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Sur les Théorèmes de Sylvester
et la Règle de Newton,

dans la théorie des équations algébriques à coefficients réels.

Par Emile MARCHAND

AVANT-PROPOS
En 1637, Descartes publiait dans sa Géométrie sa fameuse

règle, connue depuis sous le nom de Règle des signes de
Descartes, et qui permet de déterminer une limite supérieure du
nombre des racines positives d'une équation algébrique par
l'unique examen des signes des coefficients de cette équation.

Newton, dans ses leçons, alors qu'il était professeur à
l'Université de Cambridge, donna une règle qui permet de préciser
les résultats obtenus par l'application de la Règle de Descartes,
en faisant intervenir, non pas seulement les signes des coefficients

de l'équation, mais aussi la valeur elle-même de ces
coefficients. En 1707, Newton publiait sa règle, sans démonstration,

dans YÂrithmetica universalis.
Dans le courant du XVIIIme siècle, et dans la première moitié

du XIXme, plusieurs mathématiciens distingués essayèrent
de la démontrer; on peut citer, en particulier, Maclaurin, Campbell,

Waring, Euler; leurs efforts échouèrent.
Voici ce que dit M. Cantor dans ses Vorlesungen über

Geschichte der Mathematik (1898) t. 3, p. 554, en parlant des travaux
de Maclaurin et de Campbell, à ce sujet :

« Diese Abhandlungen (de Maclaurin et de Campbell) brachten

Erläuterungen zu Newton's Regel für die Auffindung der
Anzahl complexer Wurzeln einer gegebenen Gleichung, behaupteten

auch seine Regel beweisen zu können, blieben aber that-
sächlich den Beweis schuldig und berührten nicht einmal die
Schwierigkeit der Ausnahmsfälle. »

Il faut attendre jusqu'en 1864, époque où Sylvester, alors
professeur de mathématiques, à la « Royal Military Academy »,
de Woolwich, publia plusieurs travaux à ce sujet. Il commença
à donner la démonstration de la Règle de Newton pour quel-



— 81 —

ques équations de degré inférieur, dans un mémoire publié dans
les Philosophical Transactions of the Royal Society of London.
(1864), vol. 154.

Poursuivant ses recherches, il trouva le principe d'une
démonstration nouvelle, et découvrit une série de théorèmes, qui
sont exactement à la Règle de Newton, ce que le théorème de
Budan-Fourier est à la Règle de Descartes, la Règle se déduisant

des théorèmes comme un cas particulier. Sylvester publia
ses travaux dans diverses revues anglaises; spécialement dans
The Transactions of the Royal Irish Academy, vol. 24, et dans
The Philosophical Magazine, 4. série, vol. 31.

Budan, en 1811, et Fourier, en 1831, en généralisant la
Règle de Descartes, ont donné leur nom au théorème. Il est
donc de même juste et logique de faire une distinction entre,
d'une part, la Règle de Newton, et, d'autre part, les théorèmes
de Sylvester, et de ne plus les comprendre dans l'appellation
commune de théorème de Newton.

Depuis Sylvester, plusieurs mathématiciens se sont intéressés
à cette question et ont publié divers articles, soit dans des

revues scientifiques, soit dans des traités d'algèbre supérieure.
Leurs buts ont été, en général, non de refaire le travail de

Sylvester, mais de l'exposer.

On peut mentionner :

Aug. Poulain (Revue hebdomadaire des sciences Les Mondes,
1866, vol. 11).

A. Genocchi {Nouvelles annales de mathématiques, 2me série,
t. 6, 1867).

Laguerre. Œuvres.
M. de Jonquières {Comptes rendus hebdomadaires des séances

de l'Académie des sciences, 1884, t. 99, quatre articles).

Jul. Petersen {Theorie der algebraischen Gleichungen, 1878).

Heinrich Weber {Lehrbuch der Algebra, 1898).

Le but de cette étude a été de refaire complètement le
travail de Sylvester, en ne faisant aucune restriction au sujet des
fonctions qui interviennent, et en attachant une importance
spéciale à l'examen de certains cas particuliers, pas même
mentionnés par Sylvester, et qui, jusqu'à aujourd'hui, n'ont,
comme il semble, jamais été traités avec rigueur. Il s'agit, en
particulier, de ce que M. Cantor, dans la citation ci-dessus,
appelle «die Schwierigkeit der Ausnahmsfälle».

6 BULL. SOC. SC. NAT. T. XL
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M. H. Weber dit aussi dans son Lehrbuch der Algebra, en
parlant des théorèmes de Sylvester :

« Ob der Satz bei richtiger Zählung der mehrfachen Wurzeln
auch noch im Falle mehrfacher Wurzeln gültig bleibt, mag
dahin gestellt bleiben.»

Ce travail comprend trois parties :

I. Le premier et le deuxième théorème de Sylvester.
II. La Règle de Newton.

III. Compléments aux théorèmes de Sylvester.



PREMIERE PARTIE

Le premier et le deuxième théorème de Sylvester.

CHAPITRE PREMIER

Notions préliminaires. — Enoncé des théorèmes.

§ 1-

Introduction.

Soit f(x) o une équation algébrique à coefficients réels
du nême degré.

Le problème qui fait l'objet de cette étude consiste à
déterminer une limite supérieure du nombre des racines de
cette équation comprises dans un intervalle réel donné ; il
s'agit de préciser le théorème de Budan-Fourier L

f(x), et ses dérivées successives,

f'(x), f"(x), f'Ax).
fournissent une première série de fonctions.

A cette série, adjoignons-en une seconde :

F0{x), l\(x), Fj(œ), Fn(x),
où les fonctions sont définies comme suri :

F0(x) \f(x)]*
F,(s) rf{f"ix) f- rp_if^\x) || (<p+»{x)\

Yn(x) [f(")(x)Y

p pouvant être 1, 2, (n — 1).

1 Au sujet du théorème du Budan-Fouriei, voir If travail de M. A. Hurwitz,
dans les Mathematische Annetten, vol. 71 (1911).
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La double série de fonctions

f{x), f'{x), ....,/«%) }

F0(x),F\(x), ....,F„(x)
joue un rôle prépondérant dans les théorèmes de Sylvester.

Les constantes rp, jo 0,1, (n — 1)., introduites ci-
dessus, sont assujetties à satisfaire deux conditions :

a) ces constantes doivent être positives

I i:l>0 /» 0,1,2, (n-1).
b) pour arriver à la deuxième condition, on peut remarquer

que, lorqu'on se propose de déterminer Fp(x), on
rencontre l'expression

2rp — rp_i

et, dans le but de simplifier les expressions des dérivées des
fonctions Fp(x), on assujettit les constantes rp à satisfaire la
formule de récurrence :

II rp+l 2rp — rp-i. p \, 2, (n—2).

Telles sont les deux conditions pour la détermination des rp.

A l'aide de II, on peut exprimer r2, r3, rn_u en fonction

de r0 et de r{.
r.2 2r{—r0
rz=3rl — >2r0

rp=prt — (p — l)r0

r„_! (n — 1) rt — (n — 2) r0.

rp =p r{ — (p -1 r0=r0 -fp (rt — r0) =r0 + g p.

r0, r4, r„_i doivent être positifs; il faut alors que a soit

plus grand que j a >
m — 1 \ n —¦ 1

Les fonctions f(p\x), p=i, 2, n, ne peuvent pas être
identiquement nulles ; il en est autrement de Fp(x), p=l, 2,

(n-1).
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On peut montrer que les deux conditions nécessaires et

suffisantes pour que la fonction Fp(x) soit identiquement nulle
sont :

1. a, la constante de la formule des rv, doit être a —
n

2. f.P-^{x) doit être de la forme

fip-l\x) c(x—xi)n-P+1
c désignant une constante, positive ou négative.

Supposons,
Fp(x) rp[f(p\x)Y — rp_! flP-»(x). f'+^EÛ

' fip-v(%) ' fv){x)
d'où, par intégration, c désignant une constante,

[fiP-i\x)p c[f(P){x){1'-ï (1).

f(p-l\x) et f(P\x) sont des polynômes dont le degré est
respectivement (n—p+î) et(n— p). L'identité précédente exige
donc

rp(n —p-\-i) rv_x(n — p) ou

(r0 + gp) (n —p + 1) [r0 + a(p —1)] (n --p)

d'où g —° C.Q.F.D.

Il est facile, de plus, de montrer que l'identité (1) exige
encore

fl»-l\x) c{x—x^-p+K
En effet, cette identité (1) devient, pour' a -,n

[f(p~l\x)\n-P cl[f(r>\x)\n-P+1 Cl const.-^0.
Si, pour un instant, on pose

f<p-»(x) y, on a fW(te) y',
et l'identité ci-dessus devient

y"-P C, y'n-P+l
n—p

d'où y' c2 yn—p+i c% const. ^0.
/) — n

rfî/ ?/ n— p+1 C2 dx.
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d'où, par intégration.
/'-" j |

y"-i'+i ¦

— c.x+G d const. -^0

Si x{ désigne une racine de y f(p-V(x) Q,
'. — — d, .xi

et y /,''-r(à'i r=c (x — xi)"-p^ l

Il est aisé de démontrer que, réciproquement, lorsque
f'j' -'?(.,) c (a; — xi)n-P+1

on a Fp(ic) I), dans le cas où a -.
n

On voit ainsi que, loi'sque Fp(x) 0, on a nécessairement
Fp + i(«)=0, F„_,(.(') u.

L'expression générale des constantes »}, est donc

/,, -,„ | -ap a>^Xj
r0 étant une quantité positive, d'ailleurs quelconque, comme

toujours, du reste, dans la suite. Mais, pour « -, et
n

seulement pour cette valeur particulière, une |F„_i(/r)] ou
plusieurs fonctions V,,(x) peuvent être identiquement nulles.

Pour la clarté de la démonstration des théorèmes de
Sylvester, il est alors utile de traiter spécialement ce cas
particulier, et de considérer :

r,

n
r,

a] a>——- impossibilité de Fp(x) ~0 p=l, (n —1),

b) g —X possibilité de Fp(.r) =0 p l, (n — 1),

d AAdd<x<-A.
Il — 1 II

Disons, tout de suite, que ce dernier cas ne présente
aucun intérêt pour les théorèmes de Sylvester, et, qu'à l'avenir,

on considérera les constantes rp données par la formule

1 p -- i'„ -|- x ;.) a ^



— 87 —

§2.

Définitions et conventions.

Considérons, au point de vue des signes, les deux séries
de nombres réels :

/„, r,, /2, ...,/„)

Supposons t„^0 et T„^0, et désignons cette double série
R par l'expression double série primaire.

S'il se trouve un couple d'éléments correspondants ', tel

que Zr-X0 et T,.-X0, on pourra décomposer R en deux groupes
secondaires R' et R":

0' M- [2< • • •> l>- X l'-+U • ¦ -, '« .)„'" !V '*' ""',"[ R' e.
\

Q, 1 i} la, ¦ ¦ ¦ i-r) lr,L-fl, ¦•••!»;
On écrira alors symboliquement R=R'-f-R". R' et R"

pourront aussi à leur tour être décomposés.
Considérons, dans ce qui suit, l'un des groupes ainsi

formés, par exemple, R' :

t0, /,, Li, ¦ t,- l

T T T T '

Une succession de deux éléments peut présenter une variation

ou une permanence. Le nombre total des variations dans
la ligne supérieure sera désigné par v(Pd); p(R') sera le
nombre des permanences ; V(R') et P(R') seront les nombres
analogues relatifs à la ligne inférieure.

Chaque couple de successions correspondantes, J A'1
t i t !+ 1

peut présenter quatre combinaisons, qu'on appellera
permanence-permanence ou double-permanence, variation-variation
ou double-variation, variation-permanence, et permanence-
variation.

Les nombres qui expriment combien de fois chacune de
ces combinaisons se trouve répétée dans les deux suites
accouplées, seront représentés par les notations pP(R'), vV(R'),
vP(R') et pV(R').

Il est évident que l'on a

rP(R) wP(R')-f i-P(lV'), etc.



Il peut arriver que, parmi les nombres U et T,, un ou
plusieurs d'entre eux soient nuls. Il s'agit maintenant d'expliquer
comment on les interprétera.

Les conventions au sujet des zéros, qui vont suivre, pourront

paraître quelque peu arbitraires. On les préférera cependant
à d'autres par le fait qu'une partie d'entre efles ont été

établies par Newton lui-même, dans son Arithmetica universalis,

et qu'elles permettent de démontrer la Règle de Newton
jusque dans ses moindres détails.

Si, pour le premier couple d'éléments correspondants
L

> on a, soit t0—0, soitT0 0, on supprimera tout simplest);

ment ce couple ; et, ainsi de suite, jusqu'à ce qu'on arrive à
U

un couple > tel que I,x0 et T^O.
Tt)

U
Lorsqu'il n'existe qu'un couple >, tel que l'on ait simulta-

1î
tr

nément ^XO, etTi^O, à savoir >, on aura, par définition,

«(!',') p(R') 0 pP(R') 0 yP(B') 0, etc.

Pour plus de simplicité, on remettra maintenant à la place

de
*

,', ° f, en supposant donc („-^0 et T0 -^0.
f i t Q

1

Entre le couple ainsi défini ° i et r [, un ou plusieurs

des nombres intermédiaires t ou T peuvent être nuls. Par
convention, on considérera ces zéros-là, suivant les cas, soit
comme quantités positives, et on les écrira, 0, soit comme
quantités négatives, 0.

Formulons les conventions suivantes A et B.

A. Supposons que
t?n — 1 =7Z— U 'm 'm -{- 1 • • • 'm -\- m'— 1 tT lm _|_ m' U

quels que soient les T correspondants; m étant l'un des nombres

1, 2,..., (r — l), et m', l'un des nombres I, 2,...,
(r — m); ce que, à l'avenir, on écrira

m 4,2,..., (r-1)
»n'=l, 2, (r— m).
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On donnera alors aux zéros représentant tm, £m+i,
tm+m'—i; le même signe que celui de tm+m'.

B. Supposons que

T^XO T, Th-i=... Tj+1._, 0 T!+r^0
/ 1,2, ...,(r-l)

J' l, 2, ...,(r-1).
En général, on donnera

au zéro représentant Ti+^_i, le signe contraire de celui de T^-
» » T2_)_i'_2, le même signe que » » »

» » T;_|_;'_3, le signe contraire de » » »

et ainsi de suite, en variant toujours les signes.

Il y a deux cas d'exception :

Premier cas d'exception.

Supposons qu'on ait simultanément:
tp—iAv tp tp+x • • • tp^~pi—i =u tp-\-pi^i)

i-p—iA^J lp= Ip+i= • • • =zz 'p+p'—i 0 lp-|_p'92=U

p l,2, ...,(r-l)
p' l,2, .,(r — p).

Pour les zéros de la série des 2, on a la convention
précédente A : tous les zéros prennent le même signe que celui
de tpjt.pl.

Pour les zéros de la série des T, on donne au dernier,
Tp_|_p'_i, le signe contraire de celui de T^+y; à Tp+p'—t, le
même signe que celui de Tp+P<; etc., comme l'indique la
convention précédente B, saut dans le cas où £p_i et tp+p<
sont de signes contraires,

tp—i h+p' ^ 0-

Dans ce cas, il faut que le zéro représentant Tp ait le
même signe que Tp_i.

Ainsi, lorsque

tp-t > 0, tp+fj > 0, Tp_! > 0, Tp_5 > 0, on a

+ 00©©© +
+ © © © © 0 +
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tandis que, lorsque
*„_! > 0, tp+6 < 0, T,_, > 0, TJ)+5 > 0, on a

+ © © 0 0 e -+ © © © © © +

Deuxième cas d'exception.

Ce cas d'exception est très particulier; il ne se présente
jamais pour un groupe secondaire, mais seulement pour la
double série primaire, et seulement lorsqu'on a:

/0-^0 /,X0 t^0 ...l„-X0 tn^0
T0X0 T,=T4 T»_,=0 T„-X0 j

Dans ce cas, très particulier, les zéros représentant Tt, T2,
T„_2, T„_i, seront tous considérés comme des quantités

positives
T1 T8 =!;_! ©.

Telles sont les conventions qui seront maintenues dans
tout le cours de ce travail.

§ 3

Principe de la démonstration des théorèmes de Sylvester.

Considérons les deux séries de fonctions, introduites

fix), rix), r\x), ...,/'(«>(*))
Fix), ¥,{x), F,(x), F„(x))

Remarquons que fn\x) est une constante différente de
zéro, et que Fn(x) — [f<-n\xf est constamment positif.

Pour une valeur bien déterminée x, il est clair que pP,
rP, vY, pV correspondant à cette double série ont des valeurs
bien déterminées. Lorsque x varie, pP, vV, vY, pV varient
également, de sorte qu'on peut envisager ces expressions
comme des fonctions de x.

Ainsi se trouvent définies les quatre fonctions pP(a?), vP(x),
vY(x) et pY(x), par rapport aux séries (1).

Ce qui sera dit dans la suite de ce paragraphe de vV(x)
s'appliquera aussi à pP(x), vY(x) et pY(x).



— 91 -
Dans les séries (1), faisons x X{, Xd réel; on a v'P(Xi);

pour une deuxième valeur réelle de x, a? X2, X2>X1,
on a i'P(X2). Supposons que dans l'intervalle X, X2
(X1^a;^X2), aucune des fonctions f, aucune des fonctions F
ne s'annule ; il est évident, en vertu de la continuité des
fonctions f et F que

wP(X1) t;P(Xs).

Si on se propose de représenter' graphiquement la fonction

vP(x), dans un intervalle réel, a b, a < b, on a:

-;P(o)

;P(6)

xi, Xa, x3, Xk étant les seules valeurs de x de l'intervalle
a b, (a^dx^b) qui annulent une ou plusieurs fonctions
/ ou F. Ces racines sont nécessairement en nombre fini,
d'après la nature des fonctions f et F. (Lorsqu'une ou
plusieurs fonctions F sont identiquement nulles, on les considère

comme constantes, positives ou négatives).
Pour les théorèmes de Sylvester, il est de première

importance de chercher à déterminer vV(a)— vV(b).

Soit, par définition,
A{ vP(Xi — li)— vP(x,--\-h) '' 1, 2, k.

h étant un infiniment petit, comme toujours dans la suite.

On voit alors que

vP(a) — vP(b)=^\
Examinons de très près A,-.

Par hypothèse, une ou plusieurs valeurs de la double
suite

f(n), f'ixi), f"(xi), fi-Vd) îW1 %JlF0(xf), F^xf), F0fXj), F„(x>

sont nulles.
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On décompose cette double série, en un certain nombre
de groupes f, et en un certain nombre de groupes g,-, de la
même façon qu'on a décomposé R en (R'-|-R") au commencement

du § 2.
Pour la distinction des groupes y, et g-t, on observe les

règles suivantes :

A) pour les groupes fi, tous les éléments doivent être différents

de zéro.

B) pour les groupes gi, les éléments des couples extrêmes
doivent être différents de zéro (sauf toutefois dans le cas où
f(Xi) 0; il suffit alors que les éléments du dernier couple
soient différents de zéro) ; pour les couples intermédiaires, il est
nécessaire qu'un au moins des éléments soit nul.

Par exemple, on peut avoir:
m r.(»>) y .(»11)9i, vd Ci¦ A, fi", gA gr>, r

La différence des variations-permanences, par rapport à
un groupe gfl, pour' (x; — h) cl (as*-}-A) est désignée par

%X| 1 1,2, m.;
on définirait, d'une manière analogue,

%ih) l{=\, 2, m.r
On peut remarquer que S[y*('i)J 0, d'après la loi de

formation des groupes f;.
A,- devient

1 ni

A=^\gA\.
i

].../.; 1 .m

d'où vP(a) — vP(b)= V V%,w].

Donc, la détermination de vP(a) — vP(b) revient à celle des
« 1,2, ...,m.[9' '•
« 1, 2, k.

Quelle pourra être la constitution de ces groupes gi(l)Çi
Elle ne varie pas à l'infini, et on répartit les groupes gß en
trois catégories.

Pour la distinction qui va suivre, il est nécessaire de se
rappeler la loi de formation des groupes gi et la définition des
fonctions F0(as), F{(x), F„(x).
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Catégorie L.

Cette catégorie ne renferme que les groupes, tels que les
éléments du premier couple du groupe soient nuls. On a
donc

f(xi)=0

Supposons /¦'(#,) ^ 0 ; alors

F,0*) r, [f'(xl}Y- - r0. /fc) • f"(Xi) r, [f(^)]2 > 0,

et le groupe ne se compose que de deux couples.
Si f'(xi) 0, alors Fi(xi) — ri [f'(Xi)Y — Q, et ainsi de suite.

On reconnaît que tous les éléments du groupe, à l'exception
de ceux du dernier couple, sont nuls.

Par exemple :

f(Xi) 0 f'(Xi) 0 f(r-»fa) 0 fW(xi) -^ 0

F0{xi) 0 Ft(aîi) 0 Fr_i(s,-) 0 F,(^)X0
t l, 2, ...,*.
r=-\, 2, n.

Pour les deux catégories suivantes, les éléments des couples

extrêmes des groupes, sont différents de zéro ; les groupes

qui rentrent dans l'une ou l'autre des catégories II et III
ont, au minimum, trois couples.

Catégorie IL.

On répartit les groupes de cette catégorie en deux sous-
catégories :

lia. — Les groupes de cette sous-catégorie ne sont
composés que de trois couples; le premier élément du couple
intermédiaire est nul. On a donc :

fp-D(xi)^Q fP\Xi) Ù f(p+i)(Xi)^0
Fp_,(a*) >0 Fp(Xi)=—rp_! /<?-%;). fiP+^x^O Fp+,(«*) >0.

p l,2, ...,(n — 1)

t l,2, k.

Il résulte donc que le second élément du couple
intermédiaire est différent de zéro, puisque Z^-1)(a;;)-^ 0 et
fl*+%Xi) 5* 0.
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116. — Les groupes de cette sous-catégorie ont au minimum

quatre couples d'éléments correspondants; le premier
élément du premier couple intermédiaire est nul. On a donc:

/'(/'~1)(a;,-)^0 f^(x,) 0

Fp_1(œi)>U.

Quant à Fp(Xi) rp \f<-r>(x,)f — rp_, /*J-«>(a*) fip+\Xi)
— ?>_i ßP-^Xi) Pv+l\Xi), si elle est différente de zéro, il faut

que
ftp+iXxi) -X 0 d'où Fp+1(Xi) r/)+1 [f(P+»(xi)Y > 0,

et le groupe ne serait composé que de trois couples et
rentrerait dans la sous-catégorie lia.

Il faut donc supposer ici F„fc-) 0, ce qui entraîne
f(p+»(Xi)=:0, puis

Fp+x(Xi) rp+, [f<pA)(Xi)Y — rv fW(Xi) f(P+*\Xi) 0.

Si on suppose f(p+2\x;)^0, alors

Fp+9{Xi) rp+2 [f(p+%Xi)Y — rp+1 fC'+^Xi) ?*+%*)
rp+i[f(P+%Xi)Y>Q

et le groupe est composé de quatre couples.
Si fp+2)(xi) 0, on a aussi Fp^2(.x,) 0; et, ainsi de

suite.
On reconnaît que tous les éléments d'un groupe de 116

sont nuls, à l'exception de ceux des couples extrêmes.

Par exemple :

f(p-»(Xi)^0 pp)(Xi)=fiP W(Xi) fip+'-1)(xi)=0 f<p+r\xi)^0
Fp_ ,(Xi) > 0 Fp(xi) FP+1(xt) Fp+r_1(a:<) 0 Fp+r(xi) > 0.

p=l, 2, (11-2)
r 2, 3, (n-p)
f=4,2, ..._,&.

Catégorie ILL.

Pour les groupes de cette catégorie, le premier élément
du premier couple intermédiaire est différent'«àé^zéro. On a
donc:

f(p-V(Zi)^Q Mxi)^0
Fp.^(Xi)^0.
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En vertu de la loi de formation des groupes gfì, il faut
qu'un élément au moins du ou des couples intermédiaires
soit nul. Il faut donc, dans ce cas, que

Fp(Xi) rp [^(xJY — rp^tßP-^Xi) /^X)(^) 0

ce qui entraîne, puisque f(p)(xì)^0,
/'(XD(^)^O.

Si Fpjri(xi) est différent de zéro, Je groupe se compose
alors de trois couples.

Fp+1(Xi) 0, entraîne f-P+^xf) 5^0, et ainsi de suite.

On reconnaît donc, que tous les éléments du groupe sont
différents de zéro, à l'exception des seconds éléments de tous
les couples intermédiaires.

Par exemple :

ftp-»(Xi)y£0 fW(Xi)^Q f(p+»(xi)^Q f<-p+^-%Ci)^0 f(p+r)(Xi)^0
Fp_i(^0^O Fp(xi) Fp+1(Xi) Fp+r-i(Xi) =0 Fp+r(xi)^0

p l, 2, (n — 1)

r=l, 2, (n — p)

i \, 2, k.

Tous les groupes gP rentrent dans l'une de ces catégories

; il ne peut pas se présenter d'autres alternatives.
On sait que pour évaluer vP(a) — vP(b), il faut avant tout

déterminer ^[gf>], et on reconnaît maintenant qu'il suffit de
calculer à[gP] pour quatre groupes seulement, représentant
les catégories précédentes.

Sans l'avoir spécialement formulée, on a pourtant fait la
supposition que pour a? a et a; b, aucune des fonctions f,
aucune des fonctions F ne s'annule. On peut se débarrasser
de cette restriction.

Posons :

%.aj=w°]+w,:i.
8,[<jrt(*'] est la différence des variations-permanences, par

rapport au groupe gf>, pour (Xi— h) et a?,-; 8g[(/jW] est la
différence des variations-permanences, par rapport au même
groupe gf\ pour Xi et (xi-\-h).
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Il est évident qu'on aura alors :

1.. .m' i.. ,k 1.. .m 1.. .m"

vP(a)- »P(6)=2W'>1 +j^^%w]+^V'+
g.A> étant l'un des m' groupes g que présente la double
série :

f(a), f'(a), f"(a), p)(o))
F0(«), F,(a), F2(a), F„(a) j

<7^") se définirait d'une manière analogue.
L'objet des calculs des chapitres suivants est précisément

la détermination des ^bj,^'] et des ^[gA\, qui conduira aux
théorèmes de Sylvester.

Remarque.

A l'avenir, dans les séries (1), on négligera l'argument x,
et par raison de symétrie, on posera :

fl*) /b. f'(A=f., f"{oe)=U,. ..,f(p\x) fp,. ..,fW(x)=fn.
F0(cc)=F0,Fl(x)=¥i,Fi(x) Fi,.. .,Fp(x)=Fp,.. .,F„(,x)=F».

§ 4.

Enoncé des théorèmes de Sylvester.

Les théorèmes, qu'il s'agit de démontrer dans toute leur
généralité, peuvent s'énoncer de la façon suivante :

Premier théorème de Sylvester.

Soit N le nombre de racines de l'équation algébrique à

coefficients réels du nème degré
f(x) 0

qui appartiennent à l'intervalle réel
a < x^ddb.

Chaque racine étant comptée autant de fois qu'il y a
d'unités dans son ordre de multiplicité.

Formons les deux séries de fonctions suivantes :

lui lit /2î ' • '• /"
F F F F
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où les fonctions sont définies comme suit :

à) fo=m fp f{t>\x) p l,2, n.
b) Pa fo2 Fp rpfp* — rp-lfp-lfp+1 Fn /„«

p 1, 2, (h —1)
où les quantités rp sont des constantes positives, dont l'expression

générale est

rp r0-\-<x.p p l, 2, (n—1).

r0 > 0 absolument arbitraire

g^ —- rationnel ou irrationnel.
n

Soit alors vP(x) le nombre de variations-permanences que
présentent les deux séries

/o> lii lii • ¦ •¦> fa
F F F F

avec les conventions exposées précédemment au sujet des
zéros.

On a la formule
N t>P(g) —«P(ft)—2|*.

(a étant un nombre entier non-négatif.

Deuxième théorème de Sylvester.

Soit N' le nombre de racines de l'équation algébrique à
coefficients réels du nème degré

f(x) 0,

qui appartiennent à l'intervalle réel
a^diX <b.

Chaque racine étant comptée autant de fois qu'il y a
d'unités dans son ordre de multiplicité.

Soit pP(aj), le nombre de permanences-permanences que
présentent les deux séries

loi tu lu ¦ • -1 fa
F0, Fl7 F2, F„

où les fonctions sont définies comme ci-dessus, et avec les
conventions exposées précédemment au sujet des zéros.

On a alors la formule :

N' pP(6) — pP(ft)-2jX
t*' étant un nombre entier non-négatif.

7 BULL. SOC. SC. NAT. T. XL



98

CHAPITRE II

— »o
g> ——

Dans ce chapitre, les constantes rp sont données par
y

rP r0A<*P g> p l, 2, (h—1).

Aucune fonction F ne peut être identiquement nulle.
On pose, par définition,

r„ r0-\-oc n r„ > 0

et les fonctions F peuvent, dans ce chapitre, être définies
comme suit:

F0 /o2 Fp rpfpi — rp-1fp-1fp+1
p l, 2, (n -1), n.

rn étant positif, il importe peu pour notre étude que FM /"„2

ou Fn rnfn* (/M+1 0).
Il faut déterminer

8d [g] vP(x — h) — vP(x)
et \[g] vP(x) — vP(x + h)

(on supprimera l'indice à x)
pour les quatre groupes g suivants, représentant les catégories

établies au chapitre premier.

1. fp~iA0 /p 0 fP+i^0
F,_!>0 FPX0 Fp+1>0

p l,2, (n-1).
2. /p_i^0 /p /),_)_! fp+r-i 0 /j,-Lr "X 0

K,_t^0 Fp Fi)+1 F3)+r_, 0 Fp+P^0
p l,2,...,(«-2)
r 2,3, .,(n—p).

3. fo=A=/,=... =/;_,=o /;^o
F0 F1 F2 F,._1 0 Fr^0

r l, 2, .,n.
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/p_i5é0 fp^0 fp+1^0 /p+r_1-^o /p+.-XO
Fp_j^O Fp Fp+1 ...=Fp+r_1 0 Fp+P^0

p l,2, ...,(n —1)

r=l,2, (n — p).

§1-

/p-t^O /p 0 /p+1^0.

On suppose que, parmi les fonctions

/0' M) • • -i t"i
on ait

/,_i^0/, 0/p+1^ü p=l,2, (n-1)
pour une certaine valeurs (a^.x^6); et on examine ce que
sont les fonctions

/p—ii //>> /p+i /

Fp_i,Fp, Fp4-i)

pour (x — h), x et (as-f- A), quant aux signes.

La formule de Taylor donne :

A2

fp(x + A) /„ -f h fp+l + - /p+2 -f
or fp — O, donc

A2
/?(•*' + A) A /„+1 + g

/P+2 + • • •

On choisit A très petit, de telle sorte qu'on peut se borner
à écrire le premier terme du développement suivant les
puissances croissantes de h, celui qui donne son signe à la fonction;

de même fP—i(x+ h) et fP+i(xAh) conservent le même
signe que /p_i et fp+t.

Rappelons que
Fp_i 9p_i [/p_i] —rp—<îfp—ifp

"p^^fp fp fp—ifp—ifp-\-i
FP+i rp+1 [fP+iY — rPfpfp+t p l,2, (n —1)

(pour p l, on a, par définition,
rp_2 r_1 0 et /p_2 /-i 0).
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Pour (xAh), on peut former le tableau suivant, en écrivant

les fonctions uniquement quant aux signes, ce qui seul,
pour cette étude, est intéressant:

/p_!(a5 + A)

fP{xAh)
fp+1(x+h)

fp-i
hfp+i
fp+i

rp_r[fp_,f-h\ ]

rpW[fP+iY—rP-1 fp-i ¦ fp+i
rP+i Ifp+if -A| J

Fp-i(x-\-h)
Fp(x-\~ h)

Fp+1(x + h)

ou encore, plus simplement,

fp-^x+ h)

fP(x + h)

fp+1(x-\-h)

jp-i
hfp+i
fp+i

>0
— fp-i ¦ fp+i

>0

Fp^(x-\~h)
Fp(x + h)

Fp+1(x-]-h).

Remarquons que, dans ces tableaux, comme du reste
dans les suivants, A est une quantité très petite quelconque,
tandis que, dans les expressions vF(x-\-h), vP(x — A), dont
nous allons nous occuper, h désigne une quantité très petite
positive.

Déterminons vP(xAh), vP(x — A), puis vP(x).

vp(x | h) — 1—si9nifp-i-fp+i] l — sign[fp-.1.fp+1\
V ^~ ; 2 ' 2

sign [r] a ici, comme dans la suite du reste, la valeur -|--1,
lorsque r est positif ou 0, et la valeur —1, lorsque r est
négatif ou 0.

vP(x^h)=i-sign[fri-fp+l] (i).
2

vP(x — A):
i-\-sign[fp_i.fp+t] l — sign[fp_1.fp+1] 1 ^s^n[/p_1./p+1

vP(x~-h) Ì-SÌgn[fr1-fp+^ (2).
2

Pour x lui-même, on a

fp—i 0 fp+i
rp-i[fp-i]~ —if-ifp-i-fp+i rP+i[fp+if
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ou, en tenant compte uniquement, des signes, et en faisant
usage des conventions au sujet des zéros :

fp—i fp+i fp+i
+ - fp-i ¦ fp+i +

\—sign[fp_x. fp+1\ 1 - sign \fp_x. fp+1]d'où vP(x) ¦¦

2 ' 2

vP(x) ì-SÌgn[f^-fp+l] (3).

Des expressions (1), (2) et (3), on conclut :

84 [g] vP(x — h) — vP(x) 0

82 [g] vP(x) — vP(x + h) 0 '

Ainsi, pour un point a?, qui n'est que racine simple d'une
ou de plusieurs fonctions f intermédiaires, le passage par
zéro de ces fonctions n'a aucune influence sur la fonction
vP(x).

fp — lAv fp fp-\-l ....=fp-\-r —1 0 fp-ASrAv.

On suppose que, parmi les fonctions

lOi 111 121 • ¦ •> fai
on ait

fp-lAO fp fp + l=- ¦ .—fp+r-l 0 fpVr^0
p= 1, 2, (n — 2)

r 2, 3, (n — p)

pour une valeur bien déterminée x, (a^x^b); et on examine
ce que deviennent les fonctions

IP — 1> IPi IP + li • • •> lp+ r—1, fp + r f

Fp_ 1, 1P, fp+ l) • • •> I*p + r—1, Fp-tSr)

pour (a?-f-A), (x — h) et x; et, comme c'est le signe de ces
fonctions qui est avant tout intéressant, on se borne à écrire
le premier terme du développement suivant les puissances
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croissantes de h, étant donné que pour des valeurs suffisamment

petites de A, le premier terme donne son signe à la
fonction.

D'après Taylor, on a

A h- hr
fp(x + h) fp + -fp+1A — fp+2+...-\--fp+r+..

h A2 hr~1
fp + l(X-\-h) fp+iA — /p + 2-f — /p +3+ ¦ • ¦ + - jT j

fp + r-\-

A /i2
fp + r-A^fC A A) fp +r-2 + j-j /p +r-1 + ^y /p + r +

fp+r-l(a;-f A)==/fJ)+r_1-j-jj /?+»'+ • ¦ •

mais fp fp+1=. =/p+r_1 0; donc

hr
fp(xAh)=-fp+r+...

hr~1
fp+1(x + A) —— fp+r+...

h*
fp+ r-2(x -f /l) — fp + r +
fp+r-i(a;-\-h) h.fp+r-{-.

Pour les F, rappelons que

tp rpfp rp—i /p—i/p-f-i

On peut former le tableau suivant :



/p_i(a?+A)

fp(x+h)

f,+1(x+h)

fp+2(x+h)

fp-i + --

h

V 1~\ lP+r> ¦ ¦

(r-l)!
A'—2

(r—2)!

/-»+»•+•

rp_1[/p_1]2+..

rp [(t;) K.+rJ*+- -j- r^[^ziy! f*-1 &+-+ ¦ J

[/
/j'"-1 \2 If A2»*-2 1

fe=i)i) ia+*+- -J -4^=51 r/'+")!+¦ 'J

r/ /,»--2 \2 T r h?r~-4 1

r^[(fr=^)^T+"J-r^[(r-l)l(r--3)^^+-.J

Fp_x(rr+A)

Fp(as-f A)

Fp+1(a?-f A)

Fp+2(a;+A)

/j,+1._a(a;-j-A)

/p+r_i(a?+A)

/p+r(a?+A)

/l% X

hfp+ r-\-.

fp+ r~V ¦ ¦

p-\-t 2

-,+r-i [A2 [/p+rp + .j-rp+r_2 ^ [&+ ,]« + .]

-p + r —2(sts+h)

rP + r • l_/P + rJ I ' '

Fp+r-_i(*-}-A)

Fp+r(a?+A)
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On peut faire les remarques suivantes au sujet des fonctions

F de ce tableau :

a) L'expression de Fp(x.-\~h) contient un terme en A2î" et
un terme en A'"-1 ; on peut négliger le terme en h?r, h étant
suffisamment petit.

bj Les fonctions

Fp+1 (xA h), Vp 4-2 (oc -\-h), Fp+P_! (x + h)

peuvent s'écrire :

FPU.x + h) if+,[(^^^\fp+1,YA. .] -
rP+i —

r /,2,-2,
^

-i

1 l(r-i-\-i)\(r-i-i)l[fp+rf + • J

p l,2,...,(«-2)
r 2,3, .,(n— p)
i l,2,...,(r-l) (01=1)

^+^+^>-0i(r-f--.i)!^-l2[t-^--ï37+ïJ+-"
/?2(r_0 j

Fp + !(X+A)=——-——-J-Afp+rY(r—i)\(r — i—l)!u*~r ' (r—i)(r —i+l)
¦ [rP+i(r — *+'') — 'p+'--i(r -0J+ ¦ •

mais rp+i r0 -f- a (p + «)

»>+i_1 r0+g(p + i — 1)

car (p + i)maaî n — 1

et (p + i — l)m;„ l.
/i2(<— 0 1

Fp+^+A)=(7—^(r__._1)![//,+P]2(r_.)(r_.+1).
[r0 + g(p+ r)]-|-.

mais (p -|- r)m<u! n

et (p-}-r)m;n 3

donc r0-|-g(.P + r) '"/'+»•> 0.

d'après l'hypothèse en vigueur dans ce chapitre.
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Ainsi, on reconnaît que, pour A suffisamment petit,

Fp + i(x + h)>0 p l,2,...,(n-2)
r 2,3, .,{n—p)
i l,2,...,(r-l).

quel que soit le signe de A.

On peut écrire à nouveau, le tableau précédent qui
devient, en négligeant les facteurs positifs :

fP-i(x-\-h)
fpAAb)
fP+i(x-\-h)
/p+2(as+A)

fp—i

h"fp+ r

hr-*f,+ r

hr-*fp+ r

>0
¦h'-Ap-ltp+ r

>0
>0

Fp^(x+h)
FP0r+A)
Fp+1(x-\-h)
Fp+2(a5-f-A)

fp +r-2(x+ h)

fp +r-l(x'Ah)
fp+r(x-4-h)

fp-\-f
llfp+ r

fp+r

>0
>o
>0

Fp_j.r-î(fK+A)
Fp+r^xA-h)
Fp+r(x-\-h).

Déterminons vV(x-\-h)) vP(x — A) et vP(x).
1 —sign[hr fp_x fp+r] 1 — sign [h1"-1 fp-X fp+r]

vP(x~\- A)
2 2

1—signlh2'—1] i—sign[hr-]fp^fp+r] 1—sign[hir~8]
2 ' 2

1 — «igrn. [A3] 1 — sign [A]

«P(a; + Ä)

fP(a; — A) -

l—sign\fp-ifp+r]

l-.sign[(-iff^ fp+r] 1-sign [(-l)r-i £,_x /,+„]
2 2

1-M0»[(- IX"^p-l/p+r] r —1.

,PC,-t)=1-»,K-y-ft-^+f-i.
BULL. SOC. SG. NAT. T. XL
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Il faut faire une distinction suivant que r est pair ou
impair.

r pair.

r 2v v^l.

vJKx +h^-WVr-'U+ri
A

vP(x -A) 1+"gH^-1^+-]+2v-l.
A

Pour x lui-même, les séries se présentent comme suit :

/",_! 0 0 0 0 0 0 fp+r
rp^[fp^Y 0 0 0 0 0 0 rp+r[fp+rY.

Eu égard uniquement aux signes, et d'après les conventions,

elles deviennent :

fp—l fp + r fp + r tp + r ¦ ¦ ¦ fp+ r fp + r fp+r fp + r

+ ©0©..-0©0 +
d.où vP(x)^iAJ!^AÏl±A.

A

et enfin,

^-A)-*P(.*)
1 +^n^A A

vP(x — h) — vP(x) 2S) (v rt5 OÙ v' 5 v'^.0.
vP(x) — »P(aj4- A) 0 v —1 —

r impair.

r 2v-fl v^.1.

A

vP(x-h)^A:-JMf^fp+^+2:,
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On fera une distinction, suivant que

sign [fp-ifp+r] -\-i ou

sign[fp-ifp+r] —i.
a) sign\f,-ifp+r]= + i.

«P(a>-fA) 0

vl\x — A) 2v.

Pour x, les séries sont :

fe-i 0 0 0 0 0 /p+r
»>_!.[&_!]*<) 0 0 0 0 rp+,.|/p+r]2

et d'après les conventions,

/p —1 fp+ r fp+ r fp + r ¦ ¦ ¦ tp + r tp + r fp+r
+ ©©©••¦©© +

wP(a;) 0.

donc, t'P(x — A) — vP(it') 2v v^l.
vP(ic) —wP(x + A) 0 J

6/ sign[fp-1fp+r] — i.
vP(as + A) l
vP(as —A) 2V-|-1.

Pour ûc, les fonctions deviennent, quant aux signes et
d'après les conventions :

tp+rP —1 tp+r fp+ r fp + r tp+ r /p +
+ © © 0

vP(x) \.
© 0

donc, vP(x — A) — wP(a?) 2v v^l.
«P(*)~ wP(x + A) 0 J

En résumé, on voit que, quel que soit r, pair ou impair,

ï>l[g] vP(x — h) — vP(x) 21) X^O.
S2 [^] vp<V) _ vP(x + A) 0
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§3.

/o — /1 — h :/;_1=o/;xo.
On suppose que, parmi les fonctions

/0> H) /î) • • ¦) /«)

on ait, pour une certaine valeur x, (a^x^b)
/i=A=/f« .--=/r-i=o/;^o

r 1, 2, w.

et, on examine ce que deviennent les fonctions

/0' tli ti.i ¦ ¦ ¦¦> fr— li fr j
F0,F1,F2, .,Fr_i, Fr

pour (sc-f-A), (x — A) et x, quant aux signes.
On peut se servir des calculs précédents du § 2; il suffit

de faire
p 0etfp„1 0.

Le tableau des fonctions, pour (x -|- h), de la page 105,
devient, en se souvenant que

F0>0 lorsque f0^0:

/oO + A)

Ux + h)

U{x-\-h)

hr fr
hr-A'r
A-2/;

> 0

> 0

> 0

Fo(^ + A)

F^+A)
F2(a; + A)

fr-vfx-{-h)
fr-l(X-\-K)
f'/x -f- A)

Wfr
hfr
fr

> 0

> 0

> 0

Fr— 2{x-\-h)
Fr_i(a5-f-A)

Ffx-\-h)

Déterminons v

vP(x 1 A)— l9

P(x~\-h),

n[hir~1]
vP(x—A), puis

1— sign[hSr-3]

vP(x).

i |
l—sign[h]

vP(x-\-h)=0
vP(x-—A)=r.

2
1

2
1 •• '

2
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Pour x lui-même, les fonctions deviennent :

0 0. .00/;
0 0 0 0 rrp

D'après les conventions, il faut, dans ce cas, faire abstraction

des zéros; donc
t*P(rr) 0.

Pour la suite, il est intéressant de déterminer pP(x-\- A),
pP(x — A) et pP(x).

pP(pc [ /i)_4+^n[A2r-1] ¦ i-\-sign[h»->]
_ _

l+^n[A]

pP(£c -f- A) r
pP(a;—A) 0

pP(a?) 0.

En résumé, lorsque, pour x,
fo /i /2 ---=/r-i 0/;-XO r l,2,...,n.

on a : vP(a? — A) — vP(x) r
vP(x) — t-P(« + A)=oi

et pP(a; -|- A) — pP(a?) r
pP(a;) — pP(a- — A)=0 f

r est l'ordre de multiplicité de la racine considérée x de
l'équation f(x) — Q.

§ 4.

ïliéorème auxiliaire.

Lorsque

F,_!^0 Fi, Fp+1 ...=Fi,+P_1 0 Fj+r^O,
on peut toujours supposer maintenant

/^_!^0 /p-x0 f,+XÛ.../p+^x0 /f+X0;
sinon on serait alors ramené aux cas traités aux paragraphes
précédents.
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Dans ce chapitre, par définition,
Fp rPfp^ — rp-tfP-ifP+i p l, 2, .,(n — 1), n.

Démontrons que la dérivée d'ordre r de Fp, F/">, a comme
expression

FW /p
w p l,2, (n-1)

fP+r r l,2, ..,(n-p)
pour une valeur x, telle que

/p-XÖ fp^O fp+1^0 fp+r-t^O fp +rA0
et Fp F/ F," F/-1) 0.

FP rp/p2 —»>-i/p-i/p+i p l,2, ...,(n—l),n.
F/= [2 rp — rp_J /p fp+1 — rp_j ^_j fp+2

or, 2rp— rp_1 rp_Lj p l,2, .,(n — 1) (dans ce chapitre).
F'p rP+ifPfp+i — rP-ifp-ifp+2 p 4,2,...,(» —1)

fp+i ¦ Fp »p+i /p [//>++ — ,rP~ifp-ifP+\fP+ì-\~rp fi? tp+i — rp/p2/p+z

/p+i • Fp fp+?. .FPAfp- Fp+i.

ev /p+2 p j_ fp v1
p —7— vp-\--f—Jp+i-

Ap+i /p+i

F'p=cpp.Fp+A..Fp+1 (1) p l,2,...,(n-l)
/p+'

en introduisant de nouvelles fonctions, ?p, définies par la
formule,

9p
tl±l

p l,2,...,(n-l) [fn+1 0]
fp+i

Il est important de remarquer que les fonctions <?p, <pp+i,
çP+r_i sont finies pour la valeur finie x considérée.

On peut dériver l'expression (1) un certain nombre de
fois.

Supposons qu'après (r —2) dérivations, on arrive à

]<y-»> A. Fp+ B. Fp+1 + +M Fp+r_3 + -A_ Fp+r_,
Ip+r^l

p l,2,...,(n-r+l)
r l,2, ...,(rc-l), n.
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et supposons, de plus, que A, B, M soient des fonctions
rationnelles des fp, fP+\, ¦ -, fP+r-i, fp+r, dont les dénominateurs

se présentent comme produits des fonctions fP+i,
fp+2, fp+r-i, toutes différentes de zéro; donc, ces coefficients

ont des valeurs finies pour«. Désignons par A', B',
M' les premières dérivées de ces fonctions rationnelles A,
B, M; A', B', M' sont des fonctions rationnelles des
fpi fp+ii ¦ ¦ -1 fp+r+i dont les dénominateurs se présentent
comme produits des fonctions

fp + li /*P + 2. • ¦ ¦) fp+r-1,
toutes différentes de zéro.

Ces fonctions sont donc finies pour x.

On peut former FpW :

F/)=A'. Fp+A .F'p+ß'. Fp+H-B- F'p+1+. ..+M'.Fp+,._2+

-f- M Fp+r-2+ 7
1 Fp+r-i + 7 • F'p_|_,._i

p y-r' a | „
lp + r — 1/ lp + >—!

p l, 2, ,(n — r)

r l,2, .,(ii—1)
et, en remplaçant F'p, F'p+i, F'p+r-i, par leurs valeurs,
tirées de (1), :

F/)=A'. Fp+aL Fp + -^-. FP+,]+ B'. Fp+1 +
L tp+i J

+ B L+1. Fp+1 AfpA Fp+2]+ + M'. Fp+r_2 +
L /P+2 J

tpp +P_2 Fp + r-s+ r: Fp+r-l + (7 .Fp + ,,_i +
L lp+r-1 J \/p+ ''-l/

M

fp
- tp+r-lFp+ r-l-\- —f Fp+ r •

-IL lP + r Jfp+r

f/>=|a'+a Jf.+Ja-^ +b'+b.Tp+1Jfp+1 +

rßf^+..iFP+2+...+[M^2+(r^-Y+
L /P + 2 J L fp+r-l \lp+r-l/

+ 7 — ÎP+ r-1 jFp+r_l+ -j, Fp+ r.
Jp + r—1 J fa+r
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Désignons les coefficients de Fp, Fp+i, Fp+r_i, par A4,
B0 Mj. Ces coefficients sont des fonctions rationnelles des
fpi fp+ii ¦ -1 fp+r+ii dont les dénominateurs se présentent
comme produits des fonctions fP+i, fp+r, toutes différentes

de zéro ; ces cofficients ont donc des valeurs finies
pour x.

On peut donc écrire :

') A,.FP + B1.F,+,-

Aj, Bj, Mj finis pour x

F/) A,. Fp + B,. Fp+, + + M,. Fp+,._, +J*- Fp+r (2)
fip + r

P l,2, (n —r)
r l,2, (n -1)

ou ce qui revient au même

p l,2, .,(«-4)
r — 1 21 X -1, (n—p).

Or, pour r — 1, la formule (1) montre que l'expression
précédente (2) est valable; de r l, on passe, à l'aide des
considérations précédentes à r 2; puis, par induction, de
proche en proche, à r quelconque.

[1 ^ r ^ (n — p) ; 1 ^ p ^ (n — 1)}.

Supposons que Fp F/ 0 ; alors

Fp+i 0 d'après (1)

de même, Fp F/ Fp" 0 entraîne Fp+2 0.

Fp=Fp'=... F/-1)=OentraîneFp=Fp+1 .=Fp+P-1=0
et ainsi, lorsque pour x,

fp + lAO fp^O /p +17é0 fp +r-lA0jp+ rA0
Fp Fp'=... F/-») 0

F/') devient, d'après (2),

F m _
fp y p l,2,..(w— 1)

' ~fp+rP+r r l,2,.>-p)
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§5.

Fp_i -^ 0 Fp Fp_|_i —-....= • p+r — l : :0F.P + r: ¦ 0.

On suppose que

/p-1 9^0 /PX0 /p_|_i^0 fp +r-lAO fp+ r=pe:0

Fp_1-^0Fp=Fp+1 Fp+r_x 0Fp+?.-x0.
p l,2,..., (n — 1)

r l,2, (n—p).
pour une valeur bien déterminée a;, (a ^#^6); et on
examine ce que deviennent

/p —1) fpi tp + li • ¦ •> fp+r—li tp+ r i

¦Tp —1? -Tp) -Tp + l; • • • ï Fp+ r — 1, tp+ r

quant aux signes, pour (x-\-h), (x — A) et x.

Il faut remarquer d'abord que
Fp rp/P2 —rp_i/p_i/p+i 0, d'où fp+1, même signe /p_j
Fp+i rp+1[/p+i]2 —rp/p/p+2=0, /p+2 » » fp

S'¬

il y a une distinction à faire, suivant que r est pair ou
impair.

r pair.

r impair.

/p+i même signe que fp-\
/p + 2 » » » fp

fp+ B » » » /p-1

fp+r-t » » » fp

fP + r—l » » » /p — 1

fp+r » » » fp-

/*p+i même signe que /p_i
/P + 2 » » » /p

/p + 3 » » » /p-l

fp+ r-î » » » /p-1
/p+r—l » » » fp

/P + r » » » /p-1-

BULL. SOC. SC. NAT. T. XL
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Quant aux fonctions F, la formule de Taylor donne :

Fp(^ + A) Fp + AFp' + ^Fp" + + ?-JF/)+..

Fp+1(^+A)=Fp+1+^F'p+1+^F"p+1+.. +(-i^F^)+.

h
Fp+P_i(« + A) Fp+r_i-|- — F'p+r_i+..

On sait que

Fp Fp+i Fp+r_i 0, entraîne

F —F'— —F^-1) — 01 p 1 p L p \J

Fp+i F'p+i= Fp+i 0

Fp+ r—2 — F p + r_2 — 0

Fp+r_l =0.

On peut appliquer le théorème auxiliaire du § précédent :

r? (r) IP T?
P ~]pArP+r p l,2,...,(n-l)

r l, 2,. (n—p).
On a alors :

Fp(* + A) ^.A-Fp+P+..
' • lp+r

f,+1(«+.)=X1i.|±-;f,+,+..

A Ip + r

Fp+r-1(xAh)= h tp-±All. Fp+r +
tp+ r
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Il faut traiter d'une façon tout à fait distincte, les deux
cas :

a) r pair.
b) r impair.

r pair.
.1.

On peut établir le tableau suivant pour (x-j-h), en supprimant

les facteurs positifs :

fp-i(x-\-h) /p-1 F^_i Fp_i(x-fA)
fp{x+h) /p Il t: p^-r Fp(x-irh)
fp+i(x-\-h) /p-1 ' p-\~r ' fp — 1 fp Fp+1(xAh)
fp+z(x-\-h) fp hr-* Fp+r Fp+2(a;+A)

fp+r-2(xAh) fp h*. Fp + r Fp+r-i(X-\-
fp+r-i(x-\-h) fp—1 h Fp+r /p—1 fp Fp+ r-i(x-\-
fp+r{x+ h) fp Fp + r Fp+r(x-\-h)

Déterminons vP(x-\-h), vP(x — A), puis vP(x).

l—signlfp-ifp^lA-signlh'-Fp-iFp+r
vF(x-\-h)

l + ^n[A2»-Yp-i/p] i+signihïfr-ifp]
2 i •-¦ i 2

l-fs^n[Afp_ifp]|

vP(x + h)
1 — s«gw [/p_! /p] 1 + «grn [Fp_i. Fp+P]

D'après les conventions au sujet des zéros, il faut distinguer

deux cas, pour la détermination de vP(x) :
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lo) p l; r l,2,..,(» — 2).

p 2,3,.., (n — 1); r l,2,.., (» — p).

2°) p — ì; r — n — 1.

lo) p l; r=l,2, (w — 2).

p 2,3,.., (n-1); r l,2,.., (n —p).

Pour x, les fonctions se présentent comme suit, abstraction

faite de facteurs positifs :

/P —1) /Pi /p —1) /P> • •) /P—1; /p

Fp_i, 0, 0, 0, 0, Fp+r

et, d'après les conventions :

fp—ii tpi fp-1) /p> • •> fp—ï» /p

fp —1, fp+r, rp+ r, rp+ p, rp+ r, rp+r
1—atffn|/p-i/p] l+*ty»[Fp_iFp+r]dou wP(a5)

et enfin,

vP(x~h)-vP(x) i-Sigif-^\r
vP(x-h)-vF(x) 2,') ^„,(0
vP(x) — vP(x-\-h) 0 j (v —

2o) p l; r n—1.

vP(x+ h)
X~SÌgì*UJi]

(F0>U F»>0)
A

.PC-*)-1~tP,,M-(r+ «)

Pour «, les fonctions se présentent comme suit, abstraction

faite de facteurs positifs :

/0> /l) /o> • • •¦> tu toi ti
F0, 0, 0, 0, 0, F„.

et d'après les conventions,
toi t Si toi ¦ • -ï tu toi /l
+, ©,©,.. -1 ©, ©, +•
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2
(r + 1)

donc, wP(« — A) — vP(x) 0

vP(x) — vP(x-\-h) 2A)
OU v-j^ .0.

r impair.
r 2v-}-l 0.

On a le tableau suivant pour (x-\-h), en supprimant les
facteurs positifs.

/p-i(a? + A) /p-i Fp_i Fp-i(a; + A)

fp(x-\-h) fp tp+ r fp — 1 /p FpOr+A)
fp+1(x-Yh) fp-i h1-1 Fp+r Fp+i(a;+A)
fp+z(x-\-h) fp il 1 p-^-r fp — 1 [p Fp+ï(x-\-h)

fp+r-ì(x A A) tp—i ^4"r Fp+r-i(x-\-h)
/p+r_i(«~|-A) fp p-\~rfp—i /p Fp+r-i(xAh)
fp+r(xAh) fp-i F i Fp+r(«+A)

Calculons vP(a;-f A), vP(x — A), puis vP(x).

vP(x + h)
4— sign [fp-! /p]

2

l-f-M0n[A*—»/p_i/J

1 -f- sign [hr fp_i fp Fp__! Fp+P]
+

• + •

i-\-8ign[hfp-ifp]

vP(<r-f A)

vP(x — A)

2 ' 2

1 — sign [fp-i fp] 1 — sign [Fp_i Fp+r]

fr1 — sigw [/p_i /p] J~l -f jjgg [Fp-i Fp+,j

Pour la détermination de vP(x), il y a, de nouveau, deux
cas à considérer :

lo) p l; r l,2, (n —2)
p 2,3,.., (n — 1); r -l,2, (n — p).
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Les fonctions deviennent, quant aux signes,

/p—i) /P, /p—i, /p, fp—ii

fp —Ï, fp+ r, fp+ r, • •, fp+ r, fp+ r

d'où vP(x) — i~Si9nVp-lf^ l~si9nlFp-iFp+r]
2

'
2

donc

vP(x- h) - ,P(*) ^-^[/p-i/pI^ + sign\Fp^Fp+rl+
ï p- ï 1

1 —^[Fp-i Fp+r]~|

wP(* — A) — t»P(aî) 2v') (o
OÙ»X v+lvX9.

i>P(a;) —vP(a?-f A) 0 (•:

2o) p 1 ; r n — 1.

«P(îc + A) 0

vP(x-h)^i~dgf^\r+ l).

Les fonctions deviennent, quant aux signes :

toi tll toi ¦ ¦ • 1 î\ ï /o

+, ©, ©, •••, ©, +
vP(x)= Tl'DflJHl).1— sign [fJ,,

2

donc, «P(œ — A) — vP(a;) 0 „ (0 „ rtw ' OÙv'X v"^0
vP(£c) - vV(x + A) 2 v" (7 + 1 —

En résumé, lorsque

/p-i^O /PX0 /p+i^O /p+,._!XO /p+P=z=0)

Fp—îXO Fp Fp+!= Fp+r_i 0 Fp+,.XO)
p l,2, ..,(n-l)
r=l, 2, (n — p).

pour une valeur déterminée a;, on a

8d [g] «P(a5 — h) — vP(x) 2 V X' ^ 0

82 [?] «p(a;) — vP(x -f A) 2 X' j V ^ 0.
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CHAPITRE III

Le cas où les constantes rp sont données par

»* ro + «P p l,2, ..,(n —1)
où — r0g= n
se présente très souvent dans les applications des théorèmes
de Sylvester. Il mérite une attention toute particulière, par le
fait qu'une ou plusieurs fonctions F peuvent alors être
identiquement nulles.

La constante r„,
rn r0 A « n,

introduite uniquement pour le chapitre précédent, serait ici
rre 0.

Le plan de ce chapitre est le même que celui du
chapitre II; on se servira, dans une large mesure, des calculs
effectués dans les pages précédentes.

§1-

fp — 1 T2^ 0 fp /p + 1 fp + r—1 0 fp+ r A 0.

Le cas où, pour une valeur déterminée x, (a^x^b),
f,-i^0fP 0 fp+t^O

p l,2,..,(n-l)
se traiterait absolument de la même manière qu'au § 1 du
chapitre précédent ; il est inutile d'y revenir.

A la page 103, on a établi le tableau des fonctions

/P — li Îpi /P+ 1) • • -ï fp + r—1, fp+ r
Fp — 1, Fp, f p + 1, fp+ r—1, f p + r

p l,2,..,(n-2)
r 2, 3, .,(n—p).
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pour (x-\-h), évidemment aussi valable dans le cas considéré
dans ce chapitre. Il en est de même de la remarque a) qui
suit; reprenons la remarque b).

b) Les fonctions

F,+1(x+h\ Fp+2(x-\-h), Fp+r-i{x+ h)

peuvent s'écrire :

WH*) r,+|((1Jl)V,+r]«+..]-
'

r h*1—*
2

n

'-'L(r-t + l)!(r-t_4)![fp+r]" + ' 'J

p l,2,..,(«-2)
r 2,3,.. ,(n—p)
i l,2,..,(r-l) (0! 1)

F^fr-f*)^ **~*. lNl[fp++|"^±£.-^±^Tl+.--
(r—î)!(r—i—1)!L"T \j—i r— -t-flj

Fp+^+A) - ,N,[fp++

— r.p+«

(r—»)!(r—t—l)!1"™ (r— *) (r—1+1)
.[rp+,-(r— t-fl)— rp+i^r —»)]+..

mais rp+, r0 + g(p-f «')

r,+f_1=r0-f a(p + *'—1)

car (p + i)max n — i
et (p-f i — l)miB —4.

/t2(r-0 |Fp+i(x+A)= [/-,+r-(r_t)! (r—i—i)\ up^ri (r—t)(r—1+1)'
+'o + «(p + r)]+..

Or 3 ^ p -f r^ n ;

il faut distinguer deux cas :

I. 3^p-f-r^n — 1

II. p-f r w.
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I. ^Ap^r r — n — 4-

r0 + <x(p-s-r) rp+r>0.
et, dans ce cas, pour A suffisamment petit,

Fp+i(x+ h)>0 p= 1,2, ..,(ii-3)
r 2, 3, (n —p —1)
* l,2,..,(r-i).

quel que soit le signe de A, et on terminerait de la même
façon qu'au chapitre précédent.

II. p-fr n
Fp + i{x-\-h) devient
flUr-i) 1

Fp+t(x + A) — —-p -— [r0 + g nf
(r—i) (r—i — 1) (r — î)(r—£+1)

Il faut remarquer que, dans ce cas, Fp+i(a;-f A) ne possède

qu'un terme, en fn- (fn+1 fn+2 .=0).
Or, r0 -f g n 0

donc Fp + j(ir-|-A) 0 p l,2,. (n — 2)

r n — p
i l,2,..., (n—p-1).

ce qui eût été, du reste, facile de prévoir d'après les
considérations du § 1 du chapitre premier.

Dans ce cas, le tableau de la page 105 se présente comme
suit :

fp-iip+h) fp — 1 >0 Fp_1(a; + A)

fp(x + h) h" fn — II''-1 fp-! fn Fp(rc + A)

/p+i(«+-A) A—V» 0 Fp+i(as-f A)

fP+,(x-{-h) A—2/„ 0 Fp+2(a; + A)

/n_8(iK-f A) a2 /; eeO F„_8(a;-f A)

f„-i(x A A) A /„ 0 Fn_i(a;-f A)

fn(X-{- h) f» >0 F„(« + A).

Il faudra faire usage des conventions au sujet des zéros,
et distinguer les cas suivant que r est pair ou impair.
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r pair.

Le tableau ci-dessus devient, en supprimant les facteurs
positifs :

/p-i(*+A) fp-1 >0 Fp-ilx+ h)

fp(x + h) fn — A fp - 1 fn Fp(.r + A)

fp+i(x-\-h) hf„ G Fp+1(x-\-h)
fP+2(x + h) fn © Fp+2(x-\-h)

fn-«(x-\-h) fn © Fn-2(x-\- A)

f„-i(x-\-h) bfn 0 F„ _i(* + /0

fn{X+h) fn >0 F„(x' + A)

Déterminons vP(x~\~li), vP(x — A), puis vP(x).

vV(x-\-h) _\—sign[fp-An\ i — sign[hfp-if„]
2 ' 2

1 — sign [A] 1 -f-sign \hfP-t f„]

vF(x-\-h)--

vP(x — h):

2 ' 2

4 — signlfp-tfn]
2

1 — sign [fp-i fn]

Pour a; lui-même, les séries sont

/p_i 0 0 0 0 f„
Fp_! 0 0 0 0F„

et, d'après les conventions,

Jp — 1 fa fn • ¦ fn fn [n

+ © 0 •• © © +
1 — sign [fp-ifn]

donc

vP(x)--
Za

vP(x — h) — vP(x) 0

vP(x) — vP(x-\-h)=0
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r impair.

Le tableau des fonctions devient :

fp-t(x-\-h) fp-1 >0 Fp_,(#-fA)
fp(x-\-h) hfn — /p-1 fn Fp(x+h)
fp+1(x + h) fn © Fp+i(a-+A)
fP+2(x + h) hfn 0 Fp+2(x-\-h)

fn-2{x-\-K) fn. © F„_2(a;-fA)
/n_i(ic+A) hfn 0 Fn-x(x~\-h)
fn{X+ h) fn >0 Fn{x+h)

Déterminons i>P(#-|-A), vP(x—h), puis vP(x).

vP(x 1 fy—i-Wn&fp-if«] i — sign\fp-ifn\
A A

4 — sign [A] 4 — sign [fP-i fn]
-

vp{x + h)^-A^Mi=lB

vP(x-h)^AZliî^=lîA.
Il faut faire une distinction suivant que

a) sign[fp-ifn] — -\-l
b) siqn\fB-1fn] — l.b) sign[fp-if„]--

a) sigrt[fp-ifn] — -\-i.
vP(x-\-h) 0

vP(x — A) 0

Pour x lui-même, les séries sont :

/p_! 0 0 0 0 0 fn

Fp_! 0 0 0 0 OF,
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et, d'après les conventions,

Jp — 1 fn fa fn • fn fn fn •

+ ©©©••©©+•
vP(x) Q.

donc, vP(x — h) — vP(x) 0

vP(x) — vP(x -f A) Of
b) sigii[fp-1fn] —i.

yP(a:-f-A)=l
vP(x — A) 4.

Pour x lui-même, et avec les conventions au sujet des
zéros, les séries se présentent comme suit:

fp — \ fn fn fn • • fn fn fn •

-r ©©©••©©+•
vP(x)=\.

donc vP(x — A) — vP(x) 0

vP(x) — vP(x+h) 0)'
On reconnaît donc, en résumé, que lorsque a -0, et

n
que, pour une certaine valeur x, (a^x^b), on a

/p-1 X 0 fp --— /p + i /p +r-l 0 fp + r -^ 0

p l,2, (n-1)
r=l, 2, (n—p).

on a aussi
vP(x — A) — vP(x) 2 X

| 1 ^ 0.

ip(x')— vP(xAh) ö \

§ 2.

/o A-A------/,-i=QAX:0.
On peut se baser sur les calculs du paragraphe précédent ;

il suffit de faire
p-^aaO et /p_l 0.
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On reconnaît facilement que, lorsque

l^r^n— 1,

on a les mêmes considérations qu'au § 3 du chapitre II ; tandis

que, lorsque
r n,

F F F 01 I — 1 2 • — J. n — 1 — " •

Or, d'après les conventions au sujet des zéros, il faut
considérer ces zéros-là, comme quantités positives 0, lorsque

foAOf^O /B_1X0/KX0.
ce qui aura précisément lieu pour (xAh).

Ainsi, dans le cas où r n, on est aussi ramené aux
calculs et aux résultats du § 3 du chapitre II.

§3.

Théorème auxiliaire.

Examinons ce que devient le théorème auxiliaire démontré

au § 4 du chapitre précédent.

On a, par définition,

Fp rpfp* — rp-1fp-1fp+1 p l,2,. (n — 1).

On démontrerait de la même façon qu'au paragraphe cité
que

r l,2, ..,.(n — p—1).
pour une valeur x, telle que

fp-1^0 fp^O fP + r+lA0 fP+rA0
Fp F'p Fp(—1) 0.

Il reste à étudier spécialement le cas où

(p f 2,..,(n-1)
\r n —p.
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Montrons, tout d'abord, que F„_i est une constante, c'est-
à-dire que F'„_i 0.

f n— 1 rn— i [/n_!j rn — 2 fn — S fn-

F'n-t /„_!/'„ [2rn_! — r„_2]

or, rn_2 r0-}-g(n —2) et r„_1 r0-|-g(n — 1)

d'où 2 r„_i—-r„_2 r04~g?i 0, car g -°.

n
Donc F'n-i =0, et Fm_i est une constante.

En s'appuyant sur les considérations du § 4 du chapitre
précédent, on peut écrire l'expression suivante, valable aussi
pour ce cas,

Fp<»-i>-i> A.Fp+B.Fp+1 + + M.Fn_2 + A.Fn_1
p l, 2, (n —1).

A, B, M étant des fonctions finies pour la valeur x
considérée.

Dérivons :

fp
FA-p) A F'p + A'. Fp -f + M F'„_2 + f -!£-j Fn-u

ou, en remplaçant ces dérivées, par l'expression (1) de la
page 110, valable aussi dans ce cas, pour p l,2,.., (n — 2),

F,<—j»=ä Fp + B Fp+1+ -f M. Fn_2-f N Fb_l (2)

p l,2, (n —1).
A, B, M, N étant des fonctions finies pour la valeur x
considérée (voir § 4 du Chap. II).

Si, pour x, on a

Fp F'p=. Fp'»-p-1) 0 p l,2,..,(n — 2)

ce qui entraîne, d'après (1), pour x,
Fp Fp+! F,i_i =0

d'où, d'après (2;, Fp<"-^ 0, pour x.

On a donc le théorème suivant:

Lorsque Fp rpfp* — rp-1fp-ifp+i p l, 2,.., (n —1)

où rp r0-|-gp et g -; et si, pour une valeur x, on a
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/p_tXO /pXO fn-l^O fnAO
Fp Fp' Fpf-?-« 0

on a aussi, pour cette même valeur x,
Fp("-i» 0 p l,2, ..,(« —1).

On verrait de même, que, toujours pour x défini ci-dessus,

Fp(n-p+l) 0 p=l,2,. .,(»1— 1)

Fp(n-p+2) 0

§4.

Fy-XQ Fp= Fp+i-=.... Fp+r_! 0 Fp+rX-0.

On suppose que, pour x, (a^x^b),
fp-iAO fpAO fp+iAO fp+r-iAO fp+rAO
Fp_!^0 Fp Fp+1 Fp+,_1 0 Fp+r-X0.

p l,2, ..,(n—1)
r l, 2, (n—p).

Le cas où
p=l,2, ,.,(n-2)
r l,2, .,(n—p — 1)

ne présente aucun intérêt spécial; les calculs seraient en
tout point semblables à ceux exposés au § 5 du chapitre II, la
formule

F/)=-A-Fp+ r
fp + r

pour une valeur x, telle que

Fp F'p=..=F/-X 0,

conservant toute sa rigueur.
Dès lors, on s'occupe uniquement du cas où •

p l,2,. .,(n — 1)
et r n — p.
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c'est-à-dire, où, pour x
fp-lAO fp^O /p +1^0 fn-lAQ fnAO)
Fp_tX0Fp Fp+1=..=FM_1 0F„>0fr/"

p l,2, ..,(n— 1).

La formule de Taylor donne :

ft«-p-i
(n — p — 1)

Fp(x + A) Fp-f AF'p+. + — Fpi«-p-v +
hn-p hn-p + 1

Yp(-n-p) -| Fp("-p + D -f(n—p)\ ' (n— p + 1)!

On a tout d'abord

F/) /p7rFp+r p=l,2,..,(n-2)
r l,2,..,(» — p — 1)

et, d'après cette formule, on constate que

Fp Fp+! F„__1=0 entraîne
Fp F'p FJ—'-» 0

et alors, on sait que dans ce cas,

Fp("-^ Fp("--P+« Fp("-^+s) 0.

Donc, Fp(£-f" A) 0.

On verrait de même que

Fp+! Fp+2= F„_i 0

•ce qui confirme, ce qui a été dit au § 1 du chapitre premier.
Les fonctions se présentent dès lors comme suit :

IP—lì tpì /P+ 1) ••> fn+ l fn î

Fp_i, =0, =0, =0, Fn\9'
et ainsi

vP(x -f A) vP(x — A) vP(x)
eu

8, [g] vP(x — h) — vP(x) 0

82 [g] yp(a;) — vP(x -f A) 0 )'
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CHAPITRE IV

Conclusion.

Bevenons à la formule, développée dans tous ses détails,
au § 3 du chapitre premier:

l.A.m* l...k î..m l..m"
vF(a)-vF(b)= j? W>]f2 ^ S[^>]+2 h[gba»)].

t' i l t"
En se basant sur cette formule, et d'après les chapitres

II et III, on peut écrire :

»P(a)-t;P(ft) [2.X0 + 2X1 + 2Xî-f...]-f[r0-r-r1 + + rf]+
+ [2V+2V + 2V+--] (f-

Avant de donner quelques éclaircissements sur cette
dernière expression, remarquons que, dans les chapitres II et III,
on s'est occupé principalement de la fonction vP(x). En se
servant des tableaux établis dans les pages précédentes, il est
aisé de calculer dans chaque cas

pP(x-\-fi) — pP(x))
et pF(x) —pP(x — A)

et l'on arriverait à l'expression finale suivante, analogue à

l'expression (1) :

pV(b)-pP(«) [2X0 + 2\ + 2X, + .] + [r0+ r4 -f + rj\ +
+ [2V + 2V + 2V + ..] (2).

I. \, \, \,
\i \i \i • • • ;

proviennent du fait que dans l'intervalle a^x^b peuvent
se trouver des racines multiples des fonctions f intermédiaires
fil f^l ¦ -1 fn — 2-

On peut remarquer que

h A: 0 et h ^ 0 k o, i, 2,..
k 0,1,2,

10 HULL. SOC. SC. NAT. T. XL
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II. +o + ri + - • •] est Ie nombre de racines de l'équation

/(f) 0, qui se trouvent dans a. .b.

Posons
ro + ^-f ..+rf=N
*-o + »,1 + --+0 N'

vF(x— A) — vP(x) — r
vF(x) — vV(x + h) 0)'
pP(a;-fA)— pP(x) r
pP(x) —pl\x — h) 0)

du § 3 du chapitre II, permettent de conclure que :

1. les racines éventuelles de l'équation /(f) 0, pour
x a, ne sont pas comprises dans N, tandis que celles
correspondant k x b sont comprises.

2. les racines éventuelles de l'équation f(x) — 0, pour
x a, sont comprises dans N', tandis que celles correspondant

àa A ne sont pas comprises.

Il est inutile de rappeler que les racines sont comptées
autant de fois qu'il y a d'unités dans leur ordre de
multiplicité.

m. y, x/, x/,...)
V? V> V' • • •

proviennent du fait que dans l'intervalle a^x^b peuvent
se trouver des racines des fonctions Fi, P'2, Fn_i.

On a vu que
V^-0 et X-f'^0 a- o,i,2,..

1=0, 1, 2,

Les formules (1) et (2) peuvent aussi s'écrire

,P(a)_,P(è)=N + 2KX0 + X1+A2+..)+(V+V+V+..)]
pP(6)-pP(a)=N'+2[(X0+f+X2+. .)_j-(V+V+V+- •)]•
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Posons :

[(x0 + x1 + x2 + ..)+(V + V +v+..)] [A ^o
[(x0+x1 + x2+..) + (V+V+V + -•)]=!/ ^0

vP(a) — î/P(6)=N + 2ix

pP(6) — pP(a) N'+ 2 \>! ou bien

N vP(a) — vP(b) — 2ix jx^O
N'=pP(5) — pP(g) — V n^O

et ainsi se trouvent démontrés les deux théorèmes de Sylvester,
dans toute leur généralité.



DEUXIEME PARTIE

La Règle de Newton.

La combinaison simultanée du premier et du deuxième
théorème de Sylvester, dans le cas particulier où l'on fait,
dans le premier théorème,

a 0 et b -\-ooj
et dans le deuxième

a — oo et 6 0,

conduit à la Règle de Newton.

Désignons respectivement par
N+ et N_

le nombre de racines positives et le nombre de racines négatives

de l'équation algébrique à coefficients réels f(x)—0. On a :

N+ VP(0) - vP(oe) — 2 (x

N_ pP(0) — pP(— oo) - 21*' i

Voyons comment on peut déterminer facilement vP(0) et
pP(0).

Soit

f(x) ^aûxn-\-alx"~1Alhxn~2+ • - +«îi-2a?2+a«—i#-f a„=0
l'équation considérée; supposons

a0X0 et are -XO.

/W(,f) [n (n — 1) (n —p +1)] a0 se"-* + +p! a„_p.
p=l,2,...,n.

Pour a; 0, la série des / devient:

to i til t<ìl l3 i • • i fp 1 ••)/»•
an, l!an_!, 2!a„_2, 3!a„_3, p\a„-p, n!«0.
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On sait que les fonctions F sont définies comme suit:
F —f21 o — /0

Fp rp /p2 — rp-xfp-tfp+t, p 1, 2, (n — 1)

F —f2
où rp r0-|-ap.

j"
Choisissons r0 n et a — 1 ; donc

n
rp ii—p, p 0,l, .,(n — 1).

Pour ic 0, la série des F prend alors les valeurs
suivantes :

F — f 2 n 21 o—'/0 —"»

Fp=(n-p)[p are_p]2-(n-p+l)[(p-l) a„_p+1][(p-|-l)!a„_p_i]
r K'«—p)
L( (n-p+l).(p-l)!(p+l)!
_(p+a1)(,l_jö_|_1)K-p]2 «n-p+ l.«re-p-l

F„ /S2 [n!]2a02.

On peut maintenant écrire la double série qui fournira
«P(0) etpP(O); on a, en supprimant les constantes positives:

j Q-n—i i an—2 ftj üq

fi j[ 2in 2) n 1
2,-^—[«„-J2—an-2an,— [an-2f—an-1a„-a,..,—— at2—ff0«2>tto2

^ n o(n— 1 An

Quant à «P(-f °°), il est nul; car pour x=oo, la série
fo> fu • • i fn ne présente évidemment aucune variation.

pP(— oo) est aussi nul ; pour x — oo, la série f0, ft, fn
ne présentant pas de permanences.

Dès lors, on a les formules,

N+ »P(0) —2|i (1)

N_=pP(0) — 2£ (2)

où vP(0) et pP(0) correspondent à la double série, établie ci-
dessus.

De ces deux expressions, on peut déduire une limite
inférieure du nombre I de racines imaginaires de /(f) 0.
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En effet,

n N+ + N_+ l.
l n — N+ — N_ n — «P(0) — pP(O) + 2|* + V-

mais
_

n — vP(Q)— pP(0) V(0)
V(0) désignant le nombre de variations que présente la série
inférieure, celle des F.

On a donc :

I V(0) + 2X, (3) X^O.

Les formules (1), (2) et (3) expriment la Règle de Newton.

Voici comment Newton énonçait la première partie de sa
règle :

« Prenez une suite de fractions dont les dénominateurs
forment la progression arithmétique 1, 2, 3, 4, 5, etc., en
suivant ainsi jusqu'au nombre qui sera l'indicateur des dimensions

de votre équation ; et pour les numérateurs de vos
fractions, prenez la suite des termes qui forme les dénominateurs,

mais dans un ordre renversé. Divisez chacune de ces
fractions par celle qui la précède et placez les fractions qui
résulteront de ces divisions au-dessus des termes moyens de
l'équation. Ensuite, élevez chaque terme moyen au carré et
multipliez ce carré par la fraction qui est au-dessus du terme
correspondant, et puis examinez si ce produit est plus grand
ou plus petit que le rectangle des deux termes adjacents à
droite et à gauche, au terme que vous examinez ; si plus
grand, placez au-dessous de ce terme le signe -f; si plus
petit, placez au-dessous le signe —. Ecrivez sous le premier
et le dernier termes le signe -f. Et il y aura dans l'équation
autant de racines imaginaires que de variations dans les signes
souscrits de -f en —, et de — en -f.»

(Arithmetica universalis. — Trad, de Beaudeux. 1802).

Newton donne l'exemple de l'équation
x> — 4a?*-f 4 a;3 — 2a;2 — 5x — 4 0,

qu'il écrit comme suit :

2_ 1 1 2

5 2 2 5

x5 — 4a;4 -f 4a;3 — 2 a;2 — 5a; — 4 0

+ + - + + +
et Newton conclut :
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La série inférieure présente deux variations, par
conséquent, l'équation possède deux racines imaginaires. En outre,
t>P(0) l et pP(0) 2, donc le résultat est:

N+ 1,N_ 2 et 1 2.

Newton ajoute à la fin de l'exposé de sa règle :

« C'est ainsi qu'on détermine la nature de toutes les racines,

lorsque le nombre des imaginaires n'est pas plus grand
que celui qu'on peut découvrir par la règle établie ci-dessus;
mais il peut arriver, quoique bien rarement, que le nombre
des racines imaginaires surpasse celui que la règle a fait
connaître. »

C'est, du reste, ce qu'il est facile de vérifier d'après les
formules qui viennent d'être rigoureusement développées.

Quant au procédé de Newton, pour la détermination des
fractions par lesquelles doivent être multipliés les carrés des
coefficients des termes moyens de l'équation, on a :

11 n — in— 2 n — p -f 1 n — p 2 1

T' 2 ' 3 ' " '
p ' p + 1' " ' n -\'n'

et, en divisant chaque fraction, à partir de la deuxième, par
la précédente, on obtiendra la suite suivante :

n — 1 2(n — 2) p(n—p) n — 1

2n ' 3(n — 1)' " ' (p-f l)(n—p + 1)' " ' 2n .'

comme par le procédé de Sylvester, et les méthodes reviennent

au même.

La convention que fait Newton, dans YArithmetica
universalis, au sujet des zéros, est absolument d'accord avec
les conventions en vigueur dans ce travail-ci, et la Règle de
Newton est ainsi démontrée dans ses moindres détails, et
dans toute sa généralité.

Rappelons ici très brièvement ces conventions, appliquées
à la Règle de Newton.
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Soit l'équation

a0xn-\-alx"-1-\-a^xn—2-f -f an-iX-Yctn — O

et Aq Aj A2, An—i, An

les valeurs de la seconde série.

Supposons a0=^0 et an^0, donc A0 > 0 et. A„ > 0.

A) Si ftA-i^O ak — ak+lL=. .=ak+i-i — 0 ak + ,^0.
&=d, 2,'...., (n-1)
/ =1, 2, ....,(«.-A)

on donnera aux zéros ak, a^+j-i, £e même st*pie </ne ceiwt
de «ft_i.

B) Si Ai-i^O A«=At-+1 Ai+,;_1 0 Ai+i^0.
i 1,2,...., (n-1)
/ 4,2,....,(» — »).

En général, on donnera au zéro A,- le signe contraire de
celui de Ai—i, et ainsi de suite, en allant de gauche à droite,
et en variant toujours de signe.

Premier cas d'exception.

Supposons qu'on ait simultanément

cik—i AO a/£ aA+i =tt/c+;_i 0 ak + i^0
Ai_i#0 AA=Ayt+1 ==Aft+i_1 0 Ak + i^0

k l,2,....,(n-2)
1 2,3,...., (n-k).

Pour les aie, ak+i—i, on a la convention A ci-dessus.

Pour les A*, Aa+j—i, on a la convention B, sauf dans
le cas où qft—x • <*k+i<0. Dans ce cas, il faut que le zéro

représentant Aic+i—i ait le même signe que Ak + t.

Deuxième cas d'exception.

Si l'équation est de la forme a0(x — xi)" 0, alors

A,=A2= AB_1 O 0.
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(Les séries obtenues par les deux procédés, de Sylvester

et de Newton, seront retournées. Si par une méthode, on.
obtient

tu 1 ti i /2 1 ' '1 fn

F0, F4, F2, F„

par l'autre méthode, on aura

fn fn — 1 • -, f{ /o

F„, F„-x, F{, F0.)

Remarques.

I. L'application du premier ou du deuxième théorème de
Sylvester à l'intervalle

d= — oo è -|-oo

permet de formuler la règle connue suivante, qui peut du»

reste être démontrée directement :

Soit

f(x) a0 x" -f a{ x"-1 -f a2 xn~2 -f -f an-i x -|- an 0,

une équation algébrique à coefficients réels du nème degré.

Formons la différence
2«

dr\ Q.Q

Si cette différence est négative, on pourra certifier que
l'équation /(a;) 0 possède au moins un couple de racines-
imaginaires.

IL Le lemme de Gauss, dans la théorie des équations-
algébriques, est une conséquence immédiate de la Règle de
Newton et des conventions au sujet des zéros.



TROISIEME PARTIE

Compléments aux théorèmes de Sylvester.

Sylvester, en poursuivant ses recherches, dans la théorie
des équations algébriques, fut conduit aux résultats exposés
brièvement dans les deux paragraphes qui suivent.

§4.

Retour aux deux premiers théorèmes de Sylvester.

L'expression variation-permanence avait pour Sylvester,
quelque chose de «gênant» (c'est son propre terme); aussi
chercha-t-il à substituer, dans ses théorèmes, aux variations-
permanences, des variations-variations.

Considérons les deux séries :

/0 1 fil /2 • ¦ 1 fn

1*0 1 *-Tr ^2 > • • "«•
où les fonctions f sont les mêmes que précédemment; les
nouvelles fonctions

Uq (jj Lr2 (.!„

étant définies comme suit:
Go foF0 /03

&P fpFP rpfp3 — rP-ifp-ifpfp+i, P l,2,. .,(» —1)
G — f F — f 3"n fn a- n /n

rp, p 0, 1, (n — 1), étant les constantes considérées
jusqu'ici.

On a, en outre, par définition,

sign[&i] sign[fi] sign\FÎ], i 0,1, n.
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ce qui est très important pour cette étude, tout spécialement
dans le cas où, soit fi, soit F,, soit encore tous les deux,
sont nuls.

Par rapport à ces nouvelles séries, on pourra formuler les
deux théorèmes suivants, qui ne sont qu'une nouvelle expression

des théorèmes de Sylvester.

Premier théorème.

Soit N, le nombre de racines de l'équation algébrique à
coefficients réels /(a;) 0, qui appartiennent à l'intervalle

a> x^b.
Chaque racine étant comptée autant de fois qu'il y a

d'unités dans son ordre de multiplicité.
Soit v<fi(x), le nombre de variations-variations que

présentent les deux séries :

tu 1 tli ¦ ¦ 1 t"
"0 i ^*1 i ¦ • » "»

telles qu'elles viennent d'être définies, pour une valeur bien
déterminée x.

On aura alors

~N=v0(a) — v<f>(b)— 2ji-

(j. étant un nombre entier, non-négatif.

Deuxième théorème.

Soit N', le nombre de racines de l'équation f(x) 0, qui
appartiennent à l'intervalle

a ^ x < b.

Chaque racine étant comptée autant de fois qu'il y a
d'unités dans son ordre de multiplicité.

Soit pit(x) le nombre de permanences-permanences que
présentent les deux séries

/o > ti i ¦ ¦ i fa

pour une certaine valeur x.
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On aura, n' étant un nombre entier, non-négatif,

W p*(b) — p*(a) — 2 |/.

Pour vérifier l'exactitude de ces théorèmes, il suffit de
remarquer que, si le couple de successions correspondantes

fpi fp+i
(FP, Fp+1j

est une double-permanence,

fp i /p+i
fpFp, /p+i Fp+i

en sera aussi une.
Mais, si

fpi /p+i
(Fp, Fp+1]

est une variation-permanence,
{ fpi fp+i
(fpFp, /p+iFp+1)

deviendra une double-varialion.

Le troisième théorème de Sylvester.

Pour déterminer le nombre N de racines d'une équation
algébrique à coefficients réels, situées dans un intervalle réel,
a b, on peut appliquer trois théorèmes, indépendants l'un
de l'autre, (abstraction faite du théorème de Sturm, etc.), à
savoir :

1°) le théorème de Budan-Fourier.

Bappelons que ce théorème s'exprime par la formule

N t<o) — v(b)~ 2|a

ij. étant un nombre entier, non-négatif, et v(x), le nombre de
variations de la série, considérée jusqu'ici,

/0 ti i ¦ • i fn-
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pour une valeur déterminée x, en ayant soin de supprimer
les termes nuls.

2°) le premier théorème de Sylvester.

3°) le deuxième théorème de Sylvester.

La série G0, G4, G„ donne lieu à un troisième
théorème de Sylvester.

Soit v(x), la fonction définie ci-dessus, à propos du théorème

de Budan-Fouriér, et soit <j>{x), le nombre de variations

de la série G0, G,, G„ pour une valeur bien
déterminée x.

Le troisième théorème de Sylvester est donné alors par
la formule

v(a)+0(a)-v(b)-0(b)N -
2

X, nombre entier, non-négatif, pair ou impair.

Sylvester attachait à ses trois théorèmes une égale importance.

Il en serait évidemment ainsi, si les limites obtenues
pour le nombre de racines, étaient toutes trois, indépendantes

l'une de l'autre. Sylvester l'affirme; mais on peut
montrer que le troisième théorème de Sylvester n'est qu'un
corollaire des deux premiers théorèmes.

En effet, considérons les deux séries :

/o > ti i ¦ ¦ i tn

*-T0 > Gj Un

On a déjà défini les fonctions v(x), $(%), v<fi(x) et p*(x);
on définirait, d'une manière analogue, vx(x) et pf(x).

Pour x — a, a n'étant pas racine de f(x) 0, on a évidemment

les deux relations :

Vtz(o,)-\- p0(a)-f« ^(a)-t-pit(rt)=n
vit(a) -f p et, (a)-f 2. v <j> (a) v(a) -f jzi (a).

d'où par soustraction membre à membre,

pir(ti) — v cf> (a) n — v(a) — ç£ (a) ou
v(a)-\- <fi(a) — veh (a)-fpir(a) n constante pour tout point
a qui n'est pas racine de /(f) 0; x=^b, par exemple, donc
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v(a) A 0(a) — v<f> (a) +P"K(a) v(b) -f 0(b) — v 0 (b) -f pn(b).
d'où

v(a)A 0 (a)—v(b)— cj> (b)=v 0 (a)—v0 (A)-fp-rc(6)—pit(a) (1)

v(a)-\- 0 (a) — v(b) — 0 (b) _ v 0 (a) — v $ (b) pit(b) — pr.(a)
_____ _ _ | _

ce qui permet de constater la relation existant entre les trois
théorèmes de Sylvester, et de démontrer le troisième.

Le troisième théorème ne peut pas préciser les résultats
fournis par les deux premiers théorèmes.

En effet, supposons qu'on ait simultanément,
v(a) + 0(a)-v(b)-0(b) ^—<v 0(a) —v 0(b)

et v(a)-\-0(a) — v(b) — é(b)
g — < P<b) -p*(a)

d'où

n v(a)-\-é (a) — v(b)—é (b)

ce qui est en contradiction avec la relation (1) établie ci-
dessus.

Il y aurait lieu de distinguer spécialement le cas où a, b
sont racines de l'équation /(f) 0.

On déterminerait immédiatement d'après les séries

to 1 111 ¦ ¦ 1 fn

*-T0 1 "I • • 1 Gi
pour x a, et x — b, la multiplicité de ces racines. Soit
A, la multiplicité de a; B, celle de b.

On reconnaîtrait alors facilement que la supposition
v(a)Aé(d)—v(b)—6(b)W^W2 - 9K)<v0(a)-v0(b)-B.

<ptz(b) — p*(a) — A.

conduirait à une contradiction.
Donc, encore dans ce cas, le troisième théorème de

Sylvester ne contribue en aucune manière à préciser les résultats

obtenus par l'application des deux premiers théorèmes.
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Exemples.

Exemple I.
Considérons l'équation

4ic5 — ox* — 20a;3-f 50«2 — 40 a; —101 0.

Combien contient-elle de racines dans l'intervalle a 0,
0 1?

On a:
f0 4a;5 —5œ4 —20rr3 + 50ic2 —40ic —101

f\ 20 œ* — 20 a;3 — 60 ir2 -f 100 x — 40

/g 80 œ3 — 60 x* — 120 « -f 100

/3 240 .x'2 —120 x —120
/4 480 « — 120

f5 480

Pour a; 0, ces fonctions deviennent:

£c 0: —101, —40, 100, —120, —120, 480

et pour x== 1 : —112, 0 0 0 360 480

Le théorème de Budan-Fourier donne donc

N <0) — t<l)--2|* 3 — 1— 2[x 2ou0.

Voyons si les théorèmes de Sylvester ne vont pas
permettre de préciser ce résultat.

Les constantes rp sont données par l'expression

y
rP ro-\-(XPi a^-—-, p l,2,3,4.
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Faisons r0 5 et a — 1; d'où

r0 5, r, 4, r2 3, r3 2, r4 l.
Pour x 0, la double série est:

-101, —40 100 —120 —120

+, 4(40)2 -5(-l 01)100,3(100)2-4(-40)(-120),2(120)2-3(-120)100,(120)2-2(-120)480,

ou x 0: — — -f — — -f
+ + + + + +

Pour x i, on a

— 112, O, O, O, 360, 480

+ O, O, 0, +, +
ou x=l: - © © © + +

+ © © e + +•
.Le premier théorème de Sylvester n'indique rien de

nouveau:

N vP(0) — vP(l) — 2|x 3 — 1— 2{i 2ou_0.

Le deuxième théorème de Sylvester donne:
N pP(l)—pP(0) —2^ 2 — 2 — 2^ 0.

L'équation considérée ne possède ainsi aucune racine
entre 0 et 1.

Exemple II.
Soit à déterminer la nature des racines de l'équation

x6 — 4a;5 — 9 a;4- 8ic3 — 4«2 — x—12 0.

Pour appliquer la Règle de Newton, on forme d'abord les
fractions suivantes :

6 5 4 3 2 1

V 2' "3' ï' 5' 6"'

et, en divisant chacune d'elles, à partir de la deuxième par
la précédente, on a

5 8 9 8 5

12' 15' 16' 45' 12'
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qu'il faut placer sur les coefficients moyens de l'équation.
5 8 9 8 5

7? "Ï5 "Ï6 ~ïb ~ïï

x6 —4 a?5 —9 a?4 —8 as3 —4 a?2 — x —12

+ ++© + - +
On a donc :

N+ t>P(0) — 2i* =L
N_=pP(0) — 2|*'=T.
1 V(0) f 2X =4.

11 BULL. SOC. SC. NAT. T. XL
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