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THEORIE DE LA COMPENSATION A MERCURE

DANS LES

PENDULES D’HORLOGES ASTRONOMIQUES

PARr 1. STR@ELE

INTRODUCTION

La compensation & mercure a été imaginée par le constructeur
inglais Georges Graham il y a déja pres de deux siécles; la
plus grande partie des horloges de précision construites depuis
lors ont été munies d’un pendule a mercure. Néanmoins, la
théorie de ce systéme de compensation a été fort négligée; on
peut s’en étonner a bon droit, le pendule étant 'organe régu-
Liteur, c’est-a-dire l'organe essentiel de ’horloge de précision,
qui joue un role si important dans la pratique des observations
astronomiques.

Un grand nombre de traités et de manuels d’astronomie
pratique, de physique et d’horlogerie théorique, donnent encore,
pour le calcul de la quantité de mercure nécessaire a la com-
pensation d’un pendule, des formules approchées qui sont, ou
absolument fausses ou notoirement insuffisantes. J’ai montré
dans le premier chapitre du présent travail qu'on peut facile-
ment modifier ces formules de fagcon & ce qu’elles donnent des
resultats trés acceptables.

- Mais ces formules approchées, qui sont basées sur la consi-
deration d’'un pendule simple, ne s’appliquent qu’aux pendules
4 mercure du type usuel, dans lesquels la masse du mercure
tst de beaucoup prédominante. Des qu’'on s’éloigne de cette
forme, elles ne sont plus applicables, et il faut absolument
tecourir & la théorie exacte du pendule composé. J’ai montré
dins le chapitre II qu’on peut alors se servir avec avantage
d'ine formule due &4 M. B. Wanach pour calculer la quantité
de mercure et pour résoudre tous les problémes connexes.

. Le chapitre IIT est consacré a l'influence du gradient (c’est-
d-dire de l'inégalité de la température a diverses hauteurs)
Sur la marche d’un pendule & mercure. Cette question essen-
tielle a été traitée il y a quelques années par M. B. Wanach
dans un mémoire trés remarquable. J'ai repris ici toute cette
‘luestion et j'ai réussi & montrer qu'on peut, en adoptant un
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type de pendule a mercure absolument nouveau, compenser
aussi cet effet du gradient et obtenir ainsi un pendule double-
ment compense.

Lorsqu’on veut résoudre ces diverses questions avec quelque
précision, on ne peut pas négliger l'effet de I'air ambiant sur
la compensation thermique du pendule, comme on 1'a presque
toujours fait jusqu'ici. Cet effet de I'air ambiant fait 1'objet du
quatriéme et dernier chapitre de la présente étude.

Mon travail reste encore incomplet puisque l'effet de la
température sur 1’élasticité du ressort de suspension, ainsi que
sur le frottement de 1’échappement et sur 'amplitude, n’y est
pas étudié. Mais ce sont la des questions plus complexes et
aussi plus spéciales; on peut d’ailleurs espérer que ces effets
(tout au moins les deux derniers) sont beaucoup moins impor-
tants que ceux que nous avons eétudiés, et peut-étre méme a
peu prés negligeables.

Je me suis constamment efforcé, au cours de cette étude,
de ne pas m’égarer dans des calculs purement théoriques, de
ne pas perdre de vue les problemes qui se posent dans la pra-
tique, et de les résoudre le plus simplement possible, en négli-
geant résolument tous les termes inutiles. J'espére que j’ai en
partie réussi et que quelques-uns des résultats auxquels je
suis parvenu pourront étre immédiatement utilisés par les
astronomes et les constructeurs.
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NOTATIONS EMPLOYEES

= rapport de la circonférence au rayon.

¢ accélération de la pesanteur.

longueur du pendule simple synchrone.

/i hauteur du mercure.

# distance de la base de la colonne de mercure a la suspension.
« distance du sommet de la colonne de mercure & la suspension.
' distance de la surface libre du mercure & la suspension.

» densité du mercure.

«  produit de la section du vase par ¢.

p = ch poids du mercure.

I"  poids de la partie solide.

:  poids d’une quantité de mercure additionnelle.

» rayon du vase cylindrique.

¢ volume du mercure.

» masse du mercure.

M masse de la partie solide.

4 masse de mercure concentrée en un point.

T == i .
m
I, distance du centre de gravité de la partie solide & la suspension.
+ distance du centre de gravité du mercure A la suspension,
+  coefficient de dilatation de la tige.
1, coefficient de dilatation linéaire de la paroi du vase.
coefficient de dilatation du mercure.
=Y — 2a, coefficient apparent de dilatation linéaire du mercure.
: = B—d::"{—-fzal—d.

a
J =elg—=0cl—

I durée d’une oscillation simple.

N (au chapitre Ier, § 5) nombre d’oscillations simples par jour.

A variation de la marche diurne.

N moment d’inertie du pendule.

Il moment statique du pendule.

1 moment d’inertie de la partie solide du pendule.

moment statique de la partie solide du pendule.

' moment d’inertie du mercure.

¥ moment statique du mercure.

- moment d’inertie du mercure situé entre le niveau primitif et le
niveau résultant d’une élévation de température de 1o,

moment statique du mercure situé entre le niveau primitif et le
niveau résultant d’une élévation de température de 1o.

' moment d’inertie de la surface libre du mercure.

> moment d’inertie du mercure situé entre le niveau primitif et le niveau
résullant d’une augmentation de gradient de 1o.

moment statique du mercure situé entre le niveau primitif et le niveau
résultant d’une augmentation de gradient de 1o.

a

Q
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élément de masse.

sa distance & la suspension.

moment de troisieme ordre du mercure (g Pkx*).
moment de troisieme ordre de la partie solide (xx?).
moment de troisitme ordre du pendule =K -| 4.
température.

gradient (différence de température par unité de hauteur).
masse solide concentrée en un point.

sa distance & la suspension.

longueur d’une ligne matérielle solide.

sa densité (masse de I'unité de longueur).

Notations spéciales au IV"e chapitre.

densité de I’air.

pression de 1’air.

température absolue de I’air.

coefficient barométrique de 1’horloge.

coefficient thermique di & Dair.

constante de réduction aux unités choisies.

premiére constante dans la formule de réduction au vide.
deuxiéme constante dans la formule de réduction au vide.

|

parties de A.

s 1
valeur inconnue de 5 B.

coefficient de frottement (viscosité) de 1’air.

premiére constante dans la formule exprimant le frottement en fonc-
tion de la température.

deuxiéme constante dans la formule exprimant le frottement en fonc-
tion de la température.

rayon d’un cvlindre.

longueur d’un cylindre.

distance de la suspension jusqu’au centre de gravité d’un cylindre.
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CHAPITRE PREMIER

Formules approchées
pour le calcul de la quantité de mercure.

1. Formules actuelles.

Tous les ouvrages qui s’occupent du calcul de la quantité
de mercure donnent I'une ou l'autre des deux formules sui-
vantes :

Premaére formule. — Pour obtenir cette formule on ne tient
aucun compte de la masse de la partie solide; on considére
~culement celle du mercure, qu’on suppose concentrée a son
centre de gravité; on est ainsi ramené au cas d’un pendule
simple.

Désignons par ! la longueur de ce pendule simple; soient
/v la hauteur du mercure, « le coefficient de dilatation linéaire
de la tige du pendule, «, celui des parois du vase, y le coef-
ticitent de dilatation cubique du mercure; le coefficient de
dilatation apparente du mercure dans ce vase (dilatation en
liduteur) sera §=y— 2a,.

[.a longueur de la tige du point de suspension jusqu’a la

L4 h l 1 r
hiase du mercure est égale a I,—I—_C)-—. Supposons que la tempé-

rature s’éléve de 1o, et soit al I'allongement du pendule qui en
resulte. On a la relation :

I h
Il = (14D )= a9

(Si la tige n’était pas toute d’'une méme substance, il fau-
drait prendre pour « une moyenne établie proportionnellement
4ux longueurs de chacune de ces substances.)

[’équation se simplifie et donne :

Al=la— l—; (B—a)
NI on pose, pour abréger :

:)—tl—f“i’--——-"_),d.!—l —= g
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cette relation devient:

h
A[——lm“"‘-;s (1)

Pour que le pendule soit compensé, il faut qu'une variation
de température n’entraine pas de variation de longueur, c’est-
a-dire que a!=0. La condition de compensation est donc:

d’ou on tire:
h=212 2)

1]

C’est la formule dont il s’agit. En pratique, il est toutefois
préférable de calculer directement le poids p du mercure
plutét que sa hauteur h. Soient donc » le rayon du vase, 3 la
densité du mercure, et utilisons ’abréviation =r28—¢. On a
évidemment :

p—=eh~—=2¢l i:‘zm&az
: Y —2a, —a

a

Si nous introduisons la quantité auxiliaire y (dont nous
ferons encore usage dans la suite) en posant:

== Cl —a" r:-m“-’Sl - —-—--—a_._.._ (3)
- T 211 —a

la formule obtenue se réduit a:

L4

— 9y

Puisque la masse de la partie solide a été négligée, la for-
mule ci-dessus ne saurait évidemment s’appliquer qu’aux
pendules dans lesquels la masse du mercure est prédomi-
nante; il ne faut pas songer a s’en servir pour des pendules
différant du type usuel, par exemple pour les pendules &
mercure de Riefler!, ou la masse de la partie solide attein!
prés des 2/, de la masse totale du pendule.

Mais méme dans les pendules & mercure ordinaires, le

! Pour une description de ce pendule, voir: RIEFLER, Zeitschr. f. Instr.,
XIII, p. 88. Voir aussi la fig. 2 et les données numériques & la page 226 du pre-
sent travail.



poids de la partie solide n’est jamais négligeable, de sorte
que cette premiére formule! est toujours insuffisante: elle
donne des résultats notablement trop faibles.

Deuzxiéme formule. — Cette formule repose sur une erreur
arossiere, et elle ne mériterait pas d’étre citée dans un travail
sérieux, si elle ne figurait pas aujourd’hui encore dans nombre
d’excellents ouvrages 2.

L’erreur commise consiste a remplacer, dans la condition
de compensation (2), le coefficient de dilatation apparente du
mercure, ¢, par la dilatation elle-méme, c’est-a-dire par =r2h:.
[équation devient alors :

h‘:‘]oha —la
g "'
d'ou 'on peut tirer:
po- g/ 2 (%)
r TE

Il n’est pas étonnant qu'une formule qui repose sur une
lelle confusion donne des résultats absolument fantaisistes.
I/inexactitude de cette deuxiéme formule se remarque d’ail-
leurs immédiatement & ce fait que, alors méme qu’elle ne
contient que des constantes et des longueurs, elle n’est pas
homogéne par rapport a celles-ci, de sorte qu’elle donne des
résultats tout différents si I'on choisit des unités de longueur
lifférentes !

Il est vraiment étrange que cette formule fausse ait été
reproduite un peu partout, sans contréle, pendant aussi long-
lemps. Ajoutons que Ierreur commise a déja été signalée, il
v a prés de 30 ans, par M. Lorenzoni3. Mais il semble que,
malheureusement, sa remarque a passé inapergue.

J‘m\-’oir, par exemple: AMBRONN, Astronomische Instrumentenkunde, 1,
I 230,
Karmarscu et HEereN., Technisches Worterbuch, 1883, VI, p. 594.

2 Voir : VALENTINER, Handworterbuch der Astronomie, IV, p. 14 (article
« Uhr » de E. GERLAND).

E. GercicH. Die Uhrmacherkunst und die Behandlung der Prdcisions-
vhiren, 1892, p. 315.

CL. Saunier. Traité d’Horlogerie moderne, Paris, 1869, p. 709.

CH. LABoULAYE. Dictionnaire des Arts et Manufactures, 7= éd., 1891, II
(article « Horlogerie », de BREGUET). Cette 7ve ¢dition semble d’ailleurs conforme,
Sur ce point, a la 1re, parue vers 1860: il est donc possible qu'il faille attribuer
“ Breguet la paternité de cette formule.

3 G. LoreNnzon1. « Sul caleolo del altezza del mercurio in un pendolo a com-
bensazione » (Mem. Soc. Spectr. Ital., 1879, Apgi I).

Cette erreur a été signalée 4 nouveau par M. F. KegLuorF, « Calcul d’un
l{;‘;lgdule g%%mpensateur a4 mercure », Journal suisse d’horlogerie, t. XXIII,
O 3 p_ b 14 d



2, Formule de M. Keelhoff,

On peut modifier la formule (2) pour tenir compte du
poids de la partie solide du pendule.

Premaére méthode. — En 1823 déja, Fr. Baily! indiquait
que la quantité de mercure calculée par la formule (2) doit
étre augmentée de '/,, de pouce, pour tenir compte de la
tige, dont il évaluait la masse a 115, de celle du mercure.
(Les tiges des pendules de notre époque ont généralement
une masse relative bien plus considérable?; la correction
indiquée devrait donc encore étre augmentée d’autant.) Mais,
chose curieuse, Baily négligeait complétement la masse du
récipient.

Cette lacune a été relevée par Edm. Beckett® qui, pour
lenir compte aussi de cette masse, propose la régle suivante :
« Le poids du récipient et de la tige est environ !/, du poids
exact du mercure : on doit donc augmenter d’autant la hauteur
calculée par la formule (2), car celle-ci a été étahlie comme
si toute la lentille était faite de mercure; le résultat de cette
formule est donc seulement les %/, du montant réel. »

Essayons de traduire cette régle en formule; appelons P
le poids de la partie solide du pendule et introduisons I

P
valeur littérale 7 du rapport de ce poids a celui du mercure,

au lieu de la valeur !/; que Beckett admet uniformément
pour n’importe quel pendule; le rapport °/; devient alors

1 ——, et la regle de Beckett disant que le résultat fourni

P _ -
par la formule (2), ¢’est-a-dire 2y, n’est que les 3/, du mon-
tant réel, signifie que :

:33/———(71—mp

! Fr. BaiLy. « On the mercurial compensation pendulum. » Mewi. Astr. Soc.
London, 182, I, p. 381-419. (Cité d’apres BeckerT, Treatise on Clocks...)

2 Détail curieux a noter : faute d’une théorie suffisante, tenant compte de l»
partie solide du pendule, les constluctems se sont efforces pendant trés long-
temps de réduire celle-ci le plus possible, au détriment de l'invariabilité du
pendule, naturellement; peine bien inutile, d’ailleurs, la masse de la partie solide
restant quand méme appl éciable, et la formule continuant a donner des résultats
beaucoup trop faibles. C’est pourquoi les constructeurs ont heureusemen!
renonceé maintenant, pour la pF upart, 4 ce stratagéme, quitte & déterminer par
tAtonnement la quantité de mercure nécessaire a la compensation.

3 Epm. BEckErT. Mechanics Magasine, . febr, 1864. (Cité d’aprés Treatise
on Clocks.., du méme auteur.)




dou :
p=2y-+P ®)

La régle consisterait donc simplement a ajouter au résultat
le la formule (2) le poids méme de la partie solide du pen-
lule. Cette formule (5) repose en somme sur le raisonnement
suivant : La quantité de mercure 2y est calculée de telle facon
ju’elle se compense elle-méme; 1l faut encore lui ajouter un
poids P de mercure pour compenser le poids de la partie
solide du pendule.

Il est probable cependant que Beckett ne I'entendait pas
ansl, sans quoi il eat énoncé sa régle précisément sous cette
‘lorme trés simple. (Cest donc plutot la premiére partie de sa
regle qu’il faut suivre 4 la lettre, a savoir qu’il faut augmenter
la quantité de mercure 2y de !/, de sa valeur!, c¢’est-a-dire poser:

P ,
p=2y+4—2y (6)
1)

Cette nouvelle formule répond au raisonnement suivant :
Nil y avait seulement du mercure & compenser, il en faudrait
lv quantilé 2y; mais, pour tenir compte de la partie solide, il
liut augmenter cette quantité; et il est naturel de 'augmenter
duans le rapport du poids total du pendule, P-}-p, au poids
du mercure seul, p.

Cette formule (6), laissée sous cetle forme, permet de
ciulculer p par approximations successives; mais on peut aussi
cn tirer une formule explicite en la résolvant par rapport ap,
o obtient :

P=y+1y 2Py (7)

(On doit prendre le signe -}, car ’autre signe donne pour
i ine valeur négative.)

Deuzieme méthode. — Les déductions du paragraphe précé-
{ent manquent de rigueur; il n’est donc pas inutile de les
‘ppuyer par d’autres considérations.

Remarquons tout d’abord que Veffet compensateur d’une
tolonne de mercure n’est pas simplement proportionnel a sa
auteur, mais bien plutot au carré de sa hauteur. En effet, la
ilatation d’une telle colonne revient au fond au transport
Tune certaine quantité de mercure. La quantité de mercure

! (Zest de cette facon que Lorenzoni a interprété la régle de Beckett; voir
Lovenzoni, loe. eit.
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transportée est naturellement proportionnelle a la quantité de
mercure de la colonne; et la hauteur dont elle est déplacée
est (en moyenne) la moitié de la hauteur de la colonne. On
pourra admettre que |'effet compensateur est approximative-
ment proportionnel a ces deux facteurs et dépend par consé-
quent du carré de la quantité de mercure.

Nous savons que la quantité de mercure 2y se compense
elle-méme. D’autre part, la quantité de mercure cherchée, p,
doit compenser le poids total du pendule p—+4 P. Puisque
I'effet compensateur de ces quantités est proportionnel a leur
carré, et si nous admettons que cet effet compensateur doit
aussi étre proportionnel au poids 4 compenser, nous aurons
la relation:

d’ou on tire pour p la valeur :

p=y-+vy| 2Py
On retombe donc sur la méme formule (7).

Troisiéme méthode. — On peut encore procéder de la fagon
suivante ! :

Supposons toute la masse du pendule concentrée en son
centre de gravité, et établissons la condition de compensation
du pendule ainsi constitué. Nous conservons les mémes nota-
tions que plus haut et y ajoutons les suivanles: b est la dis-

- . h
tance de la base du mercure a I'axe de suspension; A=b——

est alors la distance du centre de gravité du mercure a la
suspension; L. est la distance du centre de gravité de la
partie solide jusqu’a la suspension; ! est la longueur du pen-
dule simple, et aussi, dans notre hypothése simplificatrice, la
distance du centre de gravité du pendule entier a la suspension.

Les positions des trois centres de gravité sont liées par la

relation :
[(p4-1) = | DL
d’ott on tire pour la longueur du pendule:

M L P (8)

1 (Cette démonstration ¢quivaut a celle donnée par M, Keelhoff ; loc. cit.
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- /
S1 on y remplace }» par sa valeur h——%, cettte formule

devient : g
pb— p — l PL

=
F+P

Supposons que la température s’éleve de 1o, et soit A/
I'allongement de / qui en résulte. On aura:

pbl +a>—p’—'(‘1 1L PLA |2

L&l =— — o
J p4-P
pba—p B+PI o
— -]
P+P

On peut supprimer / dans les deux membres, et il reste
pour la valeur de l'allongement du pendule:

pba—up—ga—,—PLa-—-p{}({i—a)

Al — — - e b - p lh2
pt P 2(p | P)
Introdmsons ici aussi la constante ¢ 23 —1" Lerésultat
obtenu peut s’écrire : t
st P h
2e(p+P)

Pour que le pendule soit compensé, il faut qu'une éléva-
tlon de température de 1o n’altére pas sa longueur, c’est-a-
dire qu’on ait s7—0, d’ou :

la= " — (10)

2e(p+-P)

Il ne reste plus qu'a résoudre cette équation par rapport
4 p, la quantité de mercure:

] a
PR—2cl = p—2cl—P—=0

= =



Posons comme auparavant, pour abréger :

cli,—:y

-

I'équation s’écrit alors :

pr—2yp—2yP=0
et on en tire :
p=y+vy+2Py

On retrouve donc par cette troisieme méthode la formule
(7) déja donnée par les deux autres.

Cette derniére démonstration, un peu plus longue que les
précédentes, a le grand avantage de bien mettre en évidence
les simplifications et les suppositions sur lesquelles cette for-
mule repose: On ne considére qu'un pendule simple, cons-
titué par le centre de gravité du systéme, mais on détermine
la position de ce centre de gravité en tenant compte, non
seulement du mercure, comme pour la formule (2), mais
aussi de la partie solide du pendule.

Cette formule de M. Keelhoff, que nous venons d’obtenir
par trois méthodes différentes, ne peut, comme la formule
actuelle (2), s’appliquer qu’aux pendules du type ordinaire;
dans ce cas seulement les centres de gravité du mercure, de
la partie solide, et du pendule entier sont suffisamment rap-
prochés du centre d’oscillation pour qu’on puisse substituer
un pendule simple au pendule composé.

3. Nimplification proposée pour la formule de M. heelhoff.

Méme dans ce cas du pendule a mercure usuel, la formule
(7) n’est qu’approchée; ce fait n’a d’ailleurs pas grand incon-
vénient en pratique, car il est une autre cause d’erreur beau-
coup plus grande que celle qui résulte de I'emploi de la
formule (7); elle provient de I'incertitude du coefficient de
dilatation de la tige a«. Ce coefficient varie beaucoup d’une
tige 4 une autre. M. Riefler!, en faisant déterminer les coefli-
cients de dilatation des tubes d’acier dont il se servait pour
ses pendules, a obtenu des valeurs variant de 10,34 ><10—° &
11,62 ><10—5. Les variations sont donc trés grandes, et si le
coefficient n’a pas été déterminé spécialement pour une tige,

1 RierFLER. Loc. cit.
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— B —

'erreur qu'on commet en admettant pour ce coefficient une
valeur moyenne peut dépasser !/,, du montant total.

Dans ces conditions, on peut se demander s’il n’y a pas
lieu de simplifier encore la formule approchée (7).

Premiére stmplification. — On peut tout d’abord en faire
disparaitre la racine en procédant comme suit :

p=y-+vy*+2Py
Sy VR 2Py PP
=Y+ (D)2 —P

=Y+ (- P) l/lﬁ_ﬁ_(;]]i P\)g

laa racine est maintenant développable en série conver-

P
gente, car —— < 1. Donc:
y+P

Wy 1, P 1, P ¢ P e
L ] L P ) Bt pm e bwm

En pratique, y est toujours supérieur ou au moins égal a

— —: il en résulte que le troisiéme
y-P 2

B % g
lerme du développement, - J (W—B ~) peut déja étre aban-

y+ P

‘onné, car sa valeur ne depasse pas 1/ 100 O /500 de la valeur
totale de p, exactitude a laquelle la formule (7) ne saurait
prétendre. Il reste donc :

p=y-+@-IP) [/1 - —i (?/ lf’ P) 2—I

(u’on peut aussi écrire :

P, de sorte que

Q P Ly
T eyt
bu encore :
P \
=} P(1l—— 1"
p=2y+ ( 2T (1)
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Deuxieme simplificution. — Cette formule (11) est elle-méme
inutilement compliquée. Son troisiéme terme, puisque P <y,
est toujours plus petit que '/,, du résaltat total p. On peut
donc, sans inconvénient, remplacer le deuxiéme terme de la
parenthese par une valeur numérique constante convenable-
ment choisie, ce qui raméne la formule (11) & une forme

linéaire trés simple.
P

Voici la valeur ————— pour quelques pendules de types
assez varies: 2(y+P
Pendule de Frodsham (cité par M. Lorenzonr) . 0,15
» Dencker (cité par M. Wanach) . . 0,45
» D. Perret (nouveau modele) . . . 0,25

Il est préférable d’adopter la valeur la plus grande, c’est-
a-dire 0,250=1/,, car nous verrons tout a I’heure que si la
formule simplifiée est valable pour une valeur de ce rapport,
elle 'est aussi pour des valeurs moindres, tandis qu’elle ne
I'est pas pour des valeurs notablement supérieures. Cest
pour qu’elle le soit cependant encore pour des valeurs légere-
ment supérieures qu’on pourrait rercontrer, que nous choisis-
sons la valeur la plus grande. La formule (11) devient alors:

b2y,
Il v’y a plus aucun intérét a maintenir ici la quantité
auxiliaire y. Nous avons donc:

a9

+/P (12)

v — D, —
{ — 2a, —a

Lorsque la tige et le vase sont en acier (et c’est bien lu
solution la meilleure) on a a=q«, =—0,000011 en moyenne.
On sait de plus que, pour le mercure, ¢= 13,60, y=0,000 181.
La formule (12) devient alors, dans le cas d’un pendule
battant la seconde (I=99cm 4):

p=—0631r2+43/.P

Valeur des termes négligés. — 11 nous reste a montrer que
la somme des termes abandonnés dans ces deux simpli-
fications est vraiment négligeable en pratique; il nous faut
donc comparer les résultats fournis par les formules (7) et
(12). Remarquons tout d’abord que ces deux formules don-



nent des résultats identiques pour les deux cas spéciaux
P—=0 et P=28/yy. Pour les autres valeurs de P, il y a un
écart donné par la différence des deux formules, ¢’est-a-dire par

vVy42Py—y—>3,P

Cherchons le maximum de cette quantité en égalant a
7€ro sa premiére dérivée par rapport i P:

Y 30
VrPlary

dy—31Vy2+2Py
16 y2=9 4> 418 Py
72— 18Py

Jou:

La solution y=0 ne saurait correspondre & un maximum.
Il reste :
Ty—18P
P-="7/sy

L’écart des formules (7) et (12) est donc maximum, entre
P=0 et P=y, pour la valeur P=7/,,y, et cet écart maxi-
mum a pour valeur :

ViR Ty — g — 2y ="y — oy y ="/

Done, tant que P reste compris entre 0 et 8/,y, 'écart des
leux formules ne dépasse pas 1/,y, C'est-d-dire environ '/,
du poids total du mercure, el on peut sans inconvénient
tmployer la formule simplifiée (12).

Mais dés que le poids P dépasse sensiblement cette limite
/4y, il n’en est plus de méme : les résultats fournis par les
teux formules s’écartent de plus en plus. Calculons done jus-
u'a quelle valeur de P, supérieure a 8/,y, on peut aller sans
'|ue I'écart dépasse cette méme limite !/,,%. Pour la trouver,
Il suffit de poser:

1/!]9”}—2??}— y—>3,P=-=1"15y
1ot lon tire :

324P2 — 368 )Py + (1 +48)y2 =0



d’ou:

En prenant les signes supérieurs de l'équation, on réob-
tiendrait la valeur P="7/,4%, qui ne nous concerne plus ici.
Les signes inférieurs de I’équation donnent :

) S P R !/

18

La valeur positive présente seule un intérét pratique. Orn
a donc:

/,1 4 "
) - G e s 4 7 —— A6 7 S 1(.
1 '—(9 —+ 9 V 2) gy =1428y =1y

Pour résumer toute cette discussion, nous pouvons donc
dire que tant que I ne dépasse pas la valeur 1'/gy, la for-
mule (12) peut parfaitement remplacer (7), I’erreur commise
de ce fait ne dépassant pas !/;, de la quantité totale du mer-
cure. Mais par contre, dés que P dépasserait cette limite.
I'erreur deviendrait rapidement beaucoup plus grande; mais
il faut remarquer en méme temps que deés que P dépasserait
sensiblement cette limite, la formule compléte (7) elle-méme
cesserait d’étre applicable, car on s’écarterait trop du cas ou
Ja masse du mercure est prépondérante.

Donc, en pratique, il y a lieu d’employer dans tous les
cas la formule (12), plus simple, au lieu de la formule (7):
et lorsque le poids P dépassera notablement la limite 11/4y.
il sera nécessaire de recourir a un calcul exact du pendule
composé, d’aprés la méthode exposée au chapitre suivant.

4. Formule de M. Lorenzoni. Comparaison des résultats.

En 1879 déja, la question qui nous occupe a fait 1’obje!
d’'une étude intéressante de M. G. Lorenzoni!. Si, en dépit
de I'ordre chronologique, nous n’en avons pas parlé jusqu’ici.
c’est que la méthode suivie par M. Lorenzoni pour résoudre
ce probléeme est intermédiaire entre la méthode approchée
employée dans les paragraphes précédents et la méthode
exacte qui sera développée au chapitre II.

1 . LorENzoNI. Loc. cit.
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M. Lorenzoni pose comme condition de compensation
parfaite que le centre de gravité du systéme ne doit pas étre
déplacé par un changement de température (c’est exactement
ce qu’a fait M. Keelhoff, mais en spécifiant qu’il s'agit d’'une
simplification); ce faisant, il considére donc son pendule
comme un pendule simple.

Mais dans la deuxiéme partie de sa démonstration, M. Loren-
zoni s’écarte de la méthode suivie par M. Keelhofl. Au lieu
d’admettre pour la distance de ce centre de gravité a la sus-
pension la longueur du pendule simple synchrone (ce qui
semblerait logique), M. Lorenzoni considére son pendule
comme composé, et cherche alors la relation qui lie ces
deux quantités; cette relation est naturellement compliquée :
M. Lorenzoni n’arrive a la simplifier qu'en en diminuant la
généralité, en remplacant certains rapports littéraux par leur
valeur numérique dans un cas spécial, en considérant donc
un modéle tout particulier de pendule a mercure. 11 obtient
ainsi la formule:

Y _|_ 1) pr
p=2y+ ot =, (13)
1)

ou P’ désigne le poids du vase, I’ celui de la tige. Cette
formule, comparable a la formule (6), permet de calculer p
par approximations successives; on pourrait naturellement
en tirer aussi une formule explicite analogue a (7), puis aussi
une formule simplifiée du genre de (12).

On voit par ces quelques indications que la théorie qu’a
donnée M. Lorenzoni pour la compensation a mercure est un
curieux mélange des deux méthodes; il faut sans doute en
voir la cause dans ce fait que M. Lorenzoni admet comme
condition de compensation parfaite I'invariabilité de position
du centre de gravité du pendule aux diverses températures,
tandis que (nous aurons l'occasion de le voir encore au cha-
pitre suivant) la condition d’'une compensation rigoureuse est
Iinvariabilité du rapport du moment d’inertie au moment
statique.

Il y a lieu de remarquer a ce propos que, alors méme que
la formule de M. Lorenzoni repose sur une théorie plus com-
pli(iuée que celle qui a conduit a la formule (12), il n’est
nullement certain « priori que les résnltats qu’elle donne sont
préférables. Pour établir (12), on a introduit partout la consi-
dération d’un pendule simple, et il y a des chances pour que
Perreur commise de ce fait se compense, en partie du moins:
tandis que M. Lorenzoni n’admet cette hypothése que dans

15 BULL. SOC. SC. NAT. T. XXXVII
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une partie de sa démonstration : il v a alors des chances
que l’erreur ainsi commise se retrouve toute entiére dans le
résultat. La comparaison pratique des deux formules confirme
cette maniére de voir; elle montre qu’en effet la formule (12;
est préférable a celle de M. Lorenzoni.

Ces remarques critiques sont loin d’enlever toute valeur
au travail de M. Lorenzoni; et la formule qu’il proposait esl
tellement supérieure aux formules usuelles qu’il est bien
regrettable qu’elle ne leur ait pas été substituée, au cours
des 30 derniéres années, dans les nombreux ouvrages que
nous avons cités plus haut.

Pour se rendre compte du degré d’exactitude de ces
diverses formules, le mieux est de comparer leurs résultats
a ceux du calcul exact. C’est ce que nous avons fait pour
quelques pendules :

(La premiére ligne du tableau suivant se rapporte a un
pendule simplifié et schématisé par M. Wanach!, et dont il &

1 B. WaANAcH. Loc. cit. Pour la commodité du lecteur, nous reproduison:
ici les schémas et les dimensions des deux pendules 4 mercure etudiés par
M. Wanach. (Pour chaque partie, R désigne le rayon, L la longueur, K la dis
tance du centre de gravité a la suspension.)

HR, ’:;1
A A A A A
v om T
9| : 1
1° Pendule ordin. | % E, | ; 20 Pendule Riefler
U | 1
Rayons : | % ‘ ' : Rayons :
By =28 L é v E, : R, =08
Bz = 2,7 / B Bg == 0,9
Ry = 10,4 % EzEs E3 ' § Ry = 4,8
L/
Longueurs : : ? L, Longueurs :
N X Z v -
IJ‘ETJII,AI i IJ]"-: 76
Ly =20 Ly = 122
LS =50 LIL E v L‘ LS = 9,8
Distances a la ’ i 7 % A Distances a !
suspension : l 3 // % L suspension :
v 3
E, = 99,4 27, % i E, — 88
E, = 98,1 Es =65
E3 = ’15,6 vv E3 = 10’1
. Fig. 1. Fig. 2.
Pendule & mercure usuel Pendule & mercure
de Dencker de Riefler

(d’aprés M, B, Wanach).

__La densité du mercure est de D, =13,60; celle admise pour les parties
solides (acier) D, = D, = 7,8.
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fait le calcul exact. Les pendules qui suivent ont été observés
a I’Observatoire de Neuchatel!'; D. Perret 10A et D. Perret
10B désignent un méme pendule, calculé pour deux coeffi-
cients de dilatation un peu différents. Tous ces pendules sont
a tige et vase d’acier.)

Poids du mercure calculé par la

formule actuelle formule proposée  formule de methode exacte
(2) (de M. Keeét;ogj simplifiee) M. I,?lr;)nzom (chap. II)

Dencker 27 (x v 3900 9r 4600 9r 4000097 A600gr
D. Perret 7 . . 4000 2600 1300 Hol0
D. Perret 9 . . 4300 2900 2700 D900
D. Perret 10 A . 4800 6500 6200 G600
D. Perret 10B . 4600 6200 6000 6300

Les corrections qu’il faudrait appliquer & ces résultals
sont donc:

Formule proposée Formule

Formule actuelle (de M. Keelhoff, simplifice) de M. Lorenzoni

_ (2 (12) (13)

Dencker 27 (4 v + 7009 Qgr [ 1009r
D. Perret 7 . . 11500 — 100 1200
D. Perret 9 . . | 1600 0 4200
D. Perret 10A . 4 1800 1100 I 400
D. Perret 10B . -+ 1700 -+ 100 —+ 300

On voit combien la formule actuelle est défectueuse: les
deux autres, par contre, donnent des résultats tres acceptables.
Ceux de la formule de Lorenzoni sont tous un peu trop faibles ;
ceux de la formule proposée, en revanche, sont exacts en
moyenne, et les écarts individuels ne dépassent pas 1/., de la
valeur entiére. La formule proposée est donc tres satisfaisante.

5. Formule de correction.

Il arrive souvent qu’on doive corriger la compensation
d’'un pendule en tenant compte des marches observées. Le
probléme qui se pose alors est le suivant : combien de mercure
faut-il ajouter ou retrancher pour compenser un coefficient
thermique donnsé.

. 1 Pour ces pendules Perret, qui sont tous du méme type, l¢ poids de la
tige est de 725 gr., le poids de la partie mobile (chope, couvercle, ete.) de 1435 gr.,
donc le poids total de la partie solide p = 2160 gr. Le récipient 4 mercure (au
travers duquel, dans ce modéle, passe Ia tige du pendule) a les dimensions sui-
vantes: diamétre de la paroi extérieure Hem 4, diametre de la paroi intérieure 1¢m,22,
On a admis pour les densités les mémes valeurs que Ml. ‘Wanach, et pour le
coefficient de dilatation de I’acier 2, 0,000 010, pour P 7, 0,000 010, pour P9, 0,000 012,
pour P10 A et 0,0000114 pour P10B (voir p. 240).
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Il faut d’abord établir une relation générale entre la varia-
tion de marche d’'une horloge et la variation correspondantt
de la longueur de son pendule (longueur du pendule simplec
synchrone). On sait que la durée d’oscillation T et la longueur '
du pendule sont liées par la relation:

T:nl/z
q

on en tire par différenciation logarithmique :

ﬂ—id_t dT:—:—l—dt
T 2 | 21

On peut y remplacer les différentielles par les différences:
si les puissances supérieures de celles-ci sont négligeables

Soit N le nombre d’oscillations du pendule par jour; il
suffit de multiplier AT par N pour obtenir la variation cor-
respondante Am de la marche diurne :

LY Al

mais N T =86 400, donc:
43200 N

Am =

! (1%)

Ainsi, la relation entre Am et Al varie un peu suivanl
'endroit ou 'on se trouve, puisqu’elle contient la longueur /
du pendule simple synchrone ; elle varie aussi suivant le temjs
que doit battre le pendule, temps moyen ou temps sidéral.
Pour un pendule battant la seconde de temps moyen, si nous
adoptons ! =99%m 4 la relation (14) devient:

Am—434.,6 al

et inversément :
Al=—0,002301 am
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Si, dans ces formules générales, on introduit pour am le
coefficient thermique qu’on a observé, c’est-a-dire la variation
de marche pour une élévation de température de 1o, l'al-
longement correspondant al du pendule s’en déduit immé-
diatement.

Al étant ainsi déterminé, voici comment on en deduit
d’ordinaire! la quantité A/ dont il faut augmenter la hauteur £
du mercure. On suppose, ici aussi, que la masse de la partie
solide est négligeable par rapport a celle du mercure. L.'équa-
tion (1) est donc applicable :

l

.llt:?la—-— z
o

Si 'on veut que le pendule soit bien compensé pour une
hauteur . -}-ah, on aura en outre, d’apres (2):

() == I _ “F)A_/_' .

d’ou, par soustraction :

Al—=--ceal

et par suite:

Si on veut la correction en poids, il faut simplement mul-
tiplier cette valeur par ¢—=r23:

Deal Bwy2ial =
= i (15)

.\]J‘

On peut encore, dans (15), introduire la valeur de al
d’aprés (14). Si, de plus, on admet les valeurs numériques
¢=13,596 et «¢=0,000148 (mercure dans un vase d’acier, la
tige du pendule également en acier, x=—0,000011), on obtient 2:

Ap— 1330123 me

! Voir, par exemple, AMBRONN, loc. cit.
. 2 Cette formule est donnée par ALerecHT, « Formeln et Hilfstafeln ». Toute-
fois, dans la derniére édition (4=, 1908) le coeflicient a été porté a 1500. Nous
verrons tout 4 I’heure que ce n’est pas encore suffisant.
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Ces formules donnent toujours des résultats trop faibles
d’environ 1/, ou !/, de leur valeur. On pourrait croire tou!
d’abord que cet écart provient, ici aussi, de ce qu’on a négligé |
partie solide. Il n’en est rien cependant; si 1’on tient compte d«
cette masse et qu'on introduise les simplifications qui nous on!
conduit a la formule (12), c’est-a-dire si on se base sur un-
condition linéaire de compensation, on obtient exactement l:
méme formule. Il est vrai que si on se base sur la condition
de compensation non simplifiée, on obtient d’autres formules.
plus compliquées; mais elles ne présentent guere d’avantag:
sur la précédente, car elles donnent aussi des résultats trop
faibles. I1 semble donc que ces écarts proviennent du fait que
nous avons considéré un pendule simple, alors qu’il s’agit eu
réalité d’'un pendule composé. '

La solution la plus pratique est d’employer la formule (15,
mais d’en multiplier le résultat par 1,22 cette constante ayant
été déterminée empiriquement?. On a alors:

Qh4dwrisal ‘
.\p’ == (‘“n

et, en particulier, dans le cas de 'acier :
Ap—1620223m

Lorenzoni? propose une formule de correction qui peut
se déduire de la formule usuelle (15) exactement comme I
formule proposée (12) se déduisait de la formule usuelle (2),

)

c’est-d-dire en en multipliant le résultat par le rapport ?_i_-l
p

du poids total du pendule au poids du mercure. On obtient

da1nsi .
Qe p+Pal__,p+P =r2aal
p = T .

;\])—_:

(17
et en particulier, pour une tige et un vase d’acier :

Ap r2Am

)
1330 ”___Jg '

! On voit au tableau suivant que le rapport de la correction exacte (derni-rv
colonne) a celle fournie par la formule actuelle (1t colonne) est de 1,17 et 1,14,
en moyenne 1,16 pour le pendule Dencker, et de 1,23, 1,25 et 1,36, en moyenne
1,28 pour le pendule D. Perret. La moyenne de ces deux résultats est 1,22.

2 Lorgnzoni. Loc. cit.
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Cette formule de Lorenzoni (17) est bien préférable a la
formule usuelle (15); mais elle est un peu moins bonne que
la formule empirique plus simple (16). (Uest ce que montrent
les résultats suivants, donnés par ces formules dans quelques
cas particuliers :

Correction de la quantité de mercure calculée par la

formule formule formule de méthode
actuelle proposée M. Lorenzoni exacte
o (15) (16) (17_} {chap. IT
Dencker 27 Ty Wan) —- 3600 — 4400 — 4300 — 4200
y I — 140 — 170 — 160 — 160
D. Perret9 . . . . 4350 -+ 430 + 430 4+ 130
D. Perret 10A . . . 4870 -H1060 41160 1000
D. Perret10B . . . — 140 — 170 — 190 — 190

Les corrections qu’il faudrait apporter & ces résultats sont
donc :

Formule

Formule actuelle Formule proposée  de M. Lorenzon
o (15) 116) (17,
Dencker 27 1 (y'Wamaen) — 6O + 204 | 10w
» 11 » — 20 [ 10 0
D. Perret9 . . . . |- 80 0 — ol
D. Perret 10A . . . 4220 [- 30 — 70
D. Perret10B . . . — 50 — 20 0

On voit que les erreurs que laisse subsister la formule (16).
la meilleure des trois, sont absolument sans importance en
pratique. Il est bien entendu que cette formule de correction,
elle aussi, n'est valable que pour les pendules a mercure
ordinaires.



GCHAPITRE II
Calcul exactl de la quantit¢ de mercure.

1. Cas d'un vase eylindrigne, Formule de M. Wanach.

Les formules établies au chapitre précédent ne sont qu’ap-
prochées. Dans le cas ou l'on connait un peu exactement le
coefficient de dilatation de la tige du pendule, il y aura avan-
tage a les remplacer par une méthode plus rigoureuse.

Ces formules, d’ailleurs, ne sont applicables qu’a des pen-
dules 4 mercure ordinaires; elles sont absolument sans valeur
pour des pendules a mercure d’autres types, qu’il s’agisse du
pendule a mercure de Riefler, par exemple, ou de tout autre
nouveau systéme qu’on serait amené a construire dans la
suite. Pour ces pendules-1a, il est nécessaire d’abandonner
définitivement la supposition du pendule simple et de recourir
a la théorie exacte du pendule composé.

Notons qu’on trouve jusqu’ici bien peu d’exemples de
calcul exact de compensation. On ne peut guére citer que
le calcul par approximations successives de Oudemans! (il
s’agissait de compenser un pendule a la fois pour les variations
de température et pour celles de pression) et plus récemment,
le calcul des pendules a2 mercure de Riefler (la méthode
employée par ce dernier a été exposée dans ses grandes
lignes par M. E. Anding?).

Il faut sans doute voir la principale cause de ce peu d’em-
pressement dans le fait qu'on ne connait généralement pas
avec une précision suffisante une des données indispensables.
le coefficient de dilatation de la tige; dés lors, le calcul exact
parait superflu; on se contente d’'un calcul approché, quitte :
corriger ensuite la compensation d’aprés les marches obser-
vées. Le remede a cette situation n’est pas difficile a trouver,
et il est vraiment trés désirable qu’on imite de plus en plus
’exemple donné par M. Riefler et qu'on fasse déterminer le
coefficient de dilatation de chaque tige; alors seulement l¢

1 J.-A.-C. Oupkmans. « Ueber die Compensation eines Sekundenpendels fiir
Teglperatur und Luftdruck vermittelst eines Quecksilberscylinders und eine-
Kriiger’'schen Manometers.» (A. N., 100, 1881, p. 17 et Zeitschr. f. Instr., 1881.)

2 E. AnNpING. « Bericht (iher den Gang einer Riefler'schen Pendeluhr. »
(A. N., 133, 1893, p. 217.)
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calcul exact pourra permettre d’atteindre du premier coup
une compensation pratiquement parfaite et d’éviter ainsi des
périodes d’essais qui durent parfois plusieurs années.

Mais il semble que deux autres causes encore ont dissuadé
horlogers et astronomes de recourir a cette méthode exacte.
Jest tout d’abord que celle-ci donne des formules tres com-
pliquées, dont il semble difficile de tirer un résultat assez
simple pour étre utilisable en pratique. (’est ensuite quon
cru nécessaire d’évaluer le moment d’inertie du pendule, opé-
ration assez longue et fastidieuse quand la forme de la partie
solide n’est pas trés simple.

Je me propose de montrer que si I'on emploie une formule
due a M. B. Wanach!, on peut éviter les deux inconvénients
que je viens de signaler; et il n’y a dés lors plus aucune raison
de ne pas préfeérer le calcul exact a la méthode approchée.

Il y a lieu tout d’abord de bien se rendre compte du degr¢
d’approximation nécessaire dans les calculs qui vont suivre.
On peut admettre que, pour une horloge astronomique ins-
tallee dans des conditions tant soit peu favorables, I'écart de
la température diurne a la température movenne annuelle ne
dépasse guére 100, Remarquons de plus que des écarts acci-
dentels de 05,05 dans la marche diurne sont fréquents, et qu'un
défaut de compensation qui ne produirait pas d’écarts plus
grands que celui-la n’aurait plus d’inconvénient. 1l suffit donc
que le coefficient thermique de I'horloge soit moindre que
0s,005. D’autre part un pendule non compensé, a tige d’acier,
s’allongerait par degré de la=—1{>C0,000011 environ; son
coefficient thermique serait donc, d’apres la formule (14) du
chapitre précédent, 0s,48, donc environ !/, s. On voit qu'il
suffira de compenser cette quantité a !/,,, prés pour obtenir
I'exactitude de compensation désirée. Il suftit donc en pratique
d’évaluer au !/,,, prés les quantités qui interviennent dans
ces calculs.

On peut dés lors négliger, comme on le fait dailleurs
toujours, les puissances et produits des coefficients de dila-
tation, puisque le plus grand de ceux-ci, le coefficient de
dilatation cubique du mercure, a pour valeur 0,000 181.

On peut aussi ne pas tenir compte du terme du second
degré de la dilatation. On a, par exemple, pour le coefficient
de dilatation de I'acier fondu (anglais) recuit, d’aprés Fizeau,
la valeur:

[1095 41,52 (1 — #00)| 10 —3

1 B. Waxacau. Laoe. eidt.
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Comme nous ne considérons que des écarts de tempéri-
ture de 100, les coefficients de dilatation qui interviendron:t
se rapporteront a des températures s’écartant tout au plus de
5° de la température moyenne. Or, pour 3¢, on voit que |»
coefficient varie d’environ huit unités de la huitiéme déci-
male, donc d’une quantité moindre que 1!/,,, du coefficier!
lui-méme. Le rapport des deux termes est du méme ordre d
grandeur pour les autres métaux qui pourraient étre utilisés.
Quant au mercure, le coefficient du second terme de sa dila-
tation est encore beaucoup plus faible par rapport a celui du
premier.

Voici maintenant une démonstration, un peu généraliséc.
de la formule de M. Wanach :

Soient N le moment d’inertie, D le moment statique du
pendule composé. La durée d’oscillation est définie par la
longueur ! du pendule simple synchrone donnée par la formule :

XN

D

Ces trois quantités sont en général fonctions de la tempe-
rature {. Pour que le pendule soit compensé, il faut que ! no

varie plus avec ¢, c’est-a-dire que la dérivée d_ soit nulle. Lu
[

condition de compensation d’un pendule quelconque est donc:

T (p"Y N z (1)
dt D D

di 1 ( d N LADy 1 /dN dD . 0
dt dt,) d1 dt,) |
Considérons maintenant plus spécialement un pendule i
mercure. Soient J le moment d’inertie, S le moment statique
de la partie solide du pendule, ¢z le moment d’inertie et s ie
moment statique du mercure. On a:

N--J4i DS

Al di L dS | dsy
2 T (2
TRT (M+JJ

d’ou:
dt 1

= == “ (1_bi'i,
it D|

Supposons en outre que la partie solide du pendule, e
forme absolument quelconque, est constituée par une seule
substance de coefficient de dilatation a.
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On sait que le moment d'inertie et le moment statique
sont de la forme :

< ) g
J =% m 3" & == Sap

p désignant I'élément de masse, « la distance de cet élément
a la suspension. (Notons que z n’a pas rigoureusement lu
méme signification dans ces deux formules: dans [a premiere
x signifie bien la distance de I'élément a I'axe, dans la seconde.
la projection de cette distance sur l'axe de symétrie du pen-
dule. Mais cette distinction n’a pas d’importance pour ce (ui
va suivre.)

Le coefficient de dilatation de toutes ces dislances » étun!
uniformément «, on a:

dr
I =
dt
de sorte (ue:
' S
ii_:Vpﬂwwa 2] {l":ﬁplzk;ﬁx
dl o
On obtient ainst :
“ 1 2la—1INz- ‘l'-_ld"' -0 (2)
dt D ot dt

(est la condition de compensation d’'un pendule i mer-
cure de forme absolument quelconque.

Supposons maintenant que le récipient @ mercure soit de
forme cylindrique (c’est le cas de tous les pendules & mercure
actuellement en usage). On a alors, en appelant /& la hauteur
et r le rayon du cylindre de mercure, m sa masse, 4 la distance
de sa base a la suspension, en appliquant deux formules connues

de la mécanique :

: ¥= I? I 2 2 . I
=] N - m h:j “+ (\.f)— 5 ) L ( A + 02— bh 4 —;)

s-m(l;——ﬁ)

Or on a naturellement :

dr
i
dt dt
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Si y désigne le coefficient de dilatation cubique absolue
du mercure, y —2a—28 est son coefficient de dilatalion en
hauteur, dans un vase de dilatation «. Donc on aura:

dh

——=hE
dt i

On en déduil:

di ik / 2h\ ]
—=m| (= 2b3-—-bh)a—-—-h b —
dt g(.\ 2 T ) (\ 3) ﬁ_
. g 9 e
ﬂ:‘Zia—-m-[h(b _"‘) ,e—h(b~- _'f)a
3 3/ |
—2ia—mh (b——ntf—h)e
3
si I'on pose pour abréger: : -—§ —a=+v—3a.
De méme :
ds I )% _‘ h h
(—17 m(bz——gp'# --,.5a——m,(‘—)ﬁ 2&)
ds h
— =8 — M —E&
dt 2

En introduisant ces deux valeurs dans la formule (2), on
obtient :

dl 11 . ' Qh h |

— = —|2Ja—ISa+2ia—mh (b— s—lsa1lm—=z|

d1 Dl Recf 2o ‘( 3,) T
| ) *

ﬂ”“la——--'—nﬁ b*’ dll,“**—-l—-)s = U (3}

dt D 3 2/ condition ae )

compensation

C’est la formule trés simple, due & M. Wanach, qu'l
s’agissait de démontrer.

2. Applications de la formule de M. Wanach,
La formule de M. Wanach permet de résoudre trés com-

modément les diverses questions qui peuvent se poser au
sujet d’'une compensation & mercure.
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Calcul du coefficient thermique d’un pendule. — Cetle tormule

(3) permet d’abord de calculer le défaut de compensation Z—i

d’un pendule donné, lorsqu’on connait le coefficient de dilata-
tiona de la substance ! dont il est construit. Les autres quantités
qui interviennent dans la formule (3) peuvent étre mesurées
directement. Rappelons que D =S-{-s et que s=m (b — li) ).
Quant & S, moment statique de la partie solide, on peut en
déterminer expérimentalement les deux facteurs (S =1L M).
On place cette partie solide horizontalement sur une aréte
quelconque et on cherche sa position d’équilibre; on mesure
alors la distance L. qui sépare cette aréte (marquant le centre
de gravité) du milieu du ressort de suspension (ce milieu
marquant assez exactement I'axe méme de suspension); on
détermine ensuite par une pesée la masse M de cette partie
solide : le produit LM est précisément S.

Une fois — connu, on peut calculer immédiatement le coef-

dt
ficient thermique —;][— a l'aide de la formule (14), chap. I+,
ot
14 » r s l - . r
dans laquelle les dérivées L et “ peuvent étre substituées
aux différences al et am, d!  d!

Calcul de la quantité de mercure. — La formule (3) déter-
mine la quantité de mercure nécessaire a la compensation.
Il ne faudrait guére songer, toutefois, a exprimer cette quan-
tité sous forme explicite, car le résultat serait extrémement
compliqué. Il faut remarquer en effet que I'équation (3) est
du troisiéme degré par rapport @ k ou a m (on peut choisir
I'une ou l'autre de ces deux quantités comme inconnue, car

A i
on ne connait que leur rapport ’——_—c). 1l faut remarquer de
(2

plus que D dépend aussi de h, et en est méme une fonction
assez compliquée; enfin, la quantité b, elle aussi, est une
fonction compliquée de la quantité de mercure (dans les
pendules ordinaires seulement). Pour éviter toutes ces com-
plications, on procéde par approximations successives de la
fagon suivante :

. 1 On voit facilement que c’est seulement le coeflicient de dilatation de la
tige qu’il importe de connaitre exactement; pour celui de la paroi du vase, une
valeur tout approchée suflit, car cette quantité doit étre soustraite du coellicient
de dilatation du mercure, toujours beaucoup plus grand.
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a) Pendule ordinaire. — On détermine comme nous l’'avons
expliqué ci-dessus S pour deux positions différentes de l:
partie mobile du pendule (vase ou lentille, déplacés par la
vis de réglage); on pourra alors obtenir dans la suite, par
simple interpolation, la valeur de S pour une position quel-
conque de la vis de réglage. On mesure aussi b pour une
position déterminée de cette vis. On calcule ensuite la quan-
tité de mercure a I'aide de la formule approchée (12) chap. Ier:
on introduit cette quantité de mercure dans le pendule, et on
regle approximativement celui-ci au temps qu’il doit battre :
une approximation de !/,,, suffit ici aussi. On posseéde alors
toutes les données nécessaires pour calculer le défaut de com-

pensation%—f du pendule ainsi réglé provisoirement: on procéde
(

comme nous ’avons indiqué plus haut. Ce défaut de compen-
sation connu, il n'y a plus qu’a calculer la correction de l
quantité de mercure par la formule (15) chap. Ier.

On pourrait évidemment continuer de la sorte, mais ces
deux approximations suffiront toujours en pratique: on peut
tout au plus calculer encore une fois le défaut de compensa-
tion a titre de vérification: on obtient une valeur négligeable.

b) Pendule Riefler. — 1l faut modifier la méthode précé-
dente; car les formules (12) et (15) ne sont plus utilisables
dans ce cas. On est obligé ici de partir de deux valeurs de /
choisies un peu au hasard, si possible de part et d’autre de
la vraie valeur, et en tous cas dans son voisinage; on peut
souvent fixer ces valeurs par analogie avec des pendules
déja construits. Ces deux valeurs choisies, on régle approxi-
mativement le pendule pour chacune d’elles, et on peut alors

calculer le défaut de compensation % du pendule pour ces
(

deux alternatives; on trouve ensuite, par interpolation ou par
extrapolation, une meilleure valeur de &. Et on continue ains!
jusqu’a ce que le défaut de compensation du pendule soi!
suffisamment faible. Le nombre d’approximations nécessaires
est un peu plus grand que dans le cas du pendule ordinaire.
Notons qu’il n’est pas nécessaire de régler le pendule a chaque
approximation, car on peut, par interpolation également, cal-
culer chaque fois la valeur de S a partir des deux valeurs
primitives.

Lorsqu’il s’agit, non de compenser un pendule donn¢.
mais de construire un nouveau pendule, on peut, en suivant
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'exemple donné par Riefler !, se donner la hauteur du mercure
et prendre pour inconnues la masse de la lentille et sa distance
a la suspension. Ce choix des inconnues facilite beaucoup la
résolution du probléme; et 'emploi de la formule (3) permet
encore de simplifier notablement les calculs : il suftit de poser
que ces deux inconnues doivent satisfaire a I’'équation (3) et

) N
la relation fondamentale l—:lﬁ.

Calcul duw coefficient de dilatation de la tige. — On peut
aussi se servir de la formule (3) pour déterminer = a partiv
‘ d d!

. i AT . ,
du coefficient thermique observé, 5 . On calcule d’abord y
ol ol

par la formule (14), (ces deux dérivées y remplacant les diffé-
rences Al et Am). Ensuite, on tire la valeur de = de I'équation
(3), aprés y avoir remplacé = par sa valeur y — 3.

J’al fait ce calcul pour deux pendules D. Perret. Ce ne
sont pas les marches elles-mémes, mais leurs différences qui
ont servi de base au calcul du coefficient thermique; c’est de
cette facon que l'effet des variations de la marche avec le
temps est le mieux éliminé. La température n’a été lue qu'une
fois chaque jour, au moment de la comparaison des horloges,
de sorte qu’elle représente sans doute assez peu exactement
la température moyenne de la journée. Les coefficients ther-
miques obtenus sont d’ailleurs incertains pour une autre
cause: les observations portent sur des intervalles de temps
trop courts, et les variations totales de température n'ont pas
été trés grandes.

L’horloge D. Perret 9 a été observée pendant un peu plus
de trois mois, I'horloge D. Perret 10 a été observée tout
d’abord avec 51/, kg. de mercure, pendant quatre mois, puis
avec 6 1/, kg., pendant trois mois; chacune de ces deux
périodes a fourni une valeur particuliére de =x. Voici les
résultats obtenus 2:

1 Voir E. AnxpiNG, loc. cit.
2 On a obtenu par mesures directes les quantités suivantes, nécessaires, a

. dm |
coté des valeurs — ci-dessus, pour le caleul de 2 :
dat
P9 et P10A PiOB

£ 5500 gr. 6500V gr.
P . 2160 gr. 2160 gr.
Hs 18,6 22¢em ()
b. 1110 112¢w,0
L. 85em, 8 86,5
D

. % o= C o E
=pL+P (b——;) .. TAH000 843 000

~



-dt_ €. m. Xz e. m.
D. Perret9 . . . . 405039 +12 0,0000109 +
D. Perret 10A . . . 4+ 05,093 -+ 7 0,0000120 + !
D. Perret 10B . . . - 0015 + 5 0,0000116 -+

L’accord des deux valeurs de « pour A et B n’est pas tré-
bon; cependant ce grand écart n’est pas trop anormal, étan
donnée l’'incertitude des coefficients thermiques dont on es!

parti; on peut donc admettre pour D. Perret 10 la valeur
moyenne «—0,000011,.

Correction de la compensation. — Lorsqu’il s’agit d’appliquer
la méthode exacte a la correction d’une compensation, I¢
coefficient thermique étant donné par les observations, on
calcule le coefficient de dilatation « comme nous venons d¢
Iexposer. Le calcul de la compensation se fait ensuite comme
si ce coefficient de dilatation avait été donné. Dans le cax
d’un pendule ordinaire toutefois, ces deux calculs pourron!
étre le plus souvent remplacés par I'application de la formul¢
de correction (15), chap. Ier, et on n’emploiera (3) qu’a titr:
de veérification.

Remarques. — Nous avons réussi a résoudre toutes ces ques-
tions sans avoir recours a I’évaluation du moment d’inertie d¢
la partie solide du pendule; mais il est bon d’ajouter que Il
meéthode que nous avons suivie revient a déterminer ce moment
d’inertie expérimentalement, par le réglage du pendule au
temps désiré. Cette détermination repose donc sur la formule

N : RRY : :
lz—ﬁa et 1l nous reste a établir que celle-ci est bien valabl:

dans les limites d’exactitude que nous nous sommes données.

Trois causes principales pourraient rendre cette formul-
inexacte: l'amplitude, l'air ambiant, I'effet du ressort de
suspension et de 'échappement.

La formule l:% est valable pour des oscillations infini-

ment petites seulement. Mais méme si les oscillations attei-
gnaient une amplitude de 3¢, la différence de marche diurne
ne serait que de 15 s., ce qui, comparé aux 86400 s. de lu
journée, esl bien en dessous de la limite de !/,,,. Ces chiffres
concernent un pendule oscillant librement; on sait que pour
un pendule suspendu par un ressort et actionné par un
échappement, I'effet de 'amplitude sur la durée d’oscillation

n'est plus le méme; il est cependant du méme ordre de
grandeur.
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L'effet total de I'air ambiant peut étre évalué approxima-
tivement de la facon suivante: le coefficient barométrique
d’'un pendule ne dépasse guere (5,015; c’est l'effet produit
sur la marche diurne par une variation de pression de 1 mm.
L’effet total de I'atmosphére ne dépassera sans doute guére
760 >< 0,015=12 s. environ, quantité encore moindre que la
premiére.

Evaluer de méme l'effet du ressort de suspension et de
I’échappement n’est pas facile, mais on peut présumer qu'il
est du méme ordre de grandeur que les précédents.

On peut d’ailleurs verifier directement que la somme des
trois effets signalés ci-dessus est bien négligeable. Il suftit de
déterminer /, pour un méme pendule, par les deux méthodes,

celle de I'expérience et celle du calcul par la formule [ = S

D
(Cest ce que j'ai fait pour un pendule & mercure ordinaire
(D. Perret 10, dans les deux variantes A et B); les résultats
s’accordent a moins de 1/,,,, ce qui confirme pleinement nos
conclusions ; il est d’ailleurs fort probable que la légére ditté-
rence constatée provient bien plus d’inexactitudes dans les
mesures et surtout de simplifications de forme (destinées a
faciliter I'évaluation du moment d’inertie) que des trois causes
mentionnées plus haut.

Les méthodes exposées dans ce paragraphe sont donc bien
exactes.

3. Can eénéral.

I.a formule de M. Wanach concerne seulement les pendules
a vase cylindrique. Il est vrai que tous les pendules de pré-
cision actuellement en usage rentrent dans cette catégorie;
mais on pourrait fort bien étre amené a construire (nous
verrons plus loin pour quels motifs) des pendules i récipients
de forme différente. Il importe donc d’établiv une formule
analogue a (3), mais plus générale.

Reprenons I'équation (2):

dl 1 di d s :
e B a8 — —{—)=0
dt D ( ’ a+(“ ,u,)

. di  ds :
Pour obtenir les valeurs de — et — dans le cas d’un vase

dt di
de forme quelconque, remarquons qu’on peut distinguer deux

16 RULL. SOC. SC. NAT. T. XXXVII
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parties dans ces variations. Supposons qu’on ait marqué sur
la paroi du vase le niveau auquel attelgnalt le mercure a I
température initiale. Si la température s’éléve de 10, le mercurc
atteindra un autre niveau, supérieur au premier. Appelons :
le moment d’inertie, s le moment statique du mercure situ:

; oy di
entre ces deux niveaux. On peut alors considérer que o St

compose tout d’ abord de la variation du moment d’inertie du
mercure qui va jusqu’au niveau primitif (variation facile «
évaluer, comme nous allons le voir) plus un accroissemen!

du moment d’inertie égal a «. De méme % se composera de

la variation du moment statique du mercure limité par le
niveau primitif, plus un accroissement de moment statique .
¢ et s sont de la forme:

]
=

i::_'f EEJ.J,‘ et ,\‘:::S[J.x

Si 'on considére seulement la partie du mercure limitée
par le niveau initial, on voit facilement que les variations des
x sont données par celles du récipient, c’est-a-dire qu’on a:

dx
dt

=

Mais la masse de chaque particule, p.=2v38, varie aussi avec
la température, car on a d’'une part:

d—v:v.‘}a
dt

et d’autre part:
ds ;
dl !

d’ot1 I'on déduit immédiatement :

dp
a_
dt dt+ dt
_—l’BT—I—’U83a
— v3(1w3a)

I
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En ajoutant les deux elfets que nous venons de distinguer,
on obtient :
i _ g(p‘g‘,)"b"qr,,- ”'*)+.,
dt \ d dt
S (p2rra—a2pe) + ».
=X }L.’]"Q(QO-' -2 ) *# t

1 (2a—g) -
[{::E(}Li{ #I@) l =}
't i dt

—=S(pra—zp:)to

—s(zx-— )4}

Reste a préciser encore la valeur de . et de =, moment
d’inertie et moment statique de la couche du mercure situt
au-dessus du niveau primitif. Or la masse de ce mercure doil
étre égale a me, produit de la masse totale du mercure m par -
qui est précisément le coefficient de dilatation cubique appa-
rent du mercure.

Appelons :, le moment d’inertie de la surface du mercure
(en supposant cette surface de masse 1), par rapport a un axe
passant par son centre et paralléle a laxe de suspension, et
soit d la distance de cette surface a 'axe de suspension; on a,
en vertu d’un théoréme de mécanique connu :

= mey 4 mesd?
= m(d*4,)c

D’autre part on a aussi:

e—md:

En introduisant ces deux valeurs dans les résultats précé-
dents on obtient :

. — = 1(2e— ) m(d*+4 )z

LI P +[m(d® ) — #]=

fik —§(x-—¢)fmd=
dt — sa—(md—s):
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En remplag¢ant dans la formule (2), on obtient ainsi :

Zi 113 2Ja-—ISad-2éat-[m (2 H-y)—i]s  lsa—L(md s):

—la - %[zl m (d* ) FL(md—s)]e

dl y
(—i—t-:ta-- B[z ls-tm(ld d2 - v.,)]sco—;;]o?de (4

compensation

La quantité y est en général trés petite par rapport aux
autres termes de la parenthése; en pratique, on peut tre:
souvent la négliger. Lorsque la section du vase, dans le voisi-

nage de la surface, est circulaire et de rayon r, on a :Er'—‘

Cette formule (4) peut rendre exactement les mémes ser-
vices que I’équation (3), et toutes les remarques du § 2 restent
valables; tant que le vase conserve une formule géométrique
simple le calcul de ¢ et s ne présente aucune difficulté.

4. Quelques cas spéciaux.

Lorsqu’il s’agit simplement d’un calcul approché (pour
I’étude préalable d’une nouvelle forme de pendule par exen:-
ple) on peut supposer tout le mercure concentré sur 'axe da
pendule; on est ainsi amené a considérer comme forme du
mercure un ensemble de droites et de points matériels de
diverses densités. Il faut alors appliquer a chacune des lignes
les trois formules suivantes, dans lesquelles a et & sont les
distances respectives du sommet et de la base de la ligne
jusqu’a la suspension:

: g ¢
z:f ca;‘-’d:c——}(b3——a3)

s*(,(b-u)H‘“ = (02— a®)

m=c(b—a)

Premier cas (fig. 3). — Supposons d’abord que tout le mecr-
cure se trouve concentré en un point, a la distance A de la
suspension, mais que le mercure déplacé par la dilatation




-— A

soit transporté de ce point a un autre point, représentant la
surface libre, et situé a la distance d de la suspension. (lie
cas extréme n’est naturellement pas réalisable, mais on pour-
rait s’en approcher de trés pres.)

On a alors simplement :

I = m A2 N |1 vy )

et la formule_ (4) devient :

dl Mmoo _
— —da—— |2 D-Fdd D] 0 ()
dt D
A T N ~ N ™ A ~ ':" ;- A
1 I 1 W
1 ] =
: \ ! =
v : =
~ s v ~ |8
i i ! =
. T * =
| 1 =
! : | I =
v ) i v { ] ‘L =
& S| ~o = [
» - =
] =
v
Fig. . Fig. 4. Fig. . Fig. u. Fig, 7.
Premier cas. Deuxiéme cas. Troisiéme cas. Quatriéme cas. Cinquiéme cas.

Schémas de la forme et de la position données au mercure dans cing cas speciaux.

Deuzxieme cus (fig. 4). — Le mercure est concentré en une
ligne au sommet de laquelle se trouve la surface libre. (C’est
la forme simplifiée de tous les pendules & mercure actuels.)
Ici, les valeurs de ¢, s, m sont simplement celles données au
début du paragraphe. On a de plus:

0

d=a =
et la formule (4) devient:

dl c| 1 [ ’
= lesre |l B (Bl - aith—m [ -0
. o nE (0 / 5 ( )4« ) (h—- ) !
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En développant les parenthéses, on peut simplifier un peu
cette expression:

d_l:la"f‘ {_(b l +(¢[l+ = —l—(bJr(l) —FN (lll)gl;

di
m | b  2a® :b l: [
=t=313 513 *‘(_‘"'f ‘
— a% (b- u)( er':{;)—(b—u)‘—gla
:la-__ﬂ(bD__“) _+_“3i‘ﬂ l))

S1 'on y fait encore la substitution 6 — « =/, on réobtien!
bien la formule de M. Wanach:

d_l__tza__7)ﬁ£(b“i!_f__L)g.__0 (6"
dt D 3 2.
Trotsieme cas (fig. 5). — Supposons le vase de mercur:

constitué par une ligne commumquant a son extrémité infe-
rieure avec du mercure concentré en un point. Soit ¢ la den-
sité de la ligne, ¢ la masse du point, m la masse totale du
mercure. Il faut introduire dans la formule (4) les valeurs:

;—LS (b3 — a¥) |- q b2

¢

CEe —7 (b2 —u?)+q b
m=—=c(b—a)-}g¢

p=ll  die=n
On obtient :
% la— %: l} (B — ) _é (=) a (= —a)
+q|_b(b__1)+a(z—a)_]:a—mo ()

On peut, ici aussi, simplifier en développant les pareu-
théses et en se souvenant que:

b—u-—:h chdqg=m
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' ’ o 0 10 . 3 . ’ )
—la——lp ——(/}"-——-b”—FJb"/l———._}/r/r,- {-/131———)(/.*9 — b 20h —h?)

H(b— kY — b h) ~+ glbh—b - h—1Iyd—1b | /l)](s

1 g > hy |
—lm—l—”.ch _b —lrb—f—g—l{‘b—g)l(//-u—/f)(/ﬁh { /ul
—q[b =D+ G —Rd—b4 M-
1] " I i " } o1
—la—— ch(b-—-hb-—{——_——-—///r}———l-_/;/—/;-—}— f lr—ltl | - o —1 )
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d’ou finalement:

— ) (Tbis.

dl h| /h 20 /
— = la (| — N /____7
a1 l)[l g et b

Quatrieme cas (lig. 6). — Le mercure est concentré sur une
ligne, mais la surface libre du mercure, au lieu d’étre au
sommet de la colonne, est en un autre point, par exemple
plus bas, a la distance d de la suspension. (Une telle dispo-
sition peut fort bien étre réalisée, le mercure étant maintenu
au-dessus de son niveau par la pression atmosphérique.)

On a pour 7, s et m les mémes valeurs que dans le
deuxiéme cas, et 'la formule (4) devient :

dil

-

dl |
—=la D[ G a:‘)wé(/f" ) -d{l- dyh—uar|: 0
(&)
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On peut la simplifier un peu et ’écrire :

_§—|—(-§-~ﬂ—)(a~|—b)—|—d (l— d)] =0 (8¥)

dl / m

di D

ment la llgne de mercure communique a sa par tle superleulf
avec du mercure concenfré en un point et de masse ¢. On 2
donc 1ci:

[ — % b —ad) 4 qad

L

.s':%(/ﬂ —a®)tqa
mo—=c(b—ay-4q

ce qui donne:

% [a %z l (b3 @) - --—f;(b"_u)——-l I_._d)({,__”)

a—d

Fqld(l —d) — u(l-—a)_|<s-_:() ©)

On ne peut pas simplifier notablement cette formule.

5. Pendules 4 minimum de mercure.

Ces formules permettent de discuter une question tres
intéressante: celle de la forme a donner au pendule pour
que la quantité de mercure nécessaire a la compensation soi!
minimum. Cette question n’est pas seulement intéressante au
point de vue théorique, mais elle a une certaine importance
industrielle, car le prix du mercure intervient pour une honne
part dans le cout d’un pendule compensé.

Premier cas (fig. 3, p. 245). — Considérons d’abord le pre-
mier cas du paragraphe précédent, qui est le plus simple.
Nous avons obtenu comme condition de compensation I'équa-
tion (5):

dl m
—la-ﬁw— )-——ll**ld-—de
Y ( | )z-
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Supposons maintenant qu'on ait & construire un pendule
de ce type battant un temps donné, ce qui revient a dire que
[ est constant; supposons en outre que ce pendule doive avoir
une puissance réglante donnée déterminée par son moment
d’'inertie N, c’est-a-dire que N, et par conséquent D, doivent
aussi étre constants. Le produit:

m (02— Ir--ld—d?

sera également constant pour tous les pendules compensés
satisfaisant a ces conditions. Pour que la masse m du mercure
soit minimum, il faut donc que la parenthése soit maximum :
or cette parenthése est fonction du deuxieme degré des deux
quantités d et A, et peut s’écrire:

/- [ \ 2
(!. ——é)g—- ( o — é)

Y

Il en résulte que cette quantité diminue, et par conséquent que

m augmente, au fur et & mesure que d s’écarte de —, tandis

2

que la quantité considérée augmente, et que m diminue

y r l
lorsque A s’écarle de —.

9
Donc, pour que la quantité de mercure soit minimum, 1l
: b ; !
faut que la surface libre du mercure soit a la distance dzm;
.

de la suspension ; plus la distance de la surface a la suspension
difféerera de cette valeur, plus la quantité de mercure sera
grande. Pour que la quantité de mercure nécessaire a la com-
pensation soit minimum, il faut encore qu’elle se trouve con-
centrée 4 une distance aussi grande que possible du milieu
du pendule; plus le mercure sera rapproché de ce milieu,
moins son effet compensateur sera grand.

En résumé, pour que la quantité de mercure soit minimum
1l faut que la surface libre soit le plus prés possible du milieu
du pendule, mais le mercure lui-méme le plus loin possible.

Cette regle est d’'une application générale; 1l en est de
méme de cette autre conséquence, assez inattendue, qu’on
peut tirer de ce qui précede: Le pouvoir compensateur est
le méme pour deux vases de mercure exactement symétriques

: : [ .. :
par rapport au point de distance e milieu du pendule; bien
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entendu, cette symétrie doit concerner, non seulement la
forme des récipients, mais aussi la posmon de la surface
libre du mercure.

Deuzieme cas (fig. 4, p. 245). — C’est celui de tous les pen-
dules 4 mercure actuels. La condilion de compensation est

ci: (6Y¢).
g p, Bk, 20 LN B
dt D 3 2

En procedant comme dans le cas prédédent on voit que, pour
que m soit minimum, il faut que la quantité :

soit maximum. b et k sont les deux variables. On voit imme-
diatement que cette quantité croit en méme temps que b: un:
des conditious du minimum de m est donc que la base soil
aussi éloignée que possible du point de suspension. En pri-
tique toutefms on ne recourra guere a ce moyen pour réduire
la quantité de mercure, car on obtiendrait ainsi un pendul»
plus long, donc plus encombrant, et nécessairement moins
compact, partant moins invariable que les pendules ordinaires.
De plus, comme nous le verrons au chapitre suivant, I'aug-
mentation de 0 aurait pour conséquence 'augmentation du
coefficient de stratification. Une telle modification présenterait
donc plus d’inconvénients que d’avantages.

Pour déterminer la meilleure valeur de %, dérivons pur
rapport a cette variable et égalons a zéro. On obtient:

2 [ 2
b —=h———""1h=0
3 2 3
d’ou
g/ l L
= —(b—— 10)
' 4(\ 2) (-

La deuxiéme dérivée a pour valeur -——4—; il s’agit donc bien
d’un minimum de m. 5

Ainsi, lorsque la base est donnée, il faut, pour que la
quantité 'de mercure soit minimum, que la colonne s’éléve

non pas jusqu’'au point milieu du pendule (point —l-), mais
seulement jusqu’aux 3/, de cette hauteur. 2

]
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~ Ce résultat parait contredire celui du cas précédent; il
n'en est rien toutefois; il y a simplement compromis entre
les deux conditions, ici contradictoires, que le niveau du
mercure doit étre au milieu du pendule, tandis que le mer-
cure lui-méme en doit étre aussi ¢loigné que possible.

La formule (10) permet de constater facilement que le
pendule Riefler ne répond pas & cette condition du minimuun.
D’aprés M. Riefler lui-méme !, le mercure y atteint une hauteur
égale a environ les 2/, de celle du tube; comme &-— 126 ciu.,
cela revient a dire que & =84 cm. environ. Pour le minimun,

50) =2 7

T0 =57 cm.

: e : 3
il faudrait qu’on ait h:Z(i% —
4
Il est 1ntéressant de voir encore dans quelle proportion li
masse du mercure peut étre réduite. Nous avons vu que
la quantité de mercure est inversement proportionnelle i

S
h (b—%&—% . Dans un pendule ordinaire on a approxinii-
tivement b—=110, h=18, ce qui donne pour ce produit 8%,
Pour le pendule Riefler, a 'aide des données ci-dessus, on
obtient déja une valeur beaucoup plus forte, 1680. Si, sans
changer la base du mercure dans un tel pendule Riefler, on
satisfaisait a la condition du minimum, ce produit devien-
drait 2166. Cela revient a dire que pour avoir un pendule
compensé de méme puissance réglante qu'un pendule ordi-
naire contenant 5000 gr. de mercure, il suffira d’emplover,
avec le systéme de M. Riefler, prés de 2600 gr., tandis que,
pour un pendule @ minimum, il ne faudrait plus que 2000 gr.
de mercure.

Nous allons voir qu’on peut encore réduire beaucoup plus
cette quantité de mercure si on renonce a la forme cvlin-
drique du vase.

Troisieme cas (fig. 5, p. 245). — On a comme conditlion de
compensation (7V#):

dl h I 2h [\
E :ll——ﬁ'[tl.—%%»(”[ *'(])( b—-—:i-—g) |;

t

La quantité qui reste constante est:

! RierLEr. Loc. cit.
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Pour qu’on puisse y mettre m en facteur, posons 4 —,

m
rapport de la masse de mercure concentré au point inférieur
a la masse totale du mercure.

L’expression considérée devient :

r:clzlr—-+(l - )( : g)]

-/

La quantité qui doit étre maximum est donc:

[m-Hl—h)(’b—g—é)J

ou bien :

Les variables sont ici », & et . On voit immédiatement
que la quantité considérée sera d’autant plus grande que «
est plus grand; pour que la quantité de mercure soit mini-
mum, il faut donc que la quantité de mercure concentrée ai
point ‘inférieur soit la plus grande partie possible de la masse
totale du mercure.

On voit de méme que cette quantité croit en méme temps
que b. Il faut donc, ici aussi, que la base soit le plus bas
possible.

La quantité considérée ne dépend pas de fagon aussi simple
de k; il nous faut donc égaler la dérivée a zéro pour obtenn I
condition du minimum. La quantité considérée peut s’écrire:

h [(1 |- m) (b-- I[,_)”"(-H"ﬁ)l—;]

d’ou, en dérivant:

(1+n)(b—i)u(~)+n)‘f£;

d’ou :

poo3 At (’b_i‘) (1)

2 24+ 2
q

La quantité *-=+ est, par définition, comprise entre 0 et 1.
m




Lorsque n =0, on a affaire au deuxiéme cas, et la formule
donne bien: ‘
3 !

=3

f== ( h —

tandis que lorsque n=1, on a affaire au premier cas, et on
retrouve en effet : l
:b———

)

On voit donc que dans notre {roisieme cas h sera toujours
comprise entre ces deux valeurs.

Pour évaluer la proportion dans laquelle la quantité de
mercure peut étre diminuée par une telle disposition, cousi-
dérons donc le premier cas, qui est simplement un cas limite.
Le produit inversement proportionnel & la masse du mercure
a ici pour valeur, en prenant !a méme distance de base (ue

dans le pendule Riefler, 76 (9 576 — 3. 22| =76 = 5776. Un

'

/

pendule de ce type, ayant méme puissance réglante que les
pendules précédemment calculés, ne devrait donc contenir
que 750 gr.

Les pendules a minimum de mercure que nous avons
calculés sont supposés avoir méme distance de base que le
pendule Riefler; on peut aussi en calculer de méme type,
mais ayant méme distance de base que le pendule ordinaire,
pour que la comparaison avec celui-ci soit plus équitable.

On a alors les valeurs suivantes pour les quantités de
mercure nécessaires a la compensation, dans des pendules de

méme puissance réglante : b —=T0 B 105 5
Pendules a vase cylindrique: 1ordinaire. 5000¢r. —
(»=0) 11 de Riefller —_— 2600 gr.
114 minimum 3200 2000
Pendule a2 minimum : (limite irréalisable) . 1200 750
(w="1)

Les chiffres correspondant i notre troisiéme cas seraient
donc intermédiaires entre ceux des deux derniéres lignes.
On voit qu’on pourrait construire des pendules qui, pas plns
longs que le pendule de Riefler, ne contiendraient plus que
'/y ou méme !/; du mercure nécessaire 4 la compensation
ordinaire.

Nous pouvons considérer cette question comme compléte-
ment résolue. 1l est inutile d’examiner & part les autres cas,
pour les raisons de symétrie signalées plus haut.



CHAPITRE 111

Influence de la stratification
de la température sur la marche du pendule.

1. Résumé des travaux antérieurs.

Dans un pendule a mercure usuel, le mercure et la tige
sont a des hauteurs moyennes différentes; si donc il y a une
différence de température entre le haut et le bas du pendule.
et si cette différence n’est pas constante, la compensation ne
fonctionnera plus réguliérement et la marche de la pendule
en sera affectée. Il semble que, dés l'origine, on a vu dan-
ce fait le principal inconvénient du pendule a mercure; c’es!
sans doute ce qui lul a fait quelquefois préférer le pendule
gril, pourtant plus compliqué et plus difficile a régler.

Toutefois c’est seulement en ces dernieres années qu’on
s’est efforcé d’étudier cette influence de fagcon un peu précise
et d’en déterminer la grandeur, soit & partir des marche-
observées, soit théoriquement. Ces recherches sont encor:
trées peu nombreuses; elles sont d’ailleurs insuffisammen:
connues; je vais donc en résumer ici les résultats.

Je note tout d’abord qu’il est facile d’évaluer approxima-
tivement 'importance de cet eflfet de la stratification de tem-
pérature sur Ja marche d’'un pendule a mercure ordinaire
La différence des hauteurs moyennes de la tige et du mercure
est d’environ !/, m. Si donc il se produit une augmentation
du gradient (différence de température par metre de hauteur
de 1o, le mercure se trouvera a une temperature trop basse
de 00,5 L’effet sur la marche sera le méme que si, pour un
augmentation de température de 00,5, la compensatlon n’avai!
pas du tout fonctionné, c’est-a-dire si le pendule n’avait pas
été compensé. Nous avons vu'! que le coefficient thermique
d’'un pendule en acier, non compensé, est de 05,50 environ.
Le coefficient de stratification d’un pendule a mercure usuel.
a tige d’acier, est donc a peu pres la moitié de cette quantité.
soit 0s,25.

Pour tirer parti de cette donnée, il faut encore savoir
dans quelles limites varie le gradient. Dans la tour de I’équ:i-

1 Voir p. 233.
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torial de Berlin!, le gradient pour Om,72 de hauteur a varié
entre |- 00,25 et — 00,15, donc en tout de 00 4, ce qui fait Oc 56
de gradient (pour 1 m.). L’effet de cette variation du gradient
sur la marche doit donc étre d’environ 05,25 > 0,56 =—=0:1%
assez peu de chose, en somme. Ajoutons que la variation
annuelle de la température elle-imnéme était dans ce cas de
14 a 150.

A Pobservatoire de Neuchatel, dans la tour de I'équatorial
également, on a observé que le gradient, pour 60 cm. de
hauteur environ, varie de 0o,6. Donc le gradient par métre
y varie d’ environ 1o. I.’effet de cette variation sur la marche
doit étre d’a peu preés 05,25, donc déji plus sensible que dans
le cas précédent. lci, la variation totale de température est
d’environ ‘)OO

Dés qu’un local est chauffé, la variation du gradient y est
beaucoup plus grande. Ainsi, dans la salle des pendules de
PInstitut géodésique de Potsdam 2 ?, salle située en sous-sol et
maintenue a une température constante (la température n'v
varie pas au cours de I'année de plus de 3°) le gradient varie
parfois de 00,5 d’un jour a 'autre et de 20,3 pendant "année.
Ces variations de gradient conespondent respectivement
des variations de marche de 0s,12 et 0s,57.

La variation du gradient est encore plus grande lorsque le
chauffage est irrégulier, ainsi que l'aération du local; elle
peut alors atteindre et méme dépasser 3o, et l'effet d’une
pareille variation sur la marche est de presque 1 s. Il faut
d’ailleurs ajouter que le gradient se maintient rarement pen-
dant un jour entier a 'une de ces valeurs extrémes, de sorte
qu’en général les marches diurnes ne sont pas influencées
d’autant que cela. Il y a la néanmoins une cause importante
d’irrégularités dans la marche d’un pendule @ mercure.

La premiére tentative de détermination d'un coefficient
de stratification d’aprés les observations est sans doute due a
M. Max Zwink®. Dans son étude des marches de la pendule
Tiede 400 de l’observatoire de Berlin, il obtient pour Ieffet
d’un accroissement du gradient de fo sur 72 cm. de hau-
teur la valeur 4 15,592+ 0,115. Cela donne pour un gradient
de 1o (par metre) la valeur extraordinairement élevée de
15,146 4 0,083 d’effet sur la marche. La faiblesse de 'erreur
moyenne par rapport au coefficient lui-méme semble mettre

1 Max Zwink. Die Pendeluhren im lufdicht rerschlosseirn Rouwme,
Halle, 1888.

? B. Waxacu. Loe. cit.

3 Loc. cit.
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la réalité de celui-ci absolument hors de doute. Malheureu-
sement il s’agit ici, non d’'un pendule 4 mercure, mais d'u
pendule a gril. Pour un tel pendule, il parait dés 'abord qu’uu
effet de la stratification de la température n’est pas admissible.
puisque les deux métaux compensateur et compensé se trou-
vent 4 la méme hauteur. C’est d’ailleurs ce que confirment
les calculs rigoureux de M. B. Wanach. Il en résulte que le
gros coefficient obtenu par M. Zwink n’est certainement pa-
réel. Ce résultat factice provient sans doute du fait suivant:
Le gradient suit une période annuelle qui, pour I’horloge
de Tiede, coincide a peu prés exactement avec la période
annuelle de la température elle-méme; on le voit facilement
en consultant les résultats d’observation publiés par M. Zwink:
les maxima et minima de ces deux quantités tombent aux
mémes époques. Il n’est dés lors guére possible de séparer
ces deux effets. Les deux coefficients obtenus, 'un pour Il
température, 'autre pour le gradient, sont justes comme effet
total, mais leur rapport ne peut pas étre déterminé. C’est un
exemple frappant de 'inconvénient qu’il y a a introduire dans
les formules de marches des coefficients qui ne sont pas jus-
tifiés par d’autres considérations que le désir d’amoindrir les
écarts résiduels : on aboutit a des résultats absolument factices.
et il faul dans ce cas ne pas trop se fier aux faibles erreur-
moyennes.

Un peu plus tard, le constructeur Riefler? faisait connaitre
la disposition qu’il avait adoptée pour ses pendules 4 mercure.
Le mercure y est contenu dans la tige du pendule et est ainsi
réparti sur une plus grande hauteur: le tube est rempli de
mercure jusqu’aux deux tiers. Un des principaux avantages
de cette nouvelle disposition devait étre précisément, d’apreés
le constructeur lui-méme, d’éviter presque complétement les
inconvénients résulant de l'inégalité de la température &
diverses hauteurs. Il semble en effet évident a premiére vue
que cet effet doit étre considérablement atténué, puisque la
différence des hauteurs moyennes du mercure et de la tige es!
beaucoup moindre que dans les pendules a mercure usuels.
Un bon nombre d’horloges de précision furent munies de
pendules a mercure de ce nouveau modéle.

C’est précisément par I’étude des marches de 'une d’entre
elles (Riefler 20) que M. B. Wanach fut amené a s’occuper de
cette question et a lui consacrer un tres important mémoire °.

1 S. RikrLER. « Queksilber Kompensationspendel neuer Konstruktion. »
Zeitschr. [. Instr,, Bd. 13, 1893, p. 88.

? B. Wanach. « Ueber den Einfluss der Temperaturschichtung auf verschie-
dene Uhrenpendel.» A. N., Bd. 166, Nr. 3967-3968, 1904. Nous avons déja cil:
maintes fois cet article au cours du présent travail.




— 257 —

Cette pendule, alors méme qu’elle était installée dans la cave
des pendules de I'Institut géodésique de Potsdam (local a
température a peu prés constante), présentait dans sa marche
une période annuelle bien marquée. Or, comme nous 'avons
dit déja, si la température est sensiblement constante dans ce
local, le gradient par contre y varie beaucoup avec la saison.
M. Wanach parvint a établir que c’est bien a cette cause
qu’il faut attribuer les variations de marche de cette pendule
Riefler, et il déduisit des observations un coefficient de strati-
fication égal a 4 05,213+ 0,014. Pour un pendule & mercure
ordinaire (Dencker 27) se trouvant dans le méme local, les
observations donnent un coefficient de stratification de
-+ 0s,14+ 0,04. Les calculs théoriques immédiatement entre-
pris par M. Wanach donnent de leur coté pour ces deux pen-
dules les coefficients de stratification -}- 05,260 et - 05241,
Le fait que les valeurs observées sont plus faibles que les
valeurs théoriques n’a rien d’étonnant, car la différence de
température en hauteur est vraisemblablement moins grande
dans le pendule bon conducteur de la chaleur que dans l'airv
ambiant ou on la mesure.

Ce travail de M. Wanach contient donc les premieres
déterminations authentiques du coefficient de stratification,
tant a partir des marches observées que par la théorie. Un
autre résultat important de ce travail, c’est que M. Riefler
s’était trompé dans ses prévisions en construisant son pendule
a mercure, puisque I'observation et la théorie s’accordent a
montrer que cette nouvelle forme de pendule, loin d’étre insen-
sible aux varialions du gradient, v est au contraire encore un
peu plus sensible que le pendule a mercure ordinaire.

Il est juste d’ajouter que, deux ans plus tot, M. E.-I'. van
de Sande Backhuyzen?, en discutant les marches de I'excel-
lente pendule Hohvii 17 de I'observatoire de Leyde, chercha
a expliquer par les variations du gradient les irrégularités
de marche qui ne provenaient ni des variations de la tempé-
rature, ni des variations de pression. Toutefois le résultat de
ces recherches fut négatif, cette supposition ne diminuant pas
les irrégularités résiduelles. Il faut dire que les conditions
etaient ici bien moins favorables qu’da Potsdam, ou le gradient
variait beaucoup plus. L’insuccés de ces recherches ne montre
donc pas que l'effet de stratification n’existe pas dans ce cas,
mais seulement que, dans les conditions ordinaires, il est fort
difficile de le déduire des observations. Cie qui le prouve bien,
c’est qu'a Polsdam méme, depuis que le chauffage de la cave

! E.-F. vaN DE SaNDE BAckHuYzZEN. « Over de periodiciteit.....» et « Voor-
looping onderzock .....» Versl. Akad. Amst., vol. 11, 1902, p. 19, 187 et 357.

17 RULL. SOC. SC. NAT. T. XXXVII
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aux pendules a ‘été abandonné (pour éviter ces trop grands
gradients), il est devenu trés dilfficile de déterminer un peu
exactement les coefficients de stratification!. Cette difficults
est due a deux causes:

1o Les variations du gradient qu’on observe dans le cabinet
d'une horloge & l'aide de deux thermomeétres ne sont pas
nécessairement celles qul se prodmsent dans le pendule lui-
méme. Dans la tige d’'un pendule, a cause de la meilleure
conductibilité, les différences de température en hauteur sont
probablement atténuées: elles sont plus faibles que dans l'air
ambiant. D’autre part, des effets de chaleur rayonnante sur
le pendule ou sur les thermomeétres viennent compliquer la
tache de I'observateur. Il est donc extrémement difficile de
connaitre les variations réelles du gradient.

20 D’autre part, il est souvent difficile de séparer I'effct
des variations du gradient de celui des variations de la tem-
pérature elle-méme. Tandis que les variations barométriques
se produisent suivant des périodes toutes différentes et beau-
coup plus courtes, ce qui permet de déduire trés facilement
des marches observées, méme pendant un court laps de
temps, d’excellentes valeurs du coefficient barométrique d’une
horloge, les variations de température et les variations du
gradient suivent toutes deux une période annuelle, et il est
presque impossible de séparer leurs deux effets dans les
marches observées. On peut affirmer que de ce fait la valeur
du coefficient thermique d’un pendule a mercure, telle qu'on
la déduit des observations, est bien souvent inexacte. Bien
souvent aussi, des modifications apparentes de cette quantité
sont simplement attribuables a 'effet perturbateur des varii-
tions du gradient.

On voit par la que la sensibilité du pendule a mercure
vis-a-vis de la stratification de température est un trés grand
inconvénient : non seulement les variations du gradient entrai-
nent des variations de marche, mais ces variations de gradient
se dérobent aux observations; on ne peut donc guére en tenir
compte avec succés par le calcul. De plus, cet effet de strati-
fication empéche d’obtenir une valeur exacte du coefficient
thermique de I’horloge.

I1 est bien naturel dés lors de se demander s’il n’y aurait
pas possibilité de construire un pendule & mercure qui serait,
comme le pendule a gril, complétement insensible a ces varia-
tions du gradient. La chose parait au premier abord possible:
il semble qu’il suffit d’élever suffisamment le vase a mercure

1 Jahresbericht des Direktors des K. Geod. Instituts, 1904-1905, 1905-1906.
1906-1907, 1907-1908, Verdff. Nr. 22, 26, 33, 38.
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pour obtenir ce résultat. M. Wanach a abordé aussi cette
question et 1l est arrivé a la conclusion! que «le plus court
pendule a secondes (acier et mercure) compensé simultané-
ment pour la température et pour la stratification de tempé-
rature aurait plus de 2m 20 de longueur et ne serait donc pas
utilisable en pratique ». Cette longueur minimum concerne
d’ailleurs un cas théorique: la longueur d’un pendule double-
ment compensé serait en realité encore plus grande.

Tels sont, en résumé, les principaux résultats des travaux
auxquels le présent chapitre fait suite. Je vais tout d’abord
y établir des formules aussi simples et commodes que possible
pour calculer le coefficient de stratification d’un pendule a
mercure de forme quelconque. Je montrerai ensuite que le
dernier résultat de M. Wanach est bien exact pour le cas ou
il a été établi, c’est-a-dire si I'on suppose le vase a mercure
de forme cylindrique, et la surface libre du mercure située
au sommet de la colonne, mais qu’il ne l'est plus lorsqu’on
se place dans d’autres conditions; je montrerai en particulie:
qu’ll est parfaitement possible de construire des pendules a
mercure compensés a la fols pour les variations de tempéra-
ture et pour celles du gradient 2.

1 B, Wax~acu. A. N, 3968, p. 116.

2 11 semble vraiment que tous ceux qui se sont occupeés de cette question
d’influence de la stratification de la température sur la marche du pendule
devaient se laisser égarer par le simple bon sens. Ainsi, M. W.-A. NirroLp,
dans son article sur « Ein neues fiir Temperatur und Luftdruckschwankungen
kompensirtes Pendel», Zeitschr. f. Instr., Bd. 9, p. 197, aprés avoir proposé
une forme trés ingénieuse de pendule, consistant en deux bras de dilatation
inégale, I'un supérieur a la supension et de faible dilatation, l'autre inférieur
a la suspension et de dilatation plus grande, ajoute que «puisque les deux
métaux differents employés a la compensation ne sont pas, comme dans le
pendule a gril, a coté I'un de l'autre, mais 'un au-dessus de l'autre, les varia-
tions de la température en hauteur auront ici une plus grande influence pertur-
batrice ». Pour atténuer cet inconvénient de son nouveau pendule, M. Nippold
propose méme de le placer dans un cabinet a fermeture non hermeétique, et qui
serait ventileé.

Le fait qu’'un tel pendule doit étre trés sensible a la stralification de tempe-
rature parait évident. Et cependant le calcul exact montre qu’il n’en est rien,
?t qu’'on peut méme facilement déterminer les dimensions du pendule de fagon
a ce que cet effet soit entiérement compense.

La condition de compensation thermique dun tel pendule (en conservant
les notations de M. Nippold) peut s’écrire :

2l (zp2a+1)=L(zpa—1)

D’au_tre part, on trouve aisément comme condition de compensation pour la
stratification :
21 (ypta+ 1) = I, (xp2a—1)

On voit qu’il suffit de choisir p (rapport des longueurs des deux bras) égal a |
bour que ces conditions se confondent. Si, dans ce cas, le pendule est compense
pour les variations de température, il le sera en méme temps pour les variations
du gradient. Cet exemple, venant s’ajouter aux précédents, montre qu'en cette
affaire il faut raisonner avec heaucoup de prudence.
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2, Calcul du coeﬂicient de stratification.

Voyons d’abord comment on peut calculer le coefficient de
stratification d’un pendule & mercure absolument quelconque.
Soit = la différence de température par unité de hauteur,
comptée positivement quand la température augmente de bas
en haut. Soit un pendule & mercure quelconque, pour lequel:

N I

D S

Par dérivation, on obtient I’équation sulvante, analogue &
la formule (1**) du chapitre précédent :

dl 1 [dJ di dsS |, ds _
—— s f — (1
di D [d’: + d= (dr + d'r)] )

Le moment d’inertie et le moment statique de la partie
solide du pendule sont de la forme:

J==5 g2 s T

Nous supposerons (car on n’a pas besoin dans cette question
d’'une approximation trés grande) que toute la matiére du
pendule est concentrée dans un méme plan passant par l'axe
de suspension, et vertical quand le pendule est au repos.
Grace a cette simplification, les quantités x figurant dans les
deux formules ci-dessus sont bien identiques entre elles.
Or on a:
de
d= 2
’ xr .
car la température moyenne de la longueur x sera —-gdﬂc s1

la température est supposée nulle a la suspension. On aura
par suite :

ﬂ:ngx “Ea\:—zpﬂ}:;a:—lia
i 2°)

si Pon introduit la quantité auxiliaire :

K=3pa*



Et de méme:

dS Ca? 1
—k:EP. -——-—a):_.—f.—fitf‘:)a:—-ﬁ,a
d= 2 2

En introduisant ces valeurs dans (1) on obtient:

dat 1] di d s
—=—]—K ___] - — (2
d= DI_ Tyt (I] ’
Reste a remplacer dans cette formule % et (-i-: par leurs
arc o~

valeurs. Nous nous servirons ici d’'un raisonnement analogue
a celui qui nous a permis d’établir la formule (3) du ch: np1tw
précédent.

Les quantités 7 et s sont de la forme:

t=2Xpa? $==E

On peut distinguer deux parties dans la variation de ces
quantités. La premiére partie s’obtient en supposant que,
lorsque la stratification de température d-< se prodmt le mer-
cure continue a arriver au méme niveau, qu'on s’imagine
repéré sur la paroi du vase. Mais en réalité le mercure est,
par suite d’une variation positive du gradient, a une tempé-
rature inférieure a celle de la suspension; il s’est donc con-
tracté (beaucoup plus que le récipient qui le contient) et
n’atteint plus a son niveau primitif; il en résulte une dimi-
nution :, de : et une diminution ¢, de s, qui constituent les
secondes parties des variations de ces deux quantités.

Pour le calcul des premiéres parties on a simplement :

De plus, puisque p=13 (volume X densité d’'un élément de
masse de mercure):
duw - do dl'

o= 11" d'
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mais on a:
ds - "
——:o(ﬂj*{).—:moy
d=
dv .
—=1(—x3a)-—— 3112
d~

donc on trouve:
d
. —zvd(y— 3a)y=pxe

Ces valeurs préliminaires étant connues, on peut calculer

) ¥) $
facilement (——-2- et Q On a:
d= d-=

Si 'on pose pour abréger, et par analogie :

Suat=k
- notre expression devient:
di ._
B Ty i) ity
d~

On trouve de méme:
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Reste encore a remplacer :, et s, par leurs valeurs. Nous

venons de voir que ;P—':p.zvs. Si le mercure atteignait encore
g

son niveau primitif, sa masse aurait donc du augmenter de
Ipxre=—sc; en réalité, la masse est restée constante; sz est
donc la quantlte de mercure qui parait manquer (par rapport
au niveau pl‘lmltlf) s, et 1, sont par définition la diminution
du moment statique et la diminution du moment d’inertie
dues a cette diminution toute fictive de la masse du mercure.
On a donc:
=—gile =8y +d?)e

d étant la distance du niveau du mercure a la suspension,
t, étant le moment d’inertie de la surface du mercure (sup-
posée de masse 1) par rapport a un axe contenu dans la
surface et parallele a l'axe de suspension. Cette quantite
s’annule si on suppose, comme nous 'avons fait dans tout ce
chapitre, que la masse du pendule est tout entiére concentrée
dans un plan vertical passant par I'axe de suspension. Alors
on a plus simplement:
'._):.’\‘(123

D’oul finalement les valeurs cherchées:

Q —k(z — 2)—sd?:
d= ’

ds 2
;ZC(E—E) = il

Si nous introduisons ces valeurs dans I’équation de strati-
fication (2), celle-ci devient:

dl 1 - l ) b 1 5f ] oy
i [—1\a+§h+m;_1)_‘.w_/-;_u (zmé-)Jr/sft;I

gqu’on peut écrire:

;—i—f:-i-)—z-[» [—(ia_|—.:l.'———/iFa‘tl(l—-d;:;l (3)
eén posant :

K ‘}— e
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Telle est la formule tout a fait générale pour le calcul di
coefficient de stratification d’un pendule a mercure. Il y 4
quelquefms intérét a laisser G séparé en K et k. Cette formule
s’écrit alors:

i ,‘_a_%[m-—m R E u__sd(z-_d),] (4)

d~ 2

3. Quelques cas spéciaux.

De méme que nous avons tiré de la condition générale d-
compensation quelques formules speciales concernant certains
types bien déterminés de pendules a mercure, nous pourron:
spécialiser aussi cette formule (4). Il y aura lieu d’ employer,
pour une droite matérielle quelconque située sur l'axe du
pendule, a coté des valeurs déja utilisées plus haut:

c .
i— L —
£ —a
LK 2
S ————‘:-;( ——a)

m=c(b—ua)

la nouvelle formule:

a2 ‘Z (b — at)

‘b ‘: [
i — exdd p=——|m"
4
[(

Nous allons reprendre successivement les cinq cas parti-
culiers étudiés déja au chapitre précédent.

Premier cas (fig. 3, p. 245). — On a simplement k= m¥.
et la formule (4) devient:

. 2 'l

o -l—a——i Ke—mid(c—a)- |- lmi®—dmi(l—d). <

d': e D .
ou bien:

dl |2 1 / .

;l.—'; —2—1“—]1) (\Ka——wu)l‘-’(s a)——-l“—d(l—dﬂsi) (+))
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Deuxiéme cas (fig. &, p. 245). — On a: d=a, et, pour £, la
valeur donnée plus haut. La formule (4) donne:

2 1. Vb 5 __ .3 2 :
(_I_I’Z_l_a——-l-—(Ka—C\b e (< —z)—[lb”—(r(/—(f)’)_kguls')
% 2 D' ‘ 3 2 "

(0)

On peut en déduire une formule analogue a la formule
(6v¢) du chapitre précédent, par quelques transformations :

2 3 2 3 Y 2 ; A q?
dlﬁl_a_u_l_(l\wrm\b R O O VU R
d~ 2 D 4 i 3

2 20 1 437
—a(\l—u)b_l_a B L L Ny )
¢ 2 4 \,
mais :
L . i e i
1 4
1_—4—(_(13-{-- b —02h 403 —202h 002 |- =302 3012 — 1)
=2 ——-—ib thb/t-——,—I—
g 4
de méme :
2bab | 8 b —2bh | I
l() bab-} gl — }»u ) [; b2 —bh | b bl

3 ‘ 3

b2—bh-|- 02—2bh+h? —lh h-4-bh2+b3—3b2h-| 30—

— 5 + S o
T bk ke L
o g2 = D2

__z( 5 h) 443 .z O pe g F20h g
3
M (b—————)—{»b* ——b'3h —+-2b I — W
donc : )

Lh h e [ h A
=M e — | (Y — (=L
H 5 (" 3_) = lz(' 3 ) z)I

et en introduisant ces valeurs dans (6):
dl e 1 . 3 I
——a——(K m' (b3 — —b2h- bh®—— )
d: 2 1)( + ( 5 it A

[ I Je (6bie)
RO T



Cette formule est déja passablement compliquée; les formules
analogues pour les cas suivants le seraient encore plus: nous
renoncerons donc désormais a cette transformation.

Pour tous les pendules a mercure actuels, la formule (6},
ainsi que (6*), permet de calculer le coefficient de stratifi-
cation. Au premier abord, la formule (6) parait plus avanta-
geuse. Toutefois, pour les pendules 4 mercure ordinaires,
il est bon de noter qu’il faut conduire le calcul avec plus d¢
chiffres qu’on n’en désire d’exacts dans le résultat, car, an
cours de ce calcul, on doit faire des différences de termes :
peu preés égaux. |

La formule (6®*) présente ce méme inconvénient, mais «
un moindre degré. Pour les pendules a mercure ordinaires,
cette derniére formule est donc plus avantageuse.

La quantité K qui figure dans ces deux formules dépend
naturellement de la forme de la partie solide du pendule,
forme qui varie beaucoup d’un pendule a l'autre. Il faut donc
calculer a nouveau cette quantité pour chaque type de pen-
dule. On pourra simplifier ce calcul en remplagant la partie
solide du pendule par une forme plus simple mais équiva-
lente, composée par exemple exclusivement de droites et d«
points matériels.

A titre de vérification, j’ai fait I’essai de ces deux formule-~
pour les deux pendules & mercure Riefler 20 et Denker 27,
tels qu’ils ont été légérement simplifiés et schématisés, puis
calculés exactement par M. B. Wanach !. Pour le calcul de K.
Jai supposé que la masse de la partie solide était, comm®
celle du mercure, concentrée dans la ligne centrale du pen-
dule. J’ai fait ce calcul, d’abord trés approximativement, avec
une table de mu]tlphcatlon de Crelle (trois chiffres signifi-
catifs), puis un peu plus soigneusement, 4 5 décimales. Voici
les résultats obtenus:

Pendule Riefler Pendule ordinaive

(n° 20) (Denker 27)
dl dl
Calcul avec trois chiffres : d= dc
Formule 6). . . . . . . 0,058, 0,068, !
» Y. . ¢ x = 5 s 0,058, 0,056,
Calcul avec cinq chiffres :
Formule 6). . . . . . . 0,069, 0,056
» (6v) . 0,059,  0,056,,

Valeur exacte, calculée par M.Wanach 0 099, 0,055,

1 Loc. cit. Voir aussi les fig. 1 et 2 et les données numériques de la p. 226.
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On voit que, pour le pendule Rieller, I'accord est bou.
Par contre, la valeur fournie pour le pendule ordinaire pur
la formule (6) calculée avec trois chiffres significatifs seule-
ment, est absolument inacceptable : nous en avons déja indiqué
la cause. Le calcul par la méme formule, avec cinq décimales,
donne toute I’exactitude désirable, car la connaissance du coef-
ficient de stratification jusqu’a 1/,, ou 1/,, de sa valeur est
toujours suffisante. Les chiffres ci-dessus confirment donc
que nous étions bien autorisés a négliger les dimensions hori-
zontales des pendules en supposant toute la masse concentrée
dans le plan de symétrie: en effet, il n’y a pas de différences
systématiques de quelque importance entre les résultats fournis
par les formules (6) et (6"*) et ceux calculés par M. Wanach
sans cette simplification.

| dl .. : - i
Des valeurs de — ainsi obtenues, on peut immédiatement
(o~
déduire les coefficients de stratification proprement dits,
I'aide de la formule (14) qu'on suppose divisée par d=. Les
valeurs de M. Wanach donnent ainsi les nombres que nous

avons déja cités plus haut Jf — 4 05,260 pour le pendule
Riefler, et dm:::+0>‘,941 pom le pendule a mercure ordi-
-~

naire (effet d’'un gradient de 1o par metre sur la marche).
L’évaluation tout approximative du début de ce chapitre se
trouve ainsi confirmée, i savoir que, pour tous les pendules
a mercure actuels battant la seconde, le coefficient de strati-
fication est d’environ - 05,2

Troisiéeme cas (tic. 5. p. 24D). — On a ici:
) ’

I -—% (b — uty g b3,
()
et (4) devient:

d[ .[—a-—]—(l\a_f —I—(l)‘——u“)(z—m)—u L(/ﬁ’w—u”)
d': 9 D ' 4 3

-—%d—u‘)(h*——af)]sf—qb b —a)—[lh—atl —w)]: )

L3

(7)
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Quatriéme cas (fig. 6, p. 245). — k, ¢, s ont ici mémes valeurs

que dans le deuxieme cas; la seule différence est que d reste
une grandeur indépendante. (4) devient:

TR, (1 o
e L Rem N L — ) —
& 2 1)( Qe

z ) 8
__I:_g([ﬁ__ 53)___—2—(_l—-d)(b —a )]s{)

Cinquiéme cas (fig. 7, p. 245). — Ieci:

c .. . .
h=— (0 — a*) - qu,
4
et on a:

- ¥ | .
—%(l—ri)(bf—.uﬂ)]a(—qa :_ a-2<e_a>—~—|tu—-d(z—dna:)

)

T

4, Influence possible de la stratitication
sur le coeflicient thermique.

Nous avons dit plus haut que les variations de stratification
observées a Berlin par M. Zwink! présentent une période
annuelle qui concorde presque exactement avec celle des
variations de la température elle-méme. Si ce phénoméne
était général, il entrainerait, pour tous les pendules 4 mercure
actuels qui ont, a peu de chose pres, le méme coefficient de
stratification trés élevé, un défaut de compensation. Il y aurait
lieu de tenir compte de ce fait dans le calcul de cette com-
pensation thermique : on pourrait en effet s’arranger pour que
celle-ci compense du méme coup la partie de I'effet de strati-
fication qui varie proportionnellement a la température.

Voyons d’abord, d’aprés les observations de M. Zwink,
quelle est la grandeur des quantités dont il s’agit. En me
servant des températures extrémes observées chaque annce
et du gradient observé en méme temps, jobtiens que, pour
une variation moyenne de 140,5, ce gradient varie de (00,249,

1 Loc. cit.
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sur une hauteur de 0m 72. On en déduit qu'une augmentation
de température de 10 entraine un gradient de (0,024 par métre
de hauteur. Or nous avons vu que le coefficient de stratification
des pendules a mercure actuels est d’environ '/, de seconde,
pour un gradient de 1o par métre. Donc notre augmentation
de température de 1° produira ainsi indirectement un change-

ment de marche de ;xU,OQé:OS,UOU. c’est-a-dire altérera
4

d’autant le coefficient thermique. Cette quantité est a peine

supérieure a la limite des quantités que nous étions convenu

‘de négliger.

Pour savoir si cette coincidence des périodes des deux
phénomenes est générale, j’al pu encore utiliser les observi-
tions de température faites a la pendule Hipp installée dans
la tour de I’équatorial a I'Observatoire de Neuchatel. La difté-
rence des températures extrémes a été ici en moyenne de
200,0 et la variation moyenne correspondante du gradient :
00,187 pour 0m,60 de hauteur; cela donne, pour une variation
de température de 1o, une variation du gradient de 00,015
par métre, donc notablement plus faible que dans le cas de
M. Zwink. L’effet systématique de la stratification sur la com-
pensation est ici négligeable. Il n’y a donc pas lieu de tenir
compte de cette influence d’'une facon générale.

Ceci n’infirme d’ailleurs en rien ce que nous avons dit
plus haut de 'influence de la stratification sur la marche, car
il ne s’agit ici que de la partie de cet effet qui a méme peuode
que la température, et pas de l'effet entier. 1l est curieux de
noter en particulier que (comme nous l'avons déji dit)
variation totale du gradient est plus grande dans le second
des cas ci-dessus que dans le premier, tandis que la partie
de cette variation du gradient qui coincide avec celle de la
température est plus faible dans le second que dans le premier.

5. Compensation de l'effet de stratification,

Les formules établies jusqu’ici nous permettent d’aborder
maintenant I’étude d’un probléme particuliérement intéressant
et important: est-il possible de construire un pendule @ mercure
compensé simultanément pour les variations de la température
et pour les variations de stratification de la température. Si
une semblable construction est possible, il faut évidemment
s’empresser de I'adopter, car elle supprimerait le principal,
on peut presque dire le seul inconvénient de la compensation
a mercure.
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On pourrait croire au premier abord que rien ne s’oppose
a ce perfectionnement: il suffit, semble-t-il, de placer le mer-
cure assez haut pour que l'effet de stratification disparaisse
En réalité, la question est loin d’étre aussi simple; c’est que.
au fur et & mesure qu’'on éléve le mercure, son pouvoir com-
pensateur diminue, et on est obligé d’en augmenter‘ la masse.
D’ailleurs, on ne peut pas élever le mercure indéfiniment,
puisque, comme nous l’avons vu déja, tout le mercure situ¢

au-dessus du milieu du pendule (point a la distanceé de lu

suspension) est non seulement inutile, mais nuisible a I«
compensation. D’autre part, le fait de transporter ainsi le
mercure vers le milieu du pendule entraine une autre cons¢-
quence: la partie solide doit alors étre en grande partie con-
centrée en un point trés bas, pour que le pendule entier
continue a battre la seconde; on aboutit donc, lorsqu’on veu!
construire de tels pendules doublement compensés, a des
formes tellement allongées qu’on ne peut pas songer a les
réaliser dans la pratique.

La question qui se pose est donc celle-ci: quelle sera la
longueur minimum d’un tel pendule doublement compensé"
Nous étudierons tout d’abord le cas d’un vase cylindrique:
c’est le deuxiéme des cas traités au § 4 du chapitre I et au
§ 3 du présent chapitre. Les résultats qui y ont été établis
sont ici immédiatement utilisables.

La condition de compensation pour la température es!
(formule (6), chap. II):

fo === ]% [:13— (b — u?) — é 0 — a4 a(l—a)(b— a)] 3

i

et celle de la compensation de la stratification (formule (6) du
présent chapitre):

2 1/ i b 3 TR
%“:%(Ka—‘l;b 4a e —-—a)——llb qa —u(l-—-a)b _ a’l.c)

] e

Nous ne diminuerons enrien la généralité de notre démons-
tration si nous supposons que notre pendule a une longueur
réduite, !, donnée, ainsi qu'un moment d’inertie, N, donné¢;
car, pour' passer d’'un tel pendule a un pendule 'de longueun
quelconque, 1l suffira d’en multiplier toutes les dimensions
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par un rapport déterminé; si I'un de ces pendules est dou-
blement compensé, I'autre le sera aussi, et d’autre part, pour
passer d’un tel pendule a un pendule d’un autre moment
d’inertie, il suffira de multiplier les différentes masses par
un facteur constant, la double compensation n’étant pas
affectée par une telle transformation, tant qu’'on néglige,
comme 1l est convenu, les dimensions transversales du pen-
dule. Nous pouvons donc poser, pour simplifier les calculs.

=1 et N=-1. Alors, d’apreés la formule / - E on a aussi

D=1, et nous devons ajouter aux deux équations ci-dessu~
les deux nouvelles équations:

DS S (82— )= |
N=1IJ-+4 %(1)3 — )y =1

Pour poursuivre notre démonstration, il faut faire ici une
supposition quant a la forme de la partie solide du pendule:
nous supposerons tout d’abord, a I'exemple de M. Wanach,
que toute la masse solide est concentrée en un point. Soit ()
cette masse, I’ sa distance a la suspension. On a alors pour
S, J et K les valeurs les plus simples possibles:

$5=QF JI=0F K=QF*

Il nous reste a déterminer la valeur minimum de I pour
un pendule doublement compensé de ce type. D’aprés tout
ce que nous avons dit plus haut, la solution la plus favorable
sera celle ou le mercure a son niveau exactement au milieu
du pendule, c’est-a-dire celle oi1 on aura, dans les formulex

: [ 1 : I ;
ci-dessus, a=§ —. Nous aboutissons ainsi au systéme

I

d’équations suivant :

41 \
1/ I 1 ,,, 1 | 1
=e|3(t—5) =5 (#—3)t7(2~3)}



Nous avons ainsi quatre équations pour quatre inconnues.
On peut sans difficulté en éliminer trois; les calculs sont un
peu longs: qu’il me suffise donc dmdlquer ici la marche
suivie.

La troisiéme équation permet d’exprimer ¢ en fonction de
b, on introduit cette valeur dans les trois autres équations.
on peut alors en tirer les valeurs de QF, Q2 et QE3 En pre-
nant le rapport de la deuxiéme de ces quantités a la premiere,
puis de la troisiéme a la deuxiéme, on obtient deux valeurs
de F qu'on n’a plus qu’a égaler pour former une équation :
une seule inconnue, b. Voici cette équation:

250% (c—a) —402(9e® —bdea —a?) 25 (9 — 11 ca | 422%)
—(389—’—2-&—0.%):0

Cette équation résolue, on a, pour calculer les trois autres
inconnues, les formules suivantes :

On a, pour un pendule & mercure en acier, a=0,00001
e=0,000148, et I’équation du troisiéme degré en b devien:
approximativement:

1622 b3 — 2540 62 41198 b — 229,5=0

Une résolution, grossiérement approchée, m’a donné pour
les inconnues:

b=0,941 e=2,61
F=223 Q=0,0775



— 273 —

Ces résultats concordent bien avec ceux auxquels M. Wa-
nach avait abouti par une méthode sensiblement différente.
Du tableau des résultats de M. Wanach, je tire les valeurs
suivantes pour le cas du minimum de I:

E="717 E = 2220 w=0,0074 l. =433 1

Les valeurs que nous venons d’obtenir donneraient pour
ces mémes quantités les nombres sulvants:

E=T720 Ef'=2240 n.=0,0677 L= 441

Si 'on remarque que je suis parti de constantes un peu
différentes, { =1 au lieu de [=0,994% et :—148.10—% au licu
de 148,36.10—¢ et que de plus je me suis borné i des calculs
trés peu précis, on conviendra que 'accord est tres satisfaisant.

La conclusion a laquelle M. Wanach était parvenu est ainsi
confirmée, a savoir qu'un pendule a seconde, a4 mercure et en
acier, qui serait simultanément compensé pour les variations
de température et pour celles de stratification, aurait plus de
2m 20 de longueur, et que de ce fait il ne serait guére réalisable.

Toutefois il faut noter que ce résultat assez inattendu n’a
été obtenu qu’en faisant deux spécialisations: la partie solide
a été supposée concentrée en un seul point, et le mercure
supposé constituer une colonne cylindrique. Ces deux sup-
positions sont-elles de nature a influencer sensiblement le
résultat?

Si I'on suppose que la masse solide n’est plus concentrée
en un point, mais répartie en une tige et une lentille, la
longueur de cette partie solide sera vraisemblablement encore
plus longue que les 2m 20 obtenus ci-dessus. Mais, comme
nous l'avons vu & plus d’'une reprise au cours de ce travail,
il est imprudent de se baser sur de simples vraisemblances
dans cette question. C’est pourquoi j’ai procédé a quelques
essals numériques, et ces calculs de pendules ainsi constitués
et doublement compensés ont pleinement confirmé cette sup-
position. Le cas ou la masse solide est concentrée en un point
est un cas limite et correspond a la longueur minimum de
cette partie solide; pour toute autre forme, la longueur néces-
saire pour atteindre une double compensation est plus grande.

! Dans les notations de M. Wanach, I est la longueur de la colonne de
Mercure, K la distance de son centre de gravite a la suspension, E' la distance
F de la masse solide a la suspension, enfin @ le rapport de cette masse solide @
celle du mercure.

18 BULIL. SOC. SC. NAT. T. XXXVII
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Il semble par contre qu'on pourrait, en renoncant a
forme cylindrique de la colonne de mercure, et en supposam
que celui-ci est concentré en grande partie en un point, et se
transporte par dilatation jusqu’au milieu du pendule, réaliser
des conditions plus favorables (car I'effet compensateur d’une
masse donnée de mercure est ainsi plus grand) et réduire
dans une proportion notable la longueur de la partie solide.

Pour trancher cette question, il nous faut simplement
refaire le méme calcul que ci-dessus, mais pour le premicr
des cas spéciaux étudiés plus haut. Les conditions des deux
compensations sont ici les formules (5):

Lo 'S[) ()\—-[)—I—([(l——(l)]

éd-——“% (KO!—H 3\ °( ——a)——-l»l)\—{[([—d()]a:)

Nous posons, exactement comme ci-dessus, {=—1, N=—=1.
d’ou D=1. Alors:
D=QF L]
N=QF4m»=1

De plus, si nous plagons le niveau du mercure au milicu

[ 1 : .
du pendule, nous aurens d ——=—. Nous aboutissons ainsi

2 2
au systéme des quatre équations suivantes:
QF +mxr-—=1

QI mit—=1
, 1 , P
a—=m|r(d—1) —}—-7 = ou bien a-—=m (A— 5
¥ 2

%a:QF%_-ml;) (.-,-—a)~|—( —i:

. |/ 1\2 - ]
ou bien ()FJ—-—E’Ei [(k—m) E-—-—-—J.'—-aJ ey

\___/

« 2,

Pour résoudre ce systéme, on procede de méme que dans
le cas précédent. La troisiéme équation nous donne la valeur
de m, en fonction de A:




En introduisant cette valeur dans les deux premicres et
dans la quatriéme des équations ci-dessus, on obtient:

Q%:i_f_ﬁ%:_
(\)‘k* B ) -
OF2=1 — '_Zii_:*
s
(f“;i

En divisant membre a membre la deuxieme équation pur
la premiere et la troisieme par la deuxiéme, on obtient les

deux valeurs suivantes de F':
| 52

(}.———)— s — Ata
AT
‘l————s):—/a&
I L [5% o,
; —2—(/-—2):}/|(/—£):—-A-1
().ﬁ—l))gzﬁ)'x

En égalant ces deux valeurs de I on obtient une équation
en A, qu'on peut simplifier notablement; il reste finalement :

WG—@—4W3i—q4*t(h j— 0

1 2

-
—

Une fois cette équation résolue, on peut calculer IF a I'aide
de la premiére des deux valeurs ci-dessus:
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Puis, la troisiéme formule du systéme dont nous sommes
partis donne:
o

()« — 1)25
2,

Enfin, Q se calcule le plus facilement a partir de la pre-
miére des équations du début; on obtient:

m=—

F () — 1)23
2

Pour un pendule a mercure en acier, on a en moyenne
a=11>10-%, :=148> 10—°¢, et 'équation en * devient:

9743 — 42232 | 911 % — 37T =0

Deux racines sont imaginaires. La racine réelle a pour
valeur 2=0,762. Les valeurs correspondantes des autres
inconnues sont: F=212, m=—1,08, Q=0,0829. (Cest I
valeur F=2m 12 qui nous intéresse plus particuliérement :
On voit que le gain réalisé est bien minime (la longueur
n’est réduite que de 10 cm. environ). Nous en concluons que,
quelle que soit la forme qu’on donne au récipient a mercure,
la partie solide aura plus de 2m 10 de longueur.

L’espoir qu’on pouvait conserver de réussir, par une sen:-
blable disposition, a réaliser un pendule doublement con-
pensé est donc dégu. Cela ne veut pas dire toutefois qu'il
faille renoncer définitivement a résoudre ce probléme. Nous
n’avons jusqu’ici envisagé que le cas ou le mercure est situé
en entier au-dessous de sa surface libre. Or, puisque le peu-
dule oscille sous une pression d’'une atmosphére lorsqu’il est
a I'air libre, et souvent aussi sous une pression assez consi-
dérable quand il est dans une cloche hermétiquement close,
il v a possibilité de maintenir, par cette pression de lair,
une partie du mercure au-dessus de sa surface libre. On
peut espérer arriver par ce stratugéme a construire un pen-
dule doublement compensé parfaitement utilisable.

C’est dans ce but que les conditions de compensation ont
élé étudiées pour des pendules de ce genre (voir le quatriéme
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et le cinquiéme des cas spéciaux traités plus haut). Au lieu

de calculer ici simplement, comme pour les cas précedents,
le pendule de longueur minimum (ce qui eut ete un peu
plus compliqué puisqu’il y a une variable de plus) j'ai prétéré
calculer quelques cas de pendules vraiment réalisables, c’est-
a-dire dont la partie solide ne soit pas seulement constituée
par un seul point matériel, mais bien par une tige pesante
portant un tel point a son extrémité (la lentille).

Nous avons vu que plus le mercure est éloigné du milieu
du pendule, plus son pouvoir compensateur est considérable.
Malheureusement, lorsqu’on envisage des pendules avec mer-
cure au-dessus de la surface libre, “deux raisons s ‘'opposent a
éloigner beaucoup le mercure de ce milieu; tout d’abord, si
on ne modifie pas la fagon actuelle de suspendre le pendule,
le sommet de la colonne de mercure devra rester a 10 ou en
tout cas a 5 cm. au-dessous du point de suspension; ensuite
il semble utile de laisser la pression atmosphérique en exces
important sur la pression du mercure. Dans les cing cas que
J’ai calculés, j’ai donc choisi a="10; j’ai pris successivement
pour b les valeurs: 90, 100, 105, 110, 120. La premiere de
ces valeurs détermine donc une colonne de mercure disposée
symetmquement par rapport au milieu du pendule; il semblait
a premiére vue que cette disposition devait permettre le plus
facilement de compenser l'effet de stratification. Les valeurs
suivantes ont été choisies plus grandes dans le but d’avoir
une plus forte action compensatrice-du mercure. Quant a d,

, . S
on I’a naturellement choisli ici aussi égal a 5 =050 (en prenant
.

l—=100) puisque cette valeur est la plus favorable. De plus,

et pour que les masses soient a peu pres dans l'ordre de

grandeur qu’elles devraient avoir en pratique, j'al posé
T

D=1000000 et N—100000000, ce qui donne bien z.-%:mo.

Pour le calcul d’'un pareil pendule doublement compensé
on dispose alors des équations suivantes:

1. Moment statique :
CUp2_ 42
D — S "" E (b (ol .)

2. Moment d’inertie :

N:J+§(b3—a3)
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3. Condition de compensation thermique (formule (8).
chap. II):

el 3 T : .
langxg (b —a )—5—(0 a )+(l(l~——d)(b—~u)],

et

4. Condition de compensation de la stratification (8):

[ (b3——u)—-——i(l—d u)J

La troisiéme formule permet de calculer ¢, puis les trois
autres donnent S, J et K, c’est-a-dire les données relatives
la partie solide du pendule. J’ai fait ces calculs pour les ciny
valeurs de b mentionnées ci-dessus, et j'al obtenu les résultat-
sulvants:

b= 90 100 105 110 120
c— 174, 118,0 96,5 79.6 54,7

S— 304>10° 4165105 4735108 522510° 609> 10*
J= 577> 10> 6073105 6285105 647>10° 685> 107
K— TI35107 8445107 995107 9855107 1106 5< 10"

Nous connaissons ainsi le moment statique, le moment
d’inertie et le moment du troisiéme degré de la partie solide
de chacun de ces cinq pendules; voici comment on peut en
déduire les dimensions et les masses: supposons chacun de
ces pendules constitué par une ligne matérielle homogéne de
longueur B et de densité (G (= masse de l'unité de longueur).
L’une des extrémités de cette ligne est a la suspension, I'autre
porte une masse (). On a donc, par définition:

S—~——~ QB )
| ; 34 QB ()
K___ (; "1»+Ql)3 \
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IEn soustravant membre & membre la deuxiéme équation
de la premiére multipliée par B, et de méme la troisieme e
la deuxiéme multipliée par B, on obtient:

SB—IJ = (:_‘_ b

6

IB— K- o
12

(2)

Q est ainsi éliminé. On élimine de méme C entre ces deux
dernieres équations, et on trouve:

SB2—3J B4 2K =0 (3)

L’équation (3), la premiére des équations (2) et la premiere
des équations (1) donnent alors pour les inconnues:

31 912 —8SK

B O s snbe
25
/(S B —.
¢ bEB—D
I3
N .
0= Loy
B 2

En appliquant ces formules aux nombres obtenus préce-
demment, on arrive aux dimensions et masses suivantes

A 100 105 | 110 | 120
B, — | 471 305 207 | | |
Go=— |]490 | =140 | —220 | & | &
Q = | — 509 — 715 —915 | 5 | 8 |
| £ |
B, - | 99X 133 171 | 8| &
Go — | —165 | —138 | 21,7 = | = |
Q, = | 11200 | -} 4050 | M3 | |

On voit tout d’abord par ces résultats que, des que /
dépasse sensiblement 105, on aboutit & des valeurs imagi-
naires pour la partie solide du pendule. De plus, des six
pendules calculés (a valeurs réelles) un seul est réalisable,
car pour un seul G et () sont simultanément positifs. 1l en
résulte que b ne peut varier que dans d’étroites limites pour
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une valeur donnée de a. On a une représenlation meilleure
de ces résultats si on les groupe selon la longueur B du
pendule :

b B c Q
90 471 14,90 — 509
[ 100 305 + 14,0 — 5
105 997 19229 — 515
105 17 19,7 913
I 100 133 — 13,8 1 4050
90 100 — 16,5 - 11200

On voit bien par ce tableau que 4 doit rester trés pres d«
105 si 'on veut obtenir un pendule réalisable, car dés que ’
dépasse un peu cette valeur, on obtient des résultats imagi-
naires; et d’autre part, dés que b est sensiblement inférieur
a 105, soit Q, soit C devient négatif.

De plus, par ce tableau, un résultat que nous avions déj:
établi precedemment se trouve confirmé, a savoir que, toute:
conditions étant égales d’ailleurs, c’est le pendule réduit a un
seul point matériel qui est le plus court. On voit en effet que
si B diminue a partir de la valeur 171 correspondante :
b=105, on continue a obtenir des valeurs positives pou:
G et Q jusquau moment ou (=0, c’est-a-dire jusqu’ai
moment ou le pendule se réduit a la masse (). Ce cas tout
spécial et tout théorique nous donnerait ici pour le pendul:
une longueur minimum d’environ 140. Mais en pratique.
( doit avoir une valeur appréciable, et on ne pourrait guerﬂ
descendre au-dessous de (=20 environ, correspondant 2
b—105 et 3 B=170. Donc en pratique, un pendule double—
ment compensé du type que nous étudions actuellement ser:
encore trop long. La différence entre ces deux longueurs nous
montre en outre que, dans les cas précédemment étudiés, ou
le minimum théorique était de plus de 2 m., le minimum
pratique eut sans doute été de 21/, m. ou 3 m.

Par le type que nous venons de considérer, nous nous
sommes rapprochés de la solution, mais nous ne I'avons pas
encore atteinte. On diminuerait sans doule encore un peu It
longueur totale si I’on prenait a=>5 au lieu de ¢ =10, et en
faisant subir a b une augmentation correspondante; mais ie
gain réalisé de cette facon ne serait probablement pas tres
considérable. Un pendule ainsi construit serait donc encore
trop long; il aurait de plus, comme le précédent, le désavan-
tage de nécessiter trop de mercure (et bien inutilement, commne
nous allons le voir). Tout cela provient de ce que, dans ce
type, comme nous l'avons dit déja, le mercure est trop rap-
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proché du milieu du pendule, ce qui diminue son pouvoir
compensateur. Le seul moyen d’obvier a cet inconvénient, si
'on ne veut pas faire monter le mercure au-dessus de la
suspension, c’est d’en concentrer une partie en un point,
au sommet de la colonne. (e cas a ¢été examiné comme
cinquiéme cas spécial.

J’ai entrepris le calcul approximatil de quelques pendules
doublement compensés de ce nouveau type. On a, 1ci aussi,
quatre équations a satisfaire, exprimant que le pendule doil
battre un temps donné, qu’il doit posséder une puissance
réglante donnée (moment d’inertie), qu’il doit étre compensé
pour la température et qu’il doit I'étre aussi pour la stratili-
cation. Ces quatre équations sont (les deux derniéres sont
les équations (9) du chapitre précédent et du présent chapitre):

D::-_-‘—; —([) l’([” ]
y:%whﬂﬂ+qﬂfJ

b L Lo i
‘FQId(l_d)_"”(l'_”)]:E
-é'—-a.. l; (Ka-—-( ;l ({)-i _,{i)(a_l)mlé(ll:{ o ”3)

"ga—m“”'d]-—wﬁ ru—ddm@

)

Dans ces équations, les quantités S, J, K se rapportent i
une forme absolument quelconque de la )artie solide. Pour
passer aux calculs numériques, il est nécessaire de spécialiser
cette forme de facon simple. Nous supposerons donc que la
partie solide consiste en une ligne matérielle partant du point
de suspension, de longueur B et de densité C, et en un point
matériel de masse Q situé a la distance I de la suspension.
On a alors:

5 = (1 2 LQF
9

J:::(‘ } ()l
3

Kriwyow

4
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En introduisant ces valeurs dans le systéme d’équations
précédent, et en les ordonnant de facon un peu différente,

on obtient (en remarquant encore que l:6>:

¢ [l% (b — ) _—l) (62— a2) 4-d ({ —d) (b— a)]

+q[d(l—d)——a l—a)]v_—l)la—cf (b* — a?) (e — «)

— “l“(b:%_u'“)—-fi—)(l—d) (b‘-’—ae)]s:—qa?ag(a—a)

3 __
Niv—ag—a| £ Epra g orra—"N,
o 0

—

Lﬂﬁ+qm%£W+QF;D
3—w‘)—f—qa——'— B3—|—QI< == N

Cv|<‘: L\‘J|e

Puisqu’il y a seulement quatre équations a satisfaire, o
peut choisir toutes les quantités a volonté, sauf quatre d’entre
elles qu'on prendra comme inconnues, et dont on obtiendr:
la valeur en résolvant ce systeme d’équations. Pour la com-
modité du calcul, il semble préférable de choisir les masses
et les densités, c’est-a-dire ¢, g, (i, Q comme inconnues, cur
le systéme est linéaire par rapport a ces quantités.

J’ai donné a D, N, [l et d les valeurs suivantes qui, plus
encore que celles du cas précédent, seraient directement uli-
lisables pour un pendule a secondes:

D—500000 N —>50000000 z:%:mo a:é:fw

J’ail calculé ensuile les coefficients de ce systéme d’équi-
tions pour quelques valeurs de a, b, B et F. Voici, a titie
d’exemple, les équations auxquelles on aboutit lorsqu’on
prend a=>5, b =DB=120, F =115:

21,04¢ 4 0,300¢ == 5511
—1236 c¢c— 1,497¢4 S5I0CH4  16,73Q= 2750
7190 ¢+ 5 ¢+ 7200C+ 115 Q= 500000
576000 c¢+25  ¢g+576000C+ 13225  (Q=250000 000
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[.a résolution approximative de ce svstéme donne:

p—

E=406.75

Ces calculs ont été répétés pour trois

résultats obtenus:

(i

—11,

{

ey

(\) = :2:) [U

autres cas: voicl les

‘ 1T cas

1

| zme cas | 3= cas ‘ 4™ cas
| | |
al 10 1w 10 5
o b 120 120 | M5 | 120
e Bl 120 | 120 | 115 | 120
o110 115 | 15 | 115
|
[
o | 1587 16.4 21,1 16.75
, g | 980 | 051 822 | 660
Inconnues: G| 333 078 561 1172
Q3215|263 2750 | 2540
Masse du mercure = ¢ (b—a)-|-¢ 2720 [2760 |3040 | 2300
Masse de la partie solide =- GB-}-Q | 3610 3300 3390 | 3940
Masse totale - - .. .. 16330 6560 6430 | 6530
Rayon de la colonne de mercure 0.61 0.62 | I).Tl)! 062
Rayon extérieur du tube . . . . 0.71 0,88 0.8 | 0.3 |
Epaisseur du tube. l 0.10 026, 0151 031

J’ai fait figurer au tableau, 4 coté des inconnues elles-
mémes, des résultats qui s'en déduisent immédiatement: la
masse du mercure, la masse de la partie solide et i masse
lotale du pendule. J’ai ensuite supposé que la ligne matérielle
solide est réalisée par un tube d’acier destiné i contenir sur
une partie de sa longueur la colonne de mercure. Le ravon
intérieur de ce tube est donc fourni par la densité ¢ de la
ligne de mercure; son rayon extérieur s’en déduit alors faci-
lement en considérant la densité C de la ligne solide.

De ces quatre modéles, le dernier est certainement préfé-
rable pour deux raisons: tout d’abord parce que c’est celui
qui exige le moins de mercure, ensuite et surtout parce que
I'épaisseur obtenue pour la paroi du tube est la plus forte.
Les quatre cas d’ailleurs paraissent tous facilement réalisables;
mais il y aurait lieu, si on voulait construire un tel pendule,
de se rapprocher le plus possible du quatriéme cas. Jai cal-
culé encore, pour ce quatriéme cas, le ravon qu’aurait le
réservoir de mercure du sommet de la colonne, si on le sup-
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pose de forme sphérique, et j’ai obtenu 2¢m,26. Quant a Ia
lentille, représentée par un point matériel (), elle auraii,
supposée sphérique elle aussi et en acier, un rayon de 4cm 27,
(Voir fig. 8.)

Le probléme du calcul d’un pendule & mercure double-
ment compensé est ainsi résolu.

S’il s’agissait de construire un tel pendule, on choisirait
un tube d’acier se rapprochant le plus possible comme dimei:-
sions du type qu’on aurait choisi; la valeur de ¢ serait par |1

méme déterminée; on devrait alors choisiv
A une autre inconnue au lieu de cette quantite,
par exemple la distance de la lentille a la su--
pension I, et on procéderait a la résoluticn
d du systéme des quatre équations de condi-
tion. On construirait ensuite le pendule en
réservant les dimensions exactes de la lentillc.
, Elles seraient fixées apres coup, de facon que
F le pendule soit exactement compensé pour [
.3 température, d’aprés la méthode que nous
avons indiquée plus haut (p. 239). La compeii-
sation de stratitication sera suffisamment ap-
prochée, alors méme qu'on a négligé, pur
exemple, la masse de la paroi du vase de
mercure au haut de la colonne, ainsi que celie
v d’autres détails du pendule: pour la stratifici-
tion, comme nous 'avons déja vu, une appro-
ximation tres grossiére suffit.

Si 'on admettait que le pendule puisse

Fig. 8. étre prolongé au-dessus de sa suspension (ce

A morouro doubimawe  qui semble trés facilement réalisable) on pou:-
compensé. rait encore construire des pendules double-
ment compensés d’un type un peu différeni:

on pourrait éloigner davantage le mercure du milieu du pen-
dule, ce qui permettrait d’éviter le réservoir a mercure au
haut de la colonne, c’est-a-dire d’en rester a la forme cylin-
drique, plus simple. Mais il faudrait alors séparer le mei-
cure en deux colonnes distinctes, pour qu’il reste toujours,
au haut de la colonne supérieure, un exces de pression sufli-
sant. On pourrait, par exemple, admettre pour la hauteur de
la colonne supérieure 50 cm. Si 'on veut placer cette colonie
de la facon la plus avantageuse, il faut réaliser la condition
du minimum de mercure. La distance séparant I'extrémité
inférieure de la colonne du milieu du pendule doit étre égale
au tiers de la hauteur de la colonne, soit 4 17 cm. environ.




La colonne dépasserait alors d’autant la suspension. On dis-
poserait a la partie inférieure une deuxieme colonne exacte-
ment symétrique par rapport au milieu du pendule.

Les autres éléments du pendule se calculeraient ensuite
trés facilement de la maniére suivante: On se donnerait
encore la longueur de la partie solide, qui devrait pouvoir
contenir ces deux colonnes de mercure, c’est-a-dire avoir
117 cm. au-dessous de la suspension et 17 au-dessus. Les
quatre équations de condition permettraient alors de calculer
d’une facon analogue aux précédentes les quantités ¢, (i, Q et 1.

Les formules seraient légerement plus compliquées que
précédemment, tout d’abord parce qu'on a deux colonnes de
mercure au lieu d’une, ensuite parce que les équations ne
sont pas linéaires par mpport a I'. Mais la reésolution nume-
rique approximative d’un tel systétme d’équations ne présente
aucune difficulté.

Un pendule de ce type serait sans aucun doute parfai-
tement réalisable. Il serait plus avantageux que le modele
précédemment décrit, parce que de forme plus simple. La
construction d’une ho:loge munie d'un tel pendule ne man-
querait pas d’'intérét. Mais s’1l s’agit simplement de substituer,
dans une horloge existante, un pendule @ mercure doublement
compensé a n’‘importe quel autre pendule, on pourra, sans
modifier la suspension, adopter la premiére forme de pendules
doublement Compenses.

On voit qu’ainsi la question se trouve résolue de facon a
satisfaire a tous les besoins.
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CHAPITRE 1V

Influence de lair ambiant
sur la compensation thermique d’un pendule.

1. Introduction.

L’influence de I'air ambiant sur la marche du pendule ext
connue depuis plus d’un siécle et demi; elle a été 'objet d’un
trés grand nombre de travaux tant théoriques qu’expérimei-
laux: Les astronomes ont déterminé pour leurs horloges le
coefficient barométrique, c’est-a-dire la variation de la marcl:e
diurne correspondant a une variation de pression de 1 mm.
les géodésiens ont déterminé pour leurs pendules une constante
analogue, celle de la réduction au vide; enfin, les physiciens
ont abordé I'étude théorique du probleme et résolu celui-ci
pour les formes les plus simples de pendule; leurs résultals
s’accordent avec ceux de I'expérience.

Il n’est évidemment pas possible de reprendre ici toule
celte vaste question, ni méme d’en résumer les requltah
obtenus; cela sortirait d’ailleurs du cadre de cette étude. J
me borne donc 2 rappeler que l'effet du milieu ambiant sur
le mouvement d’un pendule est double: 10 'amplitude est
progressivement diminuée; 20 la durée d'une oscillation pour
une amplitude donnée est augmentée. Ce second effet est le
seul qui nous intéresse ici, puisque dans les horloges le méci-
nisme maintient 'amplitude a peu prés constante.

I’augmentation de la durée d’oscillation d’un pendule peut
étre considérée comme proportionnelle a ’augmentation de
la pression atmosphérique, car, en un méme endroit, les
variations de cette pression sont faibles. Mais il faut noter
que ce n’est pas la variation de pression comme telle qui
produit un changement dans la durée d’oscillation, mais bien
la variation de densité qui en résulte. En d’autres termes, !
pression du milieu ambiant parait étre sans influence appre-
ciable sur la durée d’oscillation d’'un pendule; cette durde
d’oscillation dépend seulement dela densité du milieu ambiant'.

! Les travaux classiques sur cette question ont été réunis par C. Wori:

« Mémoires sur le pendule. »
On trouve un bon résumeé des résultats dans I’Encyclopédie des scienc:s

mathématiques, édition allemande, Bd. 1V 11, 7, article de Pu. FurtwANGLEL.
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Mais alors, la variation de température du milieu ambiant
aura aussl quelque effet sur la durée d’oscillation, puisqu’elle
entraine, elle aussi, une variation de densité. L.e milien ambiant
doit donc avoir une influence sur la compensation thermique,
et nous devrons modifier les résultats obtenus jusqu’ici. (Vest
a ce titre, et & ce titre seulement, que nous avons & nous
en occuper ici.

1l semble qu’on n’a jamais, jusqu’ici, tenu compte de cette
influence dans le calcul de pendules compensés au mercure,
et bien rarement pour d’autres tyvpes de pendules!, el cepen-
dant, comme nous allons voir, cet effet est trés appréciable.

Voici comment on peut en obtenir une premiere approxi-
mation & partir du coefficient barométrique du pendule:

Lia densité & de I'air est une fonction de la pression p et
de la température absolue I, de la forme 2. ']I"" <i Yon sup-
pose la pression exprimcée en atmospheres, et la température
absolue en unités 273 15=288 fois plus grandes que I
degré centigrade, et si I'on prend pour unité de densité celle
de TP'air a la pression 1 (=760 mm.) et a la températwre
absolue 1 (= 150 ().

On en déduit les relations suivantes entre les variations
correspondantes de ces quanlités:

da——dp tlo ===l

Mais si on change d’unités et qu’on prenne pour évaluer dp
le millimétre de mercure, et pour dT le degré centigrade,
ces formules deviennent:

l I

dd ———dp o s d'l
760 288

Sy

Il en résulte qu'un changement de pression dp et un change-
ment de température dT produiront exactement le méme

1 M. W.-A. Nippoldt a tenu comptle de cet effet de lair ambiant dans [
calcul de sa nouvelle compensation, en se basant uniquement sur les recherches
de Bessel : W.-A. NrerpoLpT, « Ein neues fiir Temperatur- und Luftdruckschwan-
kungen kompensiertes Pendel », Zeitschr. 1. Instruimentenkiunde, 1389, p. 117
De son coté, M. Ch.-Ed. Guillaume a calculé cet effet pour les pendules d’acier
nickel, mais en tenant seulement compte de l'effet de la variation de la pousser
de l'air. Nous verrons que ce n’est guére que la moitié de 1'effet total. Voir:
CH.-Ep. GuiLLAUME, « L’action de l'air sur la compensation du pendule », Jo.
sutsse d’horl., XXIX, p. 109, 1904.
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changement de densité (et par conséquent le méme change-
ment de marche) pourvu qu'’ils soient liés par la relation:

_il__df I dT
760 288
d’ou
4
AT — 288
760

En particulier, une augmentlation de pression de 1 mm.
produira sur la densité, donc sur la marche, le méme eflct

qu'une variation de température de -—2&;:—00,379. Si

nous appelons & le coefficient barométrique d’un pendul
(correction a apporter a la marche diurne quand la pressio:
augmente de 1 mm.), nous aurons donc comme coefficient
thermique 6 résultant (correction a apporter a la marche
diurne quand la température de ’air augmente de 10):

b
0319

B 2,640

En admettant, par exemple, un coefficient barométrique de
0s,014 pour les pendules cylindriques, et de 05,012 pour les
pendules aplatis, on obtient pour ces deux cas:

o, — — 05,037 6, — — 05,032

Ces modifications du coefficient thermiques sont loin d’étie
négligeables. Il résulterait donc de ce premier calcul que
I'effet de l'air ambiant est de compenser environ 1/,, ou !/,,
de la dilatation de la tige; de sorte qu’'un pendule parfaite-
ment compensé pour le vide serait surcompensé dans I'atmos-
phére et qu’on devrait lui enlever environ !/,; ou */,, de son
mercure.

Mais en réalité, comme nous allons le voir au pararrrap
sulvant, le phenomene n’est pas tout a fait aussi 31mple c’ext
que le ralentissement de marche d’un pendule dans l'atmos-
phére ne dépend pas seulement de la densité, mais aussi du
coefficient de frottement intérieur ou de viscosité de l'air, ot
que ce coefficient est lui aussi fonction de la température.
Nous verrons que l'effet de la température sur la viscosité de



280 —

air est opposé a celui de la température sur la densité et en
compense une faible partie. L’effet total de la température
est donc un peu moindre que celui mentionné ci-dessus.
Avant de passer a une étude plus compléte de toute cette
question, notons encore une conséquence inattendue de ce
qui précéde’: c’est qu'un pendule exactement compensé i
Pair libre ne le sera plus sous pression constante: car le
terme «pression constante» signifie en réalité densité cons-
tante; les variations de température de l'air ne produisent
donc plus de variations de densité, ni de marche, et il ne
reste plus que l'effet de la variation du frottement intérieur
avec la température, variation qui est donc de sens contraire.

2, Données théoriques,

Il résulte des études théoriques de Stokes que I'effet d'un
gaz ambiant sur la durée d’oscillation d’'une sphére est de lu
forme :

A | By ns

¢ étant la densité du gaz, » son coefficient de frottement inté-
rieur, A et B des constantes dépendant de la dimension, de
la masse et de la position de la sphére.

Pour des formes autres que la sphére, le probléme n'u
pas été jusqu’icli entiérement résolu. On obtient pour le
cylindre une série dont les termes prépondérants sont exac-
tement de la forme ci-dessus. 11 était assez naturel d’en
déduire qu’en pratique on pourrait trés probablement em-
ployer une formule pareille pour des formes de pendule assez
diverses.

Les expériences faites par Peirce?, Defforges ? Kithnen
et Furtwingler* sur huit pendules & réversion différents,
dans leurs deux positions, soit en tout seize pendules dis-
tincts, ont montré qu’en effet cette formuie représente fort
bien l’action de I'air ambiant sur la durée d’oscillation.

! Conséquence déja signalée par M. Ch.-Id. Guillaume, loc. cit.

. 2 PEIrce. « Methods and results of measurements of gravity at initial sta-
tions in America and Europa.» U. S. Survey, 1876, App. 15.

3 DEFFORGES. « Observations du pendule. » Mémorial die dépit géneéral de
la guerre, t. XV, 1894, p. 56.

* F. KunneN et PH. FURTWANGLER. « Bestimmung der absoluten Grisse der
Schwerkraft zu Potsdam mit Reversionspendeln.» Ver. Prewss. Geod. Inst.,
906, p. 253.

19 BULL. S0C. SC. NAT. T. XXXVII
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Faute d’autres renseignements, nous admettons que cette
formule s’applique aussi aux diverses formes de pendules
utilisées dans les horloges astronomiques.

St I'on suppose que, dans cette formule, on a donné anx
conslantes A et B des valeurs telles que la densité ¢ et le
coefficient de frottement n soient dans les conditions normales
désignés tous deux par l'unité, on en déduit pour la variation
de marche produite par des variations de densité ou de coof-
ficient de frottement une expression de la forme:

o= (A—{»%B) da—l—%Bdn

Cette formule linéaire est bien suffisante tant qu’on ne
s’écarte pas trop de la pression normale et de la température
moyenne adoptée.

Il reste a exprimer d3 et dn en fonction de la variation de
la température de 'air dT.

On admet aujourd’hui (les théories et les expériences les
plus récentes sont d’accord sur ce point!) que le coefficient
de frottement intérieur d’un gaz est donné par la formule:

~

VT
14 ¢/T

ou T est la température absolue, et « et ¢ des constantes
particuliéres au gaz. Pour I’air atmosphérique, on a en parti-
culier ¢c=114.

Supposons qu’on prenne pour unité de température absolue,
non pas le degré centigrade, mais l'intervalle de 2880. Cette
formule deviendra:

=

m 2
n=a7} 288 L —= ‘T
14 ¢ I'+4¢
288 T
Sl on pose:
WY WE—a ot S,

WS 288

1 Voir par exemple WINKELMANN, Handb. d. Phys., p. 1379, article d°
GRAEF : « Reibung der Gase ».
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Si, de plus, on décide de prendre pour unité de » le coefli-
cient de frottement de l'air a I’état normal, c’est-a-dire a
T=1, notre formule deviendra:

F
oy (l + ) ——
+
On en tire la relation cherchée:
dm:u4w35“'“”_*dr_(§__'l’JT
(1 4 )2 2 1/
Nous avions pour lair
, 114 1 288
/—=——, donc ——-="—"—
288 .[ “Iﬁ C’ iUQ

d’ou enfin:
dn=0,784d T

Quant a la variation de densité 43, il est évident gu’elle
est nulle dans un récipient hermethuement clos, c’est-a-dire
pour les pendules sous pression constante. Ce qui va sulvre
ne s’appligue donc qu’aux pendules oscillant dans I'air ambiant
libre. On a alors:

d’ou, si les unités sont convenablement choisies :
de—=dp—dT

En réunissant ce résultat au précédent, on ohtient:

10 Pour les pendules oscillant & l'air libre:

/

dm:(m+%uyw_w\+oomB)wr

20 Pour les pendules sous pression constante:

dm—=—=0.,7 fbufhdl

-l
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Ces deux formules s’appliquent naturellement a des étuls
voisins de I’état normal. Le résultat de la derniére devra donc
&tre modifié si la pression constante est sensiblement diflé-
rente d’'une atmosphére. On voit facilement qu’il faudruil

simplement multiplier le chiffre obtenu par ¢/ =1vp .

Par les deux formules précédentes, le probléme est ramend
a la détermination des coefficients A et B de la formule e
réduction au vide.

3, Evaluation du premier coeflicient, A,

La détermination théorique des coefficients A et B dun
pendule n’a été faite, a ma connaissance, qu'une seule fois,
par Peirce, pour les deux positions de son pendule a réversion.
Je m’en vais refaire exactement le méme calcul pour deux
pendu]es d’horloges choisis comme types des deux catégories
qu'il faut nécessairement distinguer ici: les pendules a vase
cylindrique ou pendules & mercure ordinaires, et les pendules
a lentille aplatie, tel le pendule a4 mercure de Riefler. Au point
de vue de l'influence de l’air, les pendules a gril peuvenl
vraisemblablement rentrer aussi dans cette derniére catégorie.

Je choisis comme types les deux pendules a mercure (e
M. Wanach a étudiés dans son travail, et qui sont les formes
un peu simplifiées et schématisées de deux pendules existanls.
Nous en avons donné les dimensions et les densités a la
note 1 de la page 20 du présent travail. Ajoutonc; que neus
prendrons pour la densité de l'air a la pression d’une atmo-
sphere et a la température de 150 le chiffre admis par Peirce:
0,001 206 obtenu en supposant que I'air contient une quantité
de vapeur d’eau un peu moindre que la moiti¢ de la sataration.
Le mémoire de Peirce n’étant pas facilement accessible i
chacun, je vais transcrire ici tous les détails de mon calcul.

Peirce rappelle que I'air ambiant retarde Ioscillation dun
pendule pour quatre causes :

1o La poussée de l'air déplacé (diminution du moment
statique).

20 L’air enfermé dans les parties creuses (augmentation
du moment d’inertie).

3o L’effet hydrodynamique (air entrainé a I'extérieur du
pendule et augmentant, lui aussi, le moment d’inertie).

4o L’effet de la viscosité ou frottement intérieur de lair.
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Le premier terme de la réduction au vide, c’est-a-dire la
constante A dépend des trois premicres causes. Le deuxiéme
terme et sa constante B sont dus uniquement a la quatriéme
cause.

On suppose que les parties creuses, s'll v en a, communi-
quent avec l'air extérieur. Si elles étaient hermétiquement
closes, il faudrait considérer l'air v enfermé comme faisant
completement partie du pendule, et tenir alors compte de la
poussée correspondante @ cet espace: tandis que lorsque les
parties creuses communiquent avec l'extérieur, il faut sim-
plement tenir compte de I'air y contenu, qui est entrain¢
avec le pendule.

1. Poussée. — Pour 1 mm. d’augmentation de la pression,
effet de la poussée angmente de:

4 I ¢« moment statique de l'air déplacé
T i

2 moment statique du pendule

' - : | :
Dans cette formule, ainsi que dans les suivantes, — 5 brovient

de la différentiation par laquelle on obtient une for mule linéaire
a partir de la formule exacte contenant une racine carrée:

2 86 400 ——
== 'k et (.=—-——— est une constante nécessaire pour
760

passer de l'effet sur une oscillation a I'effet sur la marche
d’un jour entier, d’'une part, et d’autre part pour réduire
Peffet produit par toute I'atmosphére a celui produit par
1 mm. de pression.

On a pour les deux pendules considéres:

_ Gmf0,52 585 X 40,6 (2.72—2.5%) 200 I8 | 252X T AU k] 0,001 206
)

2 7 {[10,42 X 33,6 (2.722.52) 20 8. 1] X H2s
0,005 5, (pemlule ordinaire)

JXIJ,{IX"" f]l’_l,il”:

Com[(0.92—0.82) 122505 - (1852 —0.92) 5804 =082 T6XNS [0.001 206

— 0,007 5, (pendule Riefler)

2 n'f[(ﬂ 02—0,82)122 60 {-(. R32—0),\2 ),\\ln. 7.8-F[ 0,825 Thx¢ 88 | 1! ,.,m
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2. Aiwr enfermé. — L’effet de cet air enfermé sur la marcl.e
diurne, pour une variation de pression de 1 mm., est de:

. 1 C moment d’inertie de I'air enfermé
J;) TR e = F
-2 moment d’inertie du pendule

Les moments d’inertie figurant ici au dénominateur s’ol-
tiennent le plus facilement en multipliant les moments stui-
tiques des dénominateurs des formules précédentes, a savoir,
1053000 et 1098000, par la longueur du pendule simpie
battant la seconde: 99,4. On obtient ainsi: 104700000 ct
109 100 000.

Pour calculer le moment d’inertie des cylindres d’air, il
faut d’abord connaitre leur rayon de gyration. Pour celui du
pendule ordinaire, on peut simplement prendre 90. Quanl «
celui d du pendule Riefler, on le calcule d’aprés la formule
connue :

1 L? . 46
AB = T2 ) 972 ]2 — 905
E—|—4(R+3) +4(0,q+3/) 905
En introduisant ces valeurs on a:
2 =) (9 I=4 9 2 4 € _
Pendule ordin, (19:1(; R 242,00 2 I O, 00 20620,00“"1
2 104 700 000
=(,8? >< 4 5 1206 |
Pendule Riefler aﬁ_ic 0,87 >< 46 >< 905 >< 0,001 206 — 0,000 0-
2 109100 000
3. Effet hydrodynamique ow awr extérieur enlrainé. — Peirce

se base 1ci sur les résultats obtenus par Green, en considérant
les cylindres comme des cas spéciaux d’ellipsoides. 1l obticnt
ainsi que, pour un cylindre notablement plus long que lavge
et oscillant suivant un méridien, la quantité d’air entrainé
extérieurement est égale a l'air depla(,e Pour des cylindres
courts, il y a lieu de modifier cette formule par I'introduction
d’un coefficient convenable.

Appliquons d’abord ce résultat aux deux tiges. Nous aurons:

o 1 C moment d’inertie de l'air déplacé
g - ;
2 moment d’'inertie du pendule
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On a d’abord, pour les carrés des ravons de gyration dex
volumes cylindriques d’air déplacé:

. . - l - (,.'-_)3 R
Pendule ordinaire . 45,6 | S0 f ) == 2680
f 2 e)
. - 1 (bl - -
Pendule Riefler. . 05 - — [ LR~ —— | =4Il
(2 )

d’ou ensuite :

1 70,42 < 85 >< 0,001 2006 >< 2680

Pend. ordin. @', —=— (i - e ~ 0,000 ]
: 9 10% 700 000
1 =.0.92 1225 0,001 2006 > D470
Pend. Riell, @y — — (o o REE N HOLD = b8 o
2 109 100 000

Le vase cylindrique du pendule ordinaire est assez allongé
pour qu'on puisse lui appliquer exactement la méme formule.
On a pour son rayon de gyration:

08,12 1 (g gy 20 OGO
-L,l—+'7"(—1l“|.)}”_- ")‘ N
& o . ) )
d’otr:
1 =272 < 20 3< 0,001 2006 = 9650 g
Pend. ordin. ", =——C p 475 2 < o ) 0.0 DN,
g 104 700 000

Quant a la lentille du pendule Riefler, il faut remarquer
qu’elle n’a pas la forme indiquée sur le dessin, mais qu’elle
est taillée en biseau, ou plutot formée de deux troncs de cones
trés aplatis et accolés par leurs grandes bases. De cette facon
elle coupe l'air et en entraine fort peu. Il est extrémement
difficile d’exprimer par une formule la (uantité d’air entrainé
par une telle forme; on peut cependant déduire des remarques
de Peirce que l'effet sera trés faible et ne dépassera probabhle-
ment pas celui de la partie correspondante de la tige. Nous
n‘avons donc rien a ajouter a 'effet de I'nir entrainé par la
tige entiére, tel que nous 'avons calculé ci-dessus. Il en serait
d’ailleurs de méme si on avait affaire & une lentille aplatie
placée verticalement, comme c’est le cas dans d’autres pen-
dules de Riefler et dans presque tous les pendules a cril.



I’effet total de Pair entrainé, pour ces deux pendules, est
donc :

Pendule ordinaire. . «ay=a;" 4 a,”"-—=0,0059;
Pendule Riefler . . a;=—a =—=0,0021,

Nous avons ainsi évalué successivement toutes les partics
du coefficient A.

4. Evaluation du second coefficient, B,

Dans I’état actuel de la théorie, I’évaluation a prior: e
I'effet de la viscosité de lair sur la marche d’un pendule
serait trés malaisée; c’est pourquoi Peirce ne I’'a méme pus
tentée. Il a réussi cependant a évaluer ce coefficient B en =e
basant sur un résultat remarquable des recherches de Stokes,
a savoir que cette constante B se retrouve aussi comme cocl-
ficient d’'un terme analogue, en /43, dans la partie linéaire (u
décrément d’'un pendule. Peirce a donc pu, des observations
de diminution progressive d’amplitude de son pendule, déduire
ainsi indirectement ce coefficient B de la formule de réducticn
au vide.

Pour un pendule d’horloge, une telle détermination ne
serait pas aussi aisée, car l'effet du ressort de suspension ne
manquerail pas de se méler a celui de 'air ambiant. Pour
séparer ces deux effets, il faudrait faire des observations compii-
ratives du décrément sous la pression ordinaire et dans le vide;
il faudrait donc avoir a sa disposition une horloge sous cloche,
et 'employer a toute une série d’expériences. Je n’étais pas
en situation d’entreprendre une telle recherche, et comme
toute cette question est un peu accessoire dans le présent
travail, je me suis horné a évaluer plus ou moins exactement
ce coefficient B, en me basant sur quelques analogies.

J’ai déja dit plus haut que les coefficients A et B ont ¢té
déterminés expérimentalement pour les deux positions de
huit pendules a réversion ; voici les chiffres obtenus :
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A la troisieme colonne, les lettres B et H marquent [
position du pendule: B=poids en bas, H=poids en haut.
Les trois colonnes suivantes donnent les caractéristiques essern-
tielles de ces divers pendules.

Mais ce sont les valeurs de A et de ;B qui nous intéressen:

plus spécialement. (Notons que nous avons pris pour le pen-
dule Peirce la moyenne des valeurs théoriques et des valeur:

expérimentales que cet auteur indique.) A et -;—B sont exprimeés
en fraction d’oscillation et correspondent 4 une atmosphére

entiere, sauf pour le pendule a 1/, seconde, dont les coeffi-
cients sont déja réduits a la seconde entiére. Si 'on voulait

déduire de ces valeurs de A et de =B les parties correspon-

dantes du coefficient barométrique, il faudrait donc les multi-
plier par le nombre de secondes par jour, et les diviser par 760.

Defforges donne les valeurs de A et de ;B en d’autres unités:

nous les avons donc transformées pour faciliter la comparaison:
tandis que les constantes des autres pendules sont celles méme
données par les auteurs cités.

L’examen de ces chilfres montre que A et 3B varient dans

une large mesure, leurs valeurs extrémes étant dans le rappor
de 1 a 7 environ; mais par contre le rapport d’un coefficien!
a l'autre, s’il n’est pas constant, se maintient cependant dans
des limiles assez €troites, ce que montre bien I'avant-derniére
colonne.

On remarque toutefois que les quatre valeurs de %B/A

(marquées d’un *) correspondant aux pendules de Defforge:-
sont passablement isolées et trés supérieures aux autre-
(moyenne 0,175 contre 0,107). On serait tout d’abord tent¢
d’attribuer ce résultat au fait que les pendules de Defforges
sont d’un type spécial, avec les poids a l'intérieur du tube.
tandis que tous les autres pendules sont du type de Bessel.
avec les poids extérieurs au tube.

Toutefois la cause principale de cette dilférence est tout
autre; elle provient de ce que les valeurs de A publiées par
Defforges ne sont pas celles données directement par I'expé-
rience, mais ont déja été corrigées de l'effet de 'air enferme¢:
elles ne concernent donc plus que l'effet de poussée et D'effe!
de l'air extérieur entrainé. Il v a donc lieu de faire la méme
réduction sur les valeurs de tous les autres pendules si I'on
veut les comparer utilement. Or, d’aprés le calcul théorique
des diverses parties du coefficient A fait par Peirce pour lex
deux positions de son pendule, on voit que le rapport du
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coefficient entier A & la partie provenant de la poussée et de
I'effet hydrodvnamique, est égal, dans 'une des posilions, a
2693:1 437, et dans I'autre position a 61%-1_1 443, donc en
1874 4285

moyenne égal a 1,44. Si I'on admet ce méme rvapport pour
les autres pendules, qui sont d’ailleurs tous & peu pres du
meme type, on voit qu’il suffit de multiplier les chiffres de
I'avant-derniére colonne par 1,4% pour obtenir des valeurs
comparables a celles données par Defforges. (Vest ces produits
qui sont inscrits dans la derniére colonne.

On voit qu’aprés cette correction l'accord est beaucoup
meilleur; les valeurs de Defforges, alors méme qu’elles restent
un peu supérieures (moyenne 0,175 contre 0,15%4) ne sont
plus isolées. kn somme, l'accord de tous ces rapports est (1=
bon; et on voit que si on prend, au lieu de 'un gquelcongue
dentre eux, leur valeur moyenne 0,159, l'erreur commise e
dépasse guére !/; de la quantité.

Or la caractéristique de ces pendules a réversion est qu'ils
sont tous composés de cylindres réunis: a part cela, leurs
formes, leurs dimensions et leurs masses sont trés diverses,
On peut donc admeltre avec quelque vraisemblance que pour
un pendule @ mercure ordinaire, également composé¢ de
parties cylindriques, ce méme rappmt, de valeur movenne
0,159, sera approximativement valable; c’est-a-dire que Ia
partie +B du coefficient barométrique, due i la viscosité,

pourra s'obtenir sans grosse chance d’errewr en multiphant

par 0,159 les parties du coefficient dues @ la poussée et i

leffet hydrodynamique, c’est-d-dire «, |- «,. Or nous avions

trouvé a, =10,005 5,, (t3ﬁ0 005 9 done ay -y =0,011 4.
On en déduit pour le coefficient de viscosite

Pendule ordinaire . B-—=0.011 % > 0,159 0,001 8,

Nous ne pouvons natureilement pas utiliser, dana le cas
d’un pendule aplati, ces mémes rapports 1,4% et O 159 : ils ne
sont sans doute plus valables pour un pendult, qul nest pas
composé uniquement de cylindres : ainsi, d’aprés la théorie,
Ieffet de Paplatissemet sera a la fois une diminution de
quantité d’air entrainé et une augmentation du frottement,
d’ou augmentation considérable du rapport 0,159.

Nous ne pouvons d’autre part déterminer directement ces
rapports, car nous ne possédons aucune détermination dex
coefficients A et B pour des pendules aplatis.-
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Faute de déterminations directes, nous devons nous baser
sur les seules données suivantes: le capitaine Basevi, dans
Survey of India!, a obtenu empiriquement, pour deux pen-
dules invariables tres aplatis, les formules suivantes de réduc-
tion au vide:

Pendule 4 . dN=0,23206 P
140,0023 (t —32Y)

—+0,022¢/ p (461° 1) -+ 0,123

p¥l
V461041

Pendule 1821 ¢ N —0,23349 P
1-1-0,0023 (1 — 329

+0,0209/p (%610 |- 1) 40,172

S

ou dN désigne la correction a apporter au nombre d’oscilla-
tions par jour, p étant évalué en pouces de mercure, ¢ en
degrés Irahrenheit.

Si on introduit d’autres unités et qu’on calcule plutot
'effet sur la marche diurne (en tenant compte du fait que lc
pendule 4 battait en moyenne 86 OR0 oscillations par jour, l¢
pendule 1821, 85980) ces deux formules deviennent :

Pendule 4 . . . Am :5,727%+2,744 ¥ pT+0,883 Z;L'
vl

g

Pendule 1821 . . Am=5,8]3%—‘—2,495v"—ﬁﬁ—'l,%t')—]%;-
]/ :

Il y a lieu de faire de grosses réserves au sujet de ces
formules, qui ne concordent pas avec la théorie, puisqu’elles
different passablement de la formule bien plus probable:

A3+ By/8. On peut néanmoins supposer avec quelque vrai-
semblance que, puisque ces formules ont été déduites de
I'expérience, elles s’accorderont suffisamment bien avec les
faits dans le voisinage de I’état normal; en d’autres termes,
que la formule différentielle qu'on en peut déduire sera sans
doute admissible.
On en tire par différentiation, pour le voisinage de I’état
normal :
Pendule 4 . . dm=8,423dp —4,796dT
Pendule 1821 . dm—=8MN2dp —5,183dT

v Nurcey of India, 5, p. [7?], 1876.
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L’exactitude de ces formules étant admise, on pourra, en
suivant le raisonnement inverse de celui de la fin du §2, en

tirer les valeurs de A et de ;B. Nous avions en effet établi
que : | |
d w = ( A+ :I)— B ) dp — ( A4 0216 LE )T
tandis que nous avons maintenant une expression de la forme:
dw - =Gdp — DdT

On en déduit facilement que :

— D
1y G=D
1 0,784
et
A=sli——R
9

On obtient, d’apres ces formules, et par une voie un peu
tortueuse, 1l faut le reconnaitre, les valeurs suivantes de A et

de +B pour les pendules de Basevi:
1

A — B
Pendule 4 . . 0,0050, 0 OOU 1,
Pendule 1821 . 0,005 4, 0,006 3,
Moyennes . 0,0052. U,UU()“_’]

Remarquons toutefois que nous ne pouvons pas simple-
ment adopter la moyenne de ces coeflicients des pendules de
Basevi pour les pendules aplatis des horloges astronomiques.
Ce qui le montre bien, c’est que nous avons obtenu pour le
coefficient A de ceux-ci, par évaluation directe, A=« -} «,
~+ a,—0,0097,, tandis que pour les pendules de Basevi nous
venons de trouver A =0,0052..

Nous ne pouvons pas méme adopter, pour nos pendules
d’horloges, le rapport —B/A des constantes de Basevi, car ces
pendules de Busevi sont extrémement aplatis: non seulement
leur lentille, mais aussi toute la tige; de sorte qu'on peul
s’attendre a ce que, pour eux, ce r]ppmt soit plus grand que
pour nos pendules & horlon"eq

La seule conclusion que nous pouvons tirer de ce qui pre-
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de Riefler est comprise entre celle que nous avons obtenu:
pour le pendule ordinaire (cylindrique) et celle des pendules
Basevi (tres aplatis).

Il nous faut donc avoir recours a une interpolation pour
obtenir une valeur approchée de cette constante. Voici lex
chiffres dont nous dlSpO%OIlS (nous considérons, non pas :\
entier, mais a, +a3, parce que les pendules de Basevi ne

contiennent pas d’air enfermé) :
1

ar+ as ?B
Pendule ordinaire . 0,011 4, 0,001 8,
Pendule Riefler. . 0,0097, z
Pendule Basevi . . 0,0052, 0,0062,

Pour l'interpolation méme, il m’a paru plus rationnel de
procéder, non pas par interpolation arithmétique, mais pav
interpolation géomélrique (si je puis dire ainsi), car jai fail
intervenir, non les différences de ces quantités, mais leurs
rapports, en posant : ‘

1147 /970 2 /182

970/525 621 /x

Ce qui donne pour le coefficient cherché :

Pendule Riefler %B:x:0,00Qﬁg

5. Résultats.

Nous avons, dans les deux paragraphes précédents, cherchi¢
a évaluer tant bien que mal la part des diverses causes dans
le coefficient barométrique des pendules, en utilisant tous les
renseignements que nous avons pu recuellllr sur ce sujet.
Voici les chiffres obtenus :

Pendule ordinaire Pendule Riefier

Poussée de l'air déplacé . . . a,=— 0,0055, 0,007 &,
Inertie de Vair enfermé . . a,= 00005, 0,000 0
Inertie de Iair extérieur entrainé a,= 0,0059; 0,0021,

A= 0,0120, 0,009 7,
Viscosité . . . . . . . .3$B= 0,0018, 0,002 6,

Coefficient barométrique b=A | +B= 0,0138, 0,012 4,
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Il ne faut pas se dissimuler toutefois que ces nombres
reposent sur des bases bien précaires. Nous avons heureuse-
ment une vérification a notre disposition. On a, en effet, de
divers cotés, déduit des observations directes des marches, la
valeur du coetficient barométrique d’un assez grand nombre
de pendules. La liste la plus compléte de ces coefficients est
celle donnée par M. Hartmann!.

Parmi les dix-huit coefficients barométriques qui v sont
cités, quinze se rapportent a des pendules a mercure ordi-
naires, trois a des pendules a mercure systeme Riefler ou a
des pendules a gril. Les movennes respectives des coefficients
de ces deux caleuones sont: +0.0139 et 4-0,0122. On voit
que l'accord avec les valeurs théoriques est trés bon. trop
bon méme, et on doit sans doute l'attribuer en partie @ un
heureux hasard.

Quoi qu’il en soit, nous sommes autorisés par ce hon
accord, a admettre provisoirement les valeurs obtenues. et
cela d’autant plus que nous n’avons nullement besoin ici de
connaitre tres exactement ces constantes : une approximation
assez grossiére nous suftit.

Les valeurs de A et de %B déduites ci-dessus étant admises,
on en tire immédiatement 'influence de I'air ambiant sur la
compensation des pendules de ces deux types, a I'aide des

formules de la fin du § 2.
Nous avions, pour un pendule oscillant a I'air libre:

(sz(x+ )dp_(' 4 001(,_)(/1

L’influence de l’air sur la compensation est done, en appe-
lant 6 la correction a apporter a la marche pour une augmen-
tation de température de I'air ambiant de lo:

0= — (A-}0.216 )

9
Pendule ordinaire . . . 6 ——0.,033
Pendule Riefler . . . 06— —0,027

Quant aux pendules sous pression constante, nous avions:

dm=—-40, 184 dI‘

1 HarTMANN. « Ueber den Gang einer mit Rietler’ schen Pendel versehrnen
Uhr », Leipzig. Ber. (math. phys. CL), 49, 1897, p. 664.
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(e qui donne, pour un changement de température de lair
de 1o:

Pendule ordinaire . . . 6=—=-]-0,004%

Pendule Riefler . . . —}—O 005

Ces deux derniers nombres sont valables pour une densité,
donc une pression normale. S’il y a vide partiel, il faut encore

les multiplier par ¢/¢=1/p; ils sont alors négligeables.

6 est la correction a apporter ala marche pour une augmen-
tation de température de I'air de 1o. La variation correspon-
dante de la longueur du pendule simple synchrone s’obtien!

par (), chapitre ler:
43200

0 —i ]
{

d’ou:

(]
Sl 150,000 023 6
B0

On a en particulier pour des pendules oscillant & Iaiv
libre :
Pendule ordinaire . al——1>0,000000 &
Pendule Riefler. . al=——{>0,0000006

Il faut donc modifier en conséquence les résultats obtenus
dans les deux premiers chapitres de ce travail. Toutes les

valeurs de Z—i qui y figurent sont incomplétes, puisqu’elles ne
tiennent compte que du solide et du mercure, et pas de l'air
ambiant. 1l faut partout y ajouter la valeur Al__l><0 000023 >
(que nous venons d’obtenir. Ce nouveau terme pourra partou!
étre réuni au terme [«. Pour tenir compte de lintluence
de l'air ambiant sur la compensation, il suffit donc de rem-
placer, dans les conditions de compensation, le terme la par
1 (=~ 0,000 023 < 8), c’est-a-dire par I (x— 0,000 000 8) pour le=
pendules ordinaires, et par (= — 0,000 0006) pour les pen-
dules Riefler, §’ils oscillent & Pair libre.

Cette modification s ‘applique aussi a la quantité auxiliaire i
qui figure dans les formules d’approximation du chapitre er,
Par contre la formule de correction (chap Ier, § 5) ne doit
pas étre modlﬁee car le terme en 6 s’en trouve éliminé e
méme temps que le terme la.

L’air enlre aussi en ligne de compte pour l'effet de strati-
fication ; mais son action est ici trés faible et on peut presque
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toujours la négliger. L'air déplacé et Iair entrainé sont, par
suite du gradient, & une température différente de celle au
point de suspension. On peut prendre / comme distance
moyenne approximative de cet air a la suspension. les

dal : . :
valeurs deT calculées au chapitre 11T sont donc incom-
ar

plétes: il faut leur ajouter la correction —lﬂx(} 000 0255 6.

Cela revient a v remplacer partout le terme l- , par le terme

s

/2 (;—(),UOOUQ«‘%XB). D’aillears pour tous Ies pendules @

—

) % i
mercure acluels, ce lerme I'—’—; est le seul important dans la
.

=

dl : . " ; .
valeur de T On voit par ld que lair ambiant a pour efiet
a-~

d’augmenter le coefficient de stratification de ces pendules

d’environ —l— de sa valeur, ¢’esl-i-dire de g(_l,‘_’:'} = 0,03. Or les
C

variations de gradient ne dcépassent guere ‘10,5 de part el

d’antre de Iétat moyen. [’effet dont il s’agit ici est donc

peu prés a la limite de ce que nous étions convenus de

négliger (elfet maximum de 05,05 sur la marche).

On pourra donc négliger cette influence dans le calcul des
pendules doublement compensés : maig il faudra tenir compte
de celle de I'air ambiant sur le coefficient thermique, telle
(que nous I'avons obtenue ci-dessus. Le calcul, ainsi modifié,
se ferait de la méme maniére, et les résultats ne seraient pas
essentiellement différents.

"

) BULL. SO, SC. NAT. T. XXXV
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RESUME DES RESULTATS

(I.es notations sont expliquées 2 la page 211.)

1. Pour un pendule a mercure usuel, la quantité de me:-
cure peut se calculer approximativement par la formule:

. 4 i - .
p 2mr2dl 5. 43P (Form. 12, p. 220
[

Si la tige et le vase sont en acier (x===, =0,000011) on
gl 7= - ¥ P

2. La quantité de mercure a ajouter pour corriger la coni-
pensation d’'un pendule a mercure usuel est donnée par:

Ap—2,4% —
b

Ant (1h,p. 228, et16.p 220

=128 .

2a, —a 43,200

Pour un pendule en acier on a:
Ap- 1620 128 m

3. Pour un pendule & mercure a vase cylindrique, la quii-
tité de mercure peut étre calculée plus exactement en faisin!

d—l — 0 dans la formule de Wanach :

dt

) y <) , [ \
db_y, mh (1 2h i) (3. 1. 20

di B 3 2

LLa méthode a suivre est exposée a la p. 237. L’exactitule
du résultat dépendra principalement de I'exactitude uvec
laquelle on connait .

4. Pour un pendule a mercure quelconque, on doit emplover
la formule plus générale :

{ ey
;i% --~lac—-—f)~ |1 — s+ m(ld—d>—«)|: (4 p 200
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9. L’action compensatrice du mercure est d'autant plus
grande (ue ce mercure est plus éloigné du milien du pendule
point a la distance — de la suspensmn) et que L surface

o

—

libre du mercure est plus proche de ce milieu.

6. Pour un pendule a mercure quelconque, le coefficien!
de stratification se calcule par lia formule générale :

ﬂ--[:ﬁ.——]—[I{I—-/f(E-——I]--i—-{/Il—.\'o’/l“/—-—flljil (b po2hh

d=~ 2 I

Quand le pendule est & vase cylindrique, on a les tormules
O et 6% p. 265.

7. 11 est possible de construire un pendule & mercurc
compensé simultanément pour les variations de la tempéri-
ture et pour celle du gradient. Pour que les dimensions du
pendule soient acceptables, il faul qu’une partie du mercure
soit au-dessus de la surface libre et y soit maintenue par la
pression atmosphérique. (Voir p. 280-285.)

8. On peut tenir compte de effet de Fair ambiant sur [
compensation thermique en ajoutant au second membre dexs
formules sous 1, 3 et 4, le terme :

130,000 0230 (p. 200

ou on a en particulier :
Sous une pression constantc
Pour un pendule 4 mercure A air libre Aune atmosphére
ordinaire . . . L — 0,033 U [ 0,004
Pour un pendule & mercure
Riefler . . . . . . 0 —0,027 H— ] 0,005
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