1 du chapitre premier.
Les fonctions se présentent dés lors comme suit:
[r=iy Jos dotdy <+ fokls In |

Fp_1, =0, =0, ..., =0, ot
et ainsi

vP(x + h) = vP(x — h)=vP(z)

8 [9] =vP(x — h) —vP(z)=0 |
% [g]=vP(x) —vP(z - k)=0 "

ou
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CHAPITRE 1V
Conclusion.

Revenons a la formule, développée dans tous ses détails,
au § 3 du chapitre premier:

kE 1..m 1..m!”

vﬂm—w@w»—lg‘ﬂ%@}+;§‘298wﬂr%jgatmw

inr

En se basant sur cette formule, et d’aprés les chapitres
IT et III, on: peut écrire:

WP(a)— oP(B) = [2 2423, + 22+ .14 [y 7, 4. F-ri]
+ 2%+ 234" 423+ ] ).

Avant de donner quelques éclaircissements sur cette der-

niére expression, remarquons que, dans les chapitres II et III,

on s’est occupé principalement de la fonction vP(x). En se

servant des tableaux établis dans les pages précédentes, il est
aisé de calculer dans chaque cas

PP 1) — pP()
et pP(x) — pP(x — I) )

et 'on arriverait a I’expression finale suivante, analogue a
Vexpression (1):

pP(b) — pP(a)= [230 -} ‘23‘1 = 23‘9 4 s o] o oy =t=s == il

I YW, W, R (2)
1. Ays Py Ko )
)\07 l I s

proviennent du fait que dans I'intervalle ¢ =x <b peuvent
se trouver des racines multiples des fonctions f intermédiaires

fh fﬂa . afﬂ—

On peut remarquer que

>0 et >0 E=0,1,2,.
.EEO,I,‘.’.,

10 ¢ BULL. S0C. SC. NAT. T. XL
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II. .[rg-}-r,+...] est le nombre de racines de I'équation
flx)=0, qui se trouvent dans a...bd.

Posons
rot+ri+..+r=N
. =N

Les formules
vP(x — h) —vP(x)=r )

vP(x) — vP(c - ) =01

pP(x - h)— pP(a) —=r
PP(@) — pP(@ — 1) =0

du § 3 du chapitre II, permettent de conclure que :

1. les racines éventuelles de 1’équation f(x)=0, pour
x==qa, ne sont pas comprises dans N, tandis que celles cor-
respondant a x=1~0 sont comprises.

2. les racines éventuelles de I’équation f(x)=0, pour

i £q )
x=a, sont comprises dans N’, tandis que celles correspon-
dant & x="> ne sont pas comprises.

Il est inutile de rappeler que les racines sont comptées
autant de fois qu’il y a d’unités dans leur ordre de multi-
plicité.

III- }O” )\,I’, )\9’, e s n )
4

proviennent du fait que dans l'intervalle ¢« <& = b peuvent
se trouver des racines des fonctions I, Fy, ..., F,_;.

On a vu que
M>0 et =0 k=o,1,2,..
k=0,1,2,..

Les formules (1) et (2) peuvent aussi s’écrire

0P(@) — vP(B)—N4-2 [0y, Ay b )y 340 . )]
PP(b)'“PP(“):N"f_QI:(iol‘l—i-l Fha )F G N R )]
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Posons :

[ 2424 )40 2 2 . )] = b0

[(10_'_1&4}_1247")_’_()‘0"4’“11’_'_7\2’—{—,...)]:}&’ >0
vP(a) — vP(b)= N 4 2p.

pP(b) — pP(a) = N'+- 24/ ou bien
N = vP(a) — vP(b) — 2p p>0
N'= pP(b) — pP(a) — 2/ W0

et ainsi se trouvent démontrés les deux théorémes de Sylvester,
dans toute leur généralité.




DEUXIEME PARTIE

La Regle de Newton.

La combinaison simultanée du premier et du deuxiéme
théoreme de Sylvester, dans le cas particulier ou l'on fait,
dans le premier théoréme,

a—0 et b— -} oo,
et dans le deuxiéme
a=—oc et b=0,

conduit a la Régle de Newton.

Désignons respectivement par
N.|_ et N_

le nombre de racines positives et le nombre de racines néga-
tives de I’équation algébrique a coefficients réels f(x)—0. On a:

N4 =vP(0) — vP(cc) —2p. |
N_ = pP(0)— pP(— o) — 21
Voyons comment on peut déterminer facilement vP(0) et
pP(0).
- Soit
flxy=ayx"+a, " Ha,r =2+ . . Ffap_e 224ty x4+ a,=0
I'équation considérée; supposons
a, 720 et a, 0.
fO(xy=[nn—1)..n—p+D]agar—r+.... +pla.—,.
p=1,2,...,n.
Pour =0, la série des f devient:

fOr fda fg: fg, * ey fp, . oy fn.

Wy dlOnay Dl vy Il Buss ey FlOa—ps =sy Wl
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On sait que les fonctions F sont définies comme suit :

Fo=F
Fp=1p1p" — 1o—1fp—1lp+1, p=1,2,..,(n—1)
ou rpy=1ry,—-tap.
Choisissons ry=mn et a____“‘n’"o:_l ; donc
rp=mn —p, p=0,1,...,(n—1).

Pour £=0, la série des F prend alors les valeurs sui-
vantes :
Fo=ft=a’

Fp=(—p)[p! tnp] —(n—p+D) [(p—D ! ta—pt1] [(pA- D trp—1]=

| pe—p) o . o
ﬂ[(p—}—i)(n—p-}-i)[ n—p] n-p+1-an—p—1](a pHD).(p—D(p-+1)!

Fo=f2=[n!] a,’.

On peut maintenant écrire la double série qui fournira
vP(0) et pP(0); on a, en supprimant les constantes positives:

an , Uy —1 ’ Uy —2 0 a4y » Qg -
n—1 2An—2) ! n—1

o2 Wi B0y 0" e [ 12— @ 1 @ nyis y—— Oy Py, G ®
"9 Ln—a P~ ’3(1%4)[ ] o ! e

Quant a vP(-}-o0), il est nul; car pour x=o0, la série
fos [1>- -, [» ne présente évidemment aucune variation.

pP(— oo) est aussi nul; pour x=— oo, la série [y, f}, .., [x
ne présentant pas de permanences.

Dés lors, on a les formules,

N, —=vP(0)— 24 (1)
N_—pP(0)—2 @)

ou vP(0) et pP(0) correspondent a la double série, établie ci-
dessus.

De ces deux expressions, on peut déduire une limite infé-
rieure du nombre I de racines imaginaires de flx)==0.
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En effet,
n=N; 4 N_-+}1. _
[=n-—-Ny —N_=n—vP(0) —pP0)+4 2u -} 2.
mais 1 — vP(0) — pP(0) = V(0) y

V(0) désignant le nombre de variations que présente la série
inferieure, celle des F.

On a donc:
I=V(0)4 2. 3 NI
Les formules (1), (2) et (3) expriment la Régle de Newton.

Voici comment Newton énoncait la premiére partie de sa
régle :

« Prenez une suite de fractions dont les dénominateurs
forment la progression arithmétique 1, 2, 3, 4, 5, etc., en
sutvant ainsi jusqu’au nombre qui sera I'indicateur des dimen-
sions de votre équation; et pour les numérateurs de vos
fractions, prenez la suite des termes qui forme les dénomina-
teurs, mais dans un ordre renversé. Divisez chacune de ces
fractions par celle qui la précéde et placez les fractions qui
résulteront de ces divisions au-dessus des termes moyens de
I’équation. Ensuite, élevez chaque terme moyen au carré et
multipliez ce carré par la fraction qui est au-dessus du terme
correspondant, et puis examinez si ce produit est plus grand
ou plus petit que le rectangle des deux termes adjacents a
droite et & gauche, au terme que vous examinez; si plus
grand, placez au-dessous de ce terme le signe }; si plus
petit, placez au-dessous le signe —. Ecrivez sous le premier
et le dernier termes le signe . Et il y aura dans 'équation
autant de racines imaginaires que de variations dans les signes
souscrits de - en —, et de — en —}-.»

(Arithmetica universalis. — Trad. de Beaudeux. 1802).
Newton donne I'exemple de 'équalion
2 —4at+4a?—202—52— 4—=0,
qu’il écrit comme suit :

5 % % % |
25— 4ot 4-4ad—222 —52—4=0
+ + - 4+ 4 F

et Newton conclut:
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La série inférieure présente deux variations, par consé-
quent, I'équation posséde deux racines 1mag1nalr‘es En outre,
vP(0)=1 et pP(0)=2, donc le résultat est:

Nyp==1,N_=2 et [=2,
Newton ajoute a la fin de 'exposé de sa régle:

« C’est ainsi qu'on détermine la nature de toutes les raci-
nes, lorsque le nombre des imaginaires n’est pas plus grand
que celui qu'on peut découvrir par la regle établie ci-dessus;
mais il peut arriver, quoique bien rarement que le nombre
des racines imaginaires surpasse celui que la régle a fait
connaitre. »

(Cest, du reste, ce qu’il est facile de vérifier d’apres les
formules qui viennent d’étre rigoureusement développées.

Quant au procédé de Newton, pour la détermination des
fractions par lesquelles doivent étre multipliés les carrés des
coefficients des termes moyens de I’'équation, on a:

n n—1 n—2 n—p+1 n—p -

17 2 ? 8 b | p ,p—]-—’l’”7n-—1’n.
et, en divisant chaque fraction, a partir de la deuxiéme, par
la précédente, on obtiendra la suite suivante :

n—1 2n—2) p(n—p) n—1
20 ' 3(n—1)" " (p+1H)(n—p4+1)’ T 2n

comme par le procédé de Sylvester, et les méthodes revien-
nent au meéme.

La convention que fait Newton, dans U'Arithmetica uni-
versalis, au sujet des zéros, est absolument d’accord avec
les conventions en vigueur dans ce travail-ci, et la Régle de
Newton est ainsi démontrée dans ses moindres détails, et
dans toute sa généralité.

Rappelons ici trés briévement ces conventions, appliquées
a la Regle de Newton.
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Soit I'équation
" a xn "t Yagen—2 4. . a1+ a,—=0
et A,, A, A,, Ap_1, As
les valeurs de la seconde série.

Supposons a, =0 et 4,20, donc A; >0 et A, > 0.
A) Sioap—120 Ap=—=0py1=... .:(1154_;__1E0 ak+;¢0.

k=1,2,....,(nh—1)
[=1,2,....,(n—k)

on donnera aux zZeros di, .. .., Gytpi—1, le méme signe que celut
de ap—.

B) Si Ai_1¢0 Ai:Ai—i-l:- ¢ % .:Ai_l_.,-_lz() AH.J-#O.
1=1,2,....,(n—1)
7=1,2,...., (rn —2).

En général, on donnera au zéro A; le signe contraire de

celui de A;_,, et ainsi de suite, en allant de gauche a droite,
et en variant toujours de signe.

Premier cas d’exceplion.

Supposons qu’on ait simultanément

ar—1720 Ap=—=0Cpp1=—.. -.ztl/c+z—1:0 ak+z¢0
Ap_ 1520 Ap=Mpyry=—... . =8ppp =0 Ayt ;=0
k=1,2,....,(n—2)
[=2,3,....,(n —k).
Pour les ay, .

Pour les Az, . ..., Axy;—1, on a la convention B, sauf dans
le cas o @z .a;4, < 0. Dans ce cas, il faut que le zéro re-

.., @r11—1, on a la convention A ci-dessus.

présentant Ay, ait le méme signe que Aj ;.

Deuziéme cas d’exception.
S1 I'équation est de la forme ay(z — z,»=0, alors

Ay=Ay=....= A, =0=0.
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(Les séries obtenues par les deux procédés, de Sylvester
et de Newton, seront retournées. Si par une méthode, on

obtient
fos 1y fos - os In
Fo, Fy, Fo, .., Fa

par 'autre méthode, on aura

fn’ fn—-la": fis fo:
Fﬂa F’ﬁ—la ey Fi: FO)

Remarques.

I. L’application du premier ou du deuxiéme théoréme de
Sylvester a l'intervalle

permet de formuler la régle connue suivante, qui peut du
reste étre démontrée directement :

Soit
fey=ay2" -+ o, f a2~ ..+ apn_1 2+ a,=0,
une équation algébrique a coefficients réels du n®»e degré.

Formons la différence

2n
n—1
Si cette différence est négative, on pourra certifier que

Péquation f(z)==0 posséde au moins un couple de racines
imaginaires.

ay Ay .

II. Le lemme de Gauss, dans la théorie des équations
algébriques, est une conséquence immédiate de la Regle de
Newton et des conventions au sujet des zéros.




TROISIEME PARTIE

Compléments aux théorémes de Sylvester.

Sylvester, en poursuivant ses recherches, dans la théorie
des équations algébriques, fut conduit aux résultats exposés
briévement dans les deux paragraphes qui suivent.

§ 1.
Retour aux deux premiers théorémes de Sylvester.

L’expression variation-permanence avait pour Sylvester,
quelque chose de «génant» (c’est son propre terme); aussi
chercha-t-il a substituer, dans ses théorémes, aux variations-
permanences, des variations-variations.

Considérons les deux séries:

f{)a fia fQ: "-r fﬂ
Go, G'l’ G’Q, sy G'n-

ou les fonctions f sont les mémes que précédemment; les
nouvelles fonctions

Gys Gy Goy o Gy
étant définies comme suit:
Go — fo Fo :f03
Gp=1 o Fo=1p [0 —1p—1fo—1[p fpt1, p=1,2,..,(n—1)
G’n:fn Fn:an
1, p=0,1,.., (n —1), étant les constantes considérées jus-
qu’icl.
On a, en outre, par définition,
sign[G;] = sign[f;] . sign[F;], 1=0,1,. ,n.
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ce qui est trés important pour cette étude, tout spécialement
dans le cas ou, soit f;, soit F;, soit encore tous les deux,
sont nuls.

Par rapport a ces nouvelles séries, on pourra formuler les
deux théorémes suivants, qui ne sont qu’une nouvelle expres-
sion des théorémes de Sylvester.

Premier théoréme.

Soit N, le nombre de racines de I'équation algébrique a
coefficients réels f(x)=0, qui appartiennent a U'intervalle

a>xr=>.

Chaque racine élant comptée autant de fois qu il v oa
d’unités dans son ordre de multiplicité.

Soit v@(x), le nombre de variations-variations que pré-
sentent les deux séries:

va fiﬂ * 7 g fn
Gpy Gy 20y O

telles qu'elles viennent d’étre définies, pour une valeur bien
déterminée o.

On aura alors

N=vg(0)—vg(})—2p

» éfant un nombre entier, non-négatif.

Deuxreme théoreme.

Soit N’, le nombre de racines de I'équation f(z)=0, qui
appartiennent a l'intervalle

a=x<D.

Chaque racine étant comptée autant de fois qu’il y a
d’unités dans son ordre de multiplicité.

Soit p=(z) le nombre de permanences-permanences que
présentent les deux séries

fO: fir R fn
Gy, Gy, .., Gn

pour une certaine valeur z. '
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On aura, ¢’ étant un nombre entier, non-négatif,
N =p=(b) — pr(a) — 2.

Pour vérifier I'exactitude de ces théorémes, il suffit de
remarquer que, si le couple de successions correspondantes

fp y fp-l—l )
Fp, Fpis 5
est une double-permanence,
g fn ) fp-l—i %
, lo¥os [pt1 Fpga
en sera aussl une.
Mais, si
g fos [ot1 %
( F,, FP—H
est une variation-permanence,
Ir> fr41 )

prps fp+1Fp+15
deviendra une double-variation.

§ 2.
Le troisiéme théoréme de Sylvester.

Pour déterminer le nombre N de racines d’'une équation
algébrique a coefficients réels, situées dans un intervalle réel,
@ ...b, on peut appliquer trois théorémes, indépendants I'un
de l'autre, (abstraction faite du théoréme de Sturm, etc.), &
savoir :

10} le théoréme de Budan-Fourier. |
Rappelons que ce théoréme s’exprime par la formule
N=wv(0) — v(b) — 2

p étant un nombre entier, non-négaltif, et v(x), le nombre de
variations de la série, considérée jusqu’ici,

va fi? £ s f"



— 141 —

pour une valeur déterminée z, en ayant soin de supprimer
les termes nuls.

2°0) le premier théoréme de Sylvester.
30) le deuxiéme théoréme de Sylvester.

La série G,, G,, .., G, donne lieu & un troisiéme théo-
reme de Sylvester.

Soit v(z), la fonction définie ci-dessus, a propos du théo-
reme de Budan-Fouriér, et soit ¢(x), le nombre de varia-
tions de la série Gy, Gy, .., G, pour une valeur bien déter-
minée z.

Le troisiéme théoréme de Sylvester est donné alors par

la formule
N_Y®+ ¢@—uvb)— ¢0)
9

—

A, nombre entier, non-négatif, pair ou impair.

Sylvester attachait a ses trois théorémes une égale impor-
tance. Il en serait évidemment ainsi, si les limites obtenues
pour le nombre de racines, étaient toutes trois, indépen-
dantes l'une de l'autre. Sylvester l'affirme; mais on peut
montrer que le troisiéme théoréme de Sylvester n’est qu’un
corollaire des deux premiers théorémes.

En effet, considérons les deux séries:

for, fiy -5 In
Gy, Gy, -, G

On a déja défini les fonctions v(z), & (), v@(z) et pr(x),;
on définirait, d’'une maniére analogue, v=(x) et p @ ().

Pour x=ua, ¢ n’étant pas racine de f{x)=0, on a évidem-
ment les deux relations:

v (@) 4 p (@)~ § (@) pr(@)=n
ve(a)+p g(a)+2. v (a) =ua)+ ¢ ().
d’ou par soustraction membre & membre,
pr(a) —v @ (a)=n—v(a)— g(a) ou

v(a) ¢ (@) —v ¢ (a) + pr(a) =n = constante pour tout point
@ qui n’est pas racine de (a:)—-0 x=1"0, par exemple, donc
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W)+ #@) — v $ (@) Fpr(@)= () + () — v$b)+ pr(d).
d’ o
v(w)+ ¢ (a)—v(b)— g (b)=v g (a)—v ¢ (b)-}-p=(b)—p=(a) (1)
)+ g@—ub)—¢g0)_véw—vg®)  prb)—p=@)
2 2 T 2

ce qui permet de constater la relation existant entre les trois
théorémes de Sylvester, et de démontrer le troisiéme.

Le troisieme théoréeme ne peut pas préciser les résultats
fournis par les deux premiers théoremes.
En effet, supposons qu’on ait simultanément,

U@+ ¢ (1) — (b)) — 4 (b)

> <vg@—vg0)

S L U RS UL JOD

d’ou

9. WTPOO—FO Ly 4@ —u O +p=O)—pr(@

ce qui est en contradiction avec la relation (1) établie ci-
dessus.

Il y aurait lieu de distinguer spécialement le cas ou «, b
sont racines de I’équation f(x)=20.

On déterminerait immeédiatement d’aprés les séries

fO ) /i ? t f”
GO ’ Gi » . Gn
pour x=uwu, et x=~=, la multiplicité de ces racines. Soit
A, la multiplicité de a; B, celle de b.
On reconnaitrait alors facilement que la supposition

'U(a)+ ¢ (a)_g— U(b)_ 525 (b) < ¢ (a) — ¢ (b) —B

(2 ) —v(b)— @ (b
OO gy e a

conduirait a une contradiction.

Donc, encore dans ce cas, le troisiéme théoréme de Syl-
vester ne contribue en aucune maniére a préciser les résul-
tats obtenus par l'application des deux premiers théorémes.




APPENDICE

Exemples.

Exemple 1.

Considérons I'équation _ -
4o’ — 5ot —20a2 450 2 — 40 x — 101 =0.

Combien contient-elle de racines dans l'intervalle a=0,
b=:19 |

On a:
fo=4x*—5at— 20 2%} 50 22 — 40 — 101
fi==20 2% —20 2% — 60 a2+ 100 x — 40
[a=802% — 60 22 —120 x4 100
f3=240 2% — 1202 — 120
f,= 480 x — 120
Fo=480 |
Pour x —0, ces fonctions deviennent: |
x=0:—101, —40, 100, —120, —120, 480
et pour x=1: —112, 0, O, 0, 360, 480
Le théoreme de Budan-Fourier donne donc
N=v0)—v1)--2p=3—1—2p=20u 0.
Voyons si les théorémes de Sylvester ne vont pas per-
mettre de préciser ce résultat.
Les constantes r, sont données par 'expression

T

rp=ryfap, ax>-—2, p=1,2734
‘ ‘ J
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Faisons ry=5 et a=—1; d’ou
TGIS’ Ti:4‘, }12:3, 7‘322, 7‘4:/1.

Pour =0, la double série est:

.Le premier théoréme de Sylvester n’indique rien de nou-
veau:

N =vP(0) —vP(1) —2p=3 —1—2u=2 ou 0.
Le deuxiéme théoreme de Sylvester donne:
N=pP(1) —pP(0) — 2¢' =2 — 2 — 2/ =00.

L’équation considérée ne possede ainsi aucune racine
entre 0 et 1. -

Exemple I1.

Soit 4 déterminer la nature des racines de I’équation
28 —4x®—9at —8a® —hax?—x —12=0.

Pour appliquer la Regle de Newton, on forme d’abord les
fractions suivantes:

6

5 4 3 2 1
172 3" 4 5 6
et, en divisant chacune d’elles, a4 partir de la deuxiéme par
la précédente, on a

5 8 9 8 5
12° 15’ 16’ 157 19°

{

— 40 ; 100 ' — 120 ; — 120
+. 4(50)2 —5(—101)100, 3(100)2 — &(—40) (—120),2(120)2—3(—120)100, (120)2 —2(—120)480, -
ou r=0: — — 4+ — — 4
+ + + + + +
Pour =1, on a

—12, 0, 0, 0, 360, 480
=, 0, 0, 0, H; =+
ou Ce=1: — @ ® @ + +
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qu’il faut placer sur les coefficients moyens de l’équation.

5 B . B 53
12 15 16 15 12
B cnlbip® b ——Bg? —dg? —p — 19
+ + + e + - +
On a donec:
Ny =vP0)—2p :_l_
N_::pP(O)——-Qp’:i.
I = V(0) 422 =4.
11
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