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THEORIE DE LA COMPENSATION A MERCURE

DANS LES

PENDULES D'HORLOGES ASTRONOMIQUES

Pah II. Sthœle

INTRODUCTION

La compensation à mercure a été imaginée par le constructeur
anglais Georges Graham il y a déjà près de deux siècles; la
plus grande partie des horioges de précision construites depuis
lors ont été munies d'un pendule à mercure. Néanmoins, la
théorie de ce système de compensation a été fort négligée; on
peut s'en étonner à bon droit, le pendule étant t'organe
régulateur, c'est-à-dire l'organe essentiel de l'horloge de précision,
qui joue un rôle si important dans la pratique des observations
astronomiques.

Un grand nombre de traités et de manuels d'astronomie
pratique, de physique et d'horiogerie théorique, donnent encore,
pour le calcul de la quantité de mercure nécessaire à la
compensation d'un pendute, des formules approchées qui sont, ou
absolument fausses ou notoirement insuffisantes. J'ai montré
dans le premier chapitre du présent travail qu'on peut facilement

modifier ces formules de façon à ce qu'elfes donnent des
résultats très acceptables.

Mais ces formules approchées, qui sont basées sur la
consideration d'un pendule simple, ne s'appliquent qu'aux pendules
à mercure du type usuel, dans lesquels la masse du mercure
est de beaucoup prédominante. Dès qu'on s'éloigne de cette
tonne, elles ne sont plus applicables, et il faut absolument
recourir à la théorie exacte du pendule composé. J'ai montré
dans le chapitre II qu'on peut alors se servir avec avantage
d une formule due à M. B. Wanach pour calculer la quantité
de mercure et pour résoudre tous les problèmes connexes.

Le chapitre III est consacré à l'influence du gradient (c'est-
à-dire de l'inégalité de la température à diverses hauteurs)
s,u" la marche d'un pendule à mercure. Cette question essentielle

a été traitée il y a quelques années par M. B. Wanach
dans un mémoire très remarquable. J'ai repris ici toute cette
Muestion et j'ai réussi à montrer qu'on peut, en adoptant un

14 PULL. SOC. SC. NAT. T. XXXVII
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type de pendule à mercure absolument nouveau, compenser
aussi cet effet du gradient et obtenir ainsi un pendule doublement

compensé.
Lorsqu'on veut résoudre ces diverses questions avec quelque

précision, on ne peut pas négliger l'effet de l'air ambiant sulla

compensation thermique du pendule, comme on l'a presque
toujours fait jusqu'ici. Cet effet de l'air ambiant fait l'objet du
quatrième et dernier chapitre de la présente étude.

Mon travail reste encore incomplet puisque l'effet de la
température sur l'élasticité du ressort de suspension, ainsi que
sur le frottement de l'échappement et sur l'amplitude, n'y est
pas étudié. Mais ce sont là des questions plus complexes et
aussi plus spéciales; on peut d'ailleurs espérer que ces effets
(tout au moins les deux derniers) sont beaucoup moins importants

que ceux que nous avons étudiés, et peut-être même à

peu près négligeables.
Je me suis constamment efforcé, au cours de cette étude,

de ne pas m'égarer dans des calculs purement théoriques, de
ne pas perdre de vue les problèmes qui se posent dans la
pratique, et de les résoudre le plus simplement possible, en
négligeant résolument tous les termes inutiles. J'espère que j'ai en
partie réussi et que quelques-uns des résultats auxquels je
suis parvenu pourront être immédiatement utilisés par les
astronomes et les constructeurs.



211

NOTATIONS EMPLOYÉES

- rapport de la circonférence au rayon.
g accélération de la pesanteur.
/ longueur du pendule simple synchrone.
h hauteur du mercure.
h distance de la base de la colonne de mercure à la suspension.
a distance du sommet de la colonne de mercure à la suspension.
'/ distance de la surface libre du mercure à la suspension.
c densité du mercure.

produit de la section du vase par 2.

p ch poids du mercure.
I' poids de la partie solide.

poids d'une quantité de mercure additionnelle.
/' rayon du vase cylindrique.
' volume du mercure.
m masse du mercure.
M masse de la partie solide.
'/ masse de mercure concentrée en un point.
¦t ==.£.

m
I distance du centre de gravité de la partie solide à la suspension.
/. distance du centre de gravité du mercure à la suspension.
¦j. coefficient de dilatation de la tige.
*i coefficient de dilatation linéaire de la paroi du vase.
ï coefficient de dilatation du mercure.

=T — 2a, coefficient apparent de dilatation linéaire du mercure.
: ß— a Y —2a,— a.

,'/ =-c'ô ==cl —
P -

durée d'une oscillation simple.
(au chapitre Ier, § 5) nombre d'oscillations simples par jour.

\"i variation de la marche diurne.
N moment d'inertie du pendule.
II moment statique du pendule.
•I moment d'inertie de la partie solide du pendule.
N moment statique de la partie solide du pendule.
' moment d'inertie du mercure.
s moment statique du mercure.

moment d'inertie du mercure situé entre le niveau primitif et le
niveau résultant d'une élévation de température de 1°.

~ moment statique du mercure situé entre le niveau primitif et le
niveau résultant d'une élévation de température de 1°.

•i moment d'inertie de la surface libre du mercure.
moment d'inertie du mercure situé entre le niveau primitif et le niveau

résultant d'une augmentation de gradient de 1°.
c. moment statique du mercure situé entre le niveau primitif et le niveau

résultant d'une augmentation de gradient de 1°.

X
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H élément de masse.
x sa distance à la suspension.
h moment de troisième ordre du mercure (Sfa;1).
K moment de troisième ordre de la partie solide (sfa;3).
G moment de troisième ordre du pendule K-\- k.
I température.
t gradient (différence de température par unité de hauteur).
Q masse solide concentrée en un point.
F sa distance à la suspension.
B longueur d'une ligne matérielle solide.
C sa densité (masse de l'unité de longueur).

Notations spéciales au ivme chapitre.

3 densité de l'air.
p pression de l'air.
T température absolue de l'air.
b coefficient barométrique de l'horloge.
8 coefficient thermique dû à l'air.
d constante de réduction aux unités choisies.
A première constante dans la formule de réduction au vide.
I! deuxième constante dans la formule de réduction au vide.
a, i

a3 ' parties de A.
a:\ '

x valeur inconnue de -r B.

¦t. coefficient de frottement (viscosité) de l'air.
a première constante dans la formule exprimant le frottement en fonc¬

tion de la température.
c deuxième constante dans la formule exprimant le frottement en fonc¬

tion de la température.
H rayon d'un cylindre.
L longueur d'un cylindre.
E distance de la suspension jusqu'au centre de gravité d'un cylindre.
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CHAPITRE PREMIER

Formules approchées
pour le calcul de la quantité de mercure.

1. Formules actuelles.

Tous les ouvrages qui s'occupent du calcul de la quantité
de mercure donnent l'une ou l'autre des deux formules sui-
\ antes:

Première formule. — Pour obtenir cette formule on ne tient
aucun compte de la masse de la partie solide; on considère
-eulement celle du mercure, qu'on suppose concentrée à son
centre de gravité; on est ainsi ramené au cas d'un pendule
simple.

Désignons par l la longueur de ce pendule simple; soient
h la hauteur du mercure, a le coeflicient de dilatation linéaire
'le la tige du pendule, a, celui des parois du vase, y le
coeflicient de dilatation cubique du mercure; le coefficient de
dilatation apparente du mercure dans ce vase (dilatation en
hauteur) sera 8 7— 2a(.

La longueur de la tige du point de suspension jusqu'à la

läse du mercure est égale à l-\ Supposons que la température

s'élève de 1°, et soit a/ rallongement du pendule qui en
résulte. On a la relation :

1-yM =^-f|j(l+a)_|(-l4-?)
(Si la tige n'était pas toute d'une même substance, il fau-

drait prendre pour a une moyenne établie proportionnellement
aux longueurs de chacune de ces substances.)

L'équation se simplifie et donne :

U U — ~ (p —a)
2

Si on pose, pour abréger :

S— «--(¦ — 2a,—a -s
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cette relation devient:

U=U — — e (1)
2 '

Pour que le pendule soit compensé, il faut qu'une variation
de température n'entraîne pas de variation de longueur, c'est-
à-dire que Aj 0. La condition de compensation est donc:

2
d'où on tire :

11 21- (2)
E

C'est la formule dont il s'agit. En pratique, il est toutefois
préférable de calculer directement le poids p du mercure
plutôt que sa hauteur h. Soient donc r le rayon du vase, 8 la
densité du mercure, et utilisons l'abréviation irr28 c. On a

évidemment :

p c7t 2c/ — =2rcr28/
Y-2«r

Si nous introduisons la quantité auxiliaire y (dont nous
ferons encore usage dans la suite) en posant :

a

y cl — :=Kr°-U (3)
t f — 2»! — a

la formule obtenue se réduit à :

p 2y

Puisque la masse de la partie solide a été négligée, la
formule ci-dessus ne saurait évidemment s'appliquer qu'aux
pendules dans lesquels la masse du mercure est prédominante;

il ne faut pas songer à s'en servir pour des pendules
différant du type usuel, par exemple pour les pendules à

mercure de Riefler1, où la masse de la partie solide atteint
près des 2/3 de la masse totale du pendule.

Mais même dans les pendules à mercure ordinaires, le

1 Pour une description de ce pendule, voir : Riefler, Zeitschr. f. Insti'.,
XIJI, p. 88. Voir aussi la fig. 2 et les données numériques à la page 226 du
prisent travail.
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poids de la partie solide n'est jamais négligeable, de sorte
que cette première formule1 est toujours insuffisante: elle
donne des résultats notablement trop faibles.

Deuxième formule. — Cette formule repose sur une erreur
grossière, et elle ne mériterait pas d'être citée dans un travail
sérieux, si elle ne figurait pas aujourd'hui encore dans nombre
d'excellents ouvrages 2.

L'erreur commise consiste à remplacer, dans la condition
de compensation (2), le coefficient de dilatation apparente du
mercure, t, par la dilatation elle-même, c'est-à-dire par icr2Ae.
L'équation devient alors :

h
/ /

l'où l'on peut tirer :

1 /
V

¦Ilo (4)

Il n'est pas étonnant qu'une formule qui repose sur une
Ielle confusion donne des résultats absolument fantaisistes.
L'inexactitude de cette deuxième formule se remarque d'ailleurs

immédiatement à ce lait que, alors même qu'elle ne
contient que des constantes et des longueurs, elle n'est pas
homogène par rapport à celles-ci, de sorte qu'elle donne des
résultats tout différents si l'on choisit des unités de longueur
différentes

Il est vraiment étrange que cette formule fausse ait été
reproduite un peu partout, sans contrôle, pendant aussi
longtemps. Ajoutons que l'erreur commise a déjà élé signalée, il
y a près de 30 ans, par M. Lorenzoni3. Mais il semble que,
malheureusement, sa remarque a passé inaperçue.

1 Voir, par exemple: Ambronn, Astronomische Instrumenterainde, I,
p. -m.

Karmarsch et Heeren. Technisches Wörterbuch, 1883, VI, p. f>94.
2 Voir: Valentinen, Handwörterbuch der Astronomie, IV, p. 14 (article

" Uhr » de E. Gerlanii).
E. Gelcich. Die Uhrmacherkunst und die Behandlung der Pracisions-

«hren, 1892, p. 315.
Cl. Saunier. Traité d'Horlogerie moderne, Paris, 1809, p. 709.
Ch. Laboulaye. Dictionnaire des Arts et Manufactures, 7°» éd., 1891, II

(iiiücle « Horlogerie », de Breguet). Cette 7"" édition semble, d'ailleurs conforme,
sur ce point, à la 1", parue vers I860: il est donc possible qu'il faille attribuer
» Breguet la paternité de cette formule.

s G. Lorenzoni. « Sul calcolo del altezza del mercurio in un pendolo a
compensazione » (Mem. Soc. Spectr. Ital., 1879, App. I).

Cette erreur a été signalée à nouveau par M. F. Keelhoff, « Calcul d'un
l''("dule compensateur à mercure », Journal suisse d'horlogerie, t. XXIII,
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•Z. Formule de JI. Keelholt'.

On peut modifier la formule (2) pour tenir compte du
poids de la partie solide du pendule.

Première méthode. — En 1823 déjà, Fr. Baily1 indiquait
que la quantité de mercure calculée par la formule (2) doit
être augmentée de -fi0 de pouce, pour tenir compte de la
tige, dont il évaluait la masse à 1/î0 de celle du mercure.
(Les tiges des pendules de notre époque ont généralement
une masse relative bien plus considérable2; la correction
indiquée devrait donc encore être augmentée d'autant.) Mais,
chose curieuse, Baily négligeait complètement la masse du
récipient.

Cette lacune a été relevée par Edm. Beckett3 qui, pour
tenir compte aussi de cette masse, propose la règle suivante :

« Le poids du récipient et de la tige est environ l/6 du poids
exact du mercure : on doit donc augmenter d'autant la hauteur
calculée par la formule (2), car celle-ci a été établie comme
si toute la lentille était faite de mercure; le résultat de cette
formule est donc seulement les 5/e du montant réel. »

Essayons de traduire cette règle en formule; appelons P
le poids de la partie solide du pendule, et introduisons la

p
valeur littérale — du rapport de ce poids à celui du mercure.

au lieu de la valeur 1/g *iue Beckett admet uniformément
pour n'importe quel pendule; le rapport 5/o devient alors

p
I et la règle de Beckett disant que le résultat fourni

P

par la formule (2), c'est-à-dire "2 y, n'est que les 5/c du montant

réel, signifie que :

P"2y=h— )p

1 Fr. Baily. « On the mercurial compensation pendulum. » Mem. Astr. Sof.
London, 1825, I, p. .381-419. (Cité d'après Beckett, Treatise on Clocks...)

2 Détail curieux à noter : faute d'une théorie suffisante, tenant compte de la

partie solide du pendule, les constructeurs se sont efforcés pendant très
longtemps de réduire celle-ci le plus possible, au détriment de l'invariabilité du
pendule, naturellement; peine hien inutile, d'ailleurs, la masse de la partie solide
restant quand même appréciable, et la formule continuant à donner des résultat-;
beaucoup trop faibles. C'est pourquoi les constructeurs ont heureusement
renoncé maintenant, pour la plupart, à ce stratagème, quitte à déterminer par
tâtonnement la quantité de mercure nécessaire à la compensation.

3 Edm. Beckett. Mechanics Magazine, ô. febr. 1864. (Cité d'après Treatise
on Clocks.. du même auteur.)
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d'où :

/> 2j/ + P (5)

La règle consisterait donc simplement à ajouter au résultat
¦ te la formule (2) le poids même de la partie solide du pen-
lule. Cette formule (5) repose en somme sur le raisonnement
suivant : La quantité de mercure 2y est calculée de telle façon
ju'elle se compense elle-même; il faut encore lui ajouter un
poids P de mercure pour compenser le poids de la partie
solide du pendule.

Il est probable cependant que Beckett ne l'entendait pas
.tinsi, sans quoi il eût énoncé sa règle précisément sous cette
orme très simple. C'est donc plutôt la première partie de sa
règle qu'il faut suivre à la lettre, à savoir qu'il faut augmenter
la «juantité de mercure 2y de '/o de sa valeur1, c'est-à-dire poser:

p 2y + —2y (0)
/'

Cette nouvelle formule répond au raisonnement suivant :

S'il y avait seulement du mercure à compenser, il en faudrait
la quantité 2y; mais, pour tenir compte de la partie solide, il
laut augmenter cette quantité; et il est naturel de l'augmenter
dans le rapport du poids total du pendule, P-\-p, au poids
du mercure seul, p.

Cette formule (6), laissée sous cette forme, permet de
calculer/) par approximations successives; mais on peut aussi
''n tirer une formule explicite en la résolvant par rapport àp,
on obtient :

/»=?/ +vV+2 Py <7)

(On doit prendre le signe -f-, car l'autre signe donne pour
/¦• une valeur négative.)

Deuxième méthode. — Les déductions du paragraphe précédent

manquent de rigueur; il n'est donc pas inutile de les
appuyer par d'autres considérations.

Bemarquons tout d'abord que l'effet compensateur d'une
adonne de mercure n'est pas simplement proportionnel à sa
hauteur, mais bien plutôt au carré de sa hauteur. En elfet, la
dilatation d'une telle colonne revient au fond au transport
d une certaine quantité de mercure. La quantité de mercure

1 C'est de cette façon que Lorenzoni a interprété la règle de Beckett; voir
I-'Tenzoni, loc. cit.
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transportée est naturellement proportionnelle à la quantité de
mercure de la colonne; et la hauteur dont elle est déplacée
est (en moyenne) la moitié de la hauteur de la colonne. On
pourra admettre que l'effet compensateur est approximativement

proportionnel à ces deux facteurs et dépend par conséquent

du carré de la quantité de mercure.
Nous savons que la quantité de mercure 2y se compense

elle-même. D'autre part, la quantité de mercure cherchée, p,
doit compenser le poids total du pendule /> —(— P. Puisque
l'effet compensateur de ces quantités est proportionnel à leur
carré, et si nous admettons que cet effet compensateur doit
aussi être proportionnel au poids à compenser, nous aurons
la relation :

'2y\2 2y

p) p\V
d'où on tire pour p la valeur :

On retombe donc sur la même formule (7).

Troisième méthode. — On peut encore procéder de la façon
suivante ' :

Supposons toute la masse du pendule concentrée en son
centre de gravité, et établissons la condition de compensation
du pendule ainsi constitué. Nous conservons les mêmes notations

que plus haut et y ajoutons les suivantes : b est la

distance de la base du mercure à l'axe de suspension; X è

est alors la distance du centre de gravité du mercure à la
suspension; L est la distance du centre de gravité de la
partie solide jusqu'à la suspension; l est la longueur du
pendule simple, et aussi, dans notre hypothèse simplificatrice, la
distance du centre de gravité du pendule entier à la suspension.

Les positions des trois centres de gravité sont liées par la
relation :

/(p+P) =pl l-PL
d'où on tire pour la longueur du pendule:

/^i-HLPJi (8,
p h p

1 Cette démonstration équivaut à celle donnée par M. Keelhoff : loc. cit.
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Si on y remplace X par sa valeur b cettte formule
devient : 2

pb-p~ | PL
* ~

;. + P

Supposons que la température s'élève de 1°, et soit a/
l'allongement de / qui en résulte. On aura:

l + \l
p6(4+«)_pA(l + p)-f PL(1 + «)

pba — p — ß -f- P L «

H-P
pba — p -

M
P + P

On peut supprimer / dans les deux membres, et il reste
pour la valeur de l'allongement du pendule :

ph* — p 4«4-PLa- p —(ß — «)

U= *._ llu
p + P 2(p\ P)

Introduisons ici aussi la conslante e=itr23=-L. ^e résultat
obtenu peut s'écrire : "

il U El /9)
2c(p+P)

V

Pour que le pendule soit compensé, il faut qu'une élévation

de température de 4° n'altère pas sa longueur, c'est-à-
dire qu'on ait a/ 0, d'où :

U =—^— (1Ü)
2 c (HP)

Il ne reste plus qu'à résoudre cette équation par rapport
'•• P, la quantité de mercure :

ir2_2cl-p-2cl-V 0
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Posons comme auparavant, pour abréger :

cl-=ry
l'équation s'écrit alors :

p2 — 2yp— 2ï/P 0

et on en tire :

P .'/ + Vl/- + 2P//

On retrouve donc par cette troisième méthode la formule
(7) déjà donnée par les deux autres.

Cette dernière démonstration, un peu plus longue que les
précédentes, a le grand avantage de bien mettre en évidence
les simplifications et les suppositions sur lesquelles cette
formule repose : On ne considère qu'un pendule simple, constitué

par le centre de gravité du système, mais on détermine
la position de ce centre de gravité en tenant compte, non
seulement du mercure, comme pour la formule (2), maib
aussi de la partie solide du pendule.

Cette formule de M. Keelhoff, que nous venons d'obtenir
par trois méthodes différentes, ne peut, comme la formule
actuelle (2), s'appliquer qu'aux pendules du type ordinaire:
dans ce cas seulement les centres de gravité du mercure, de
la partie solide, et du pendule entier sont suffisamment
rapprochés du centre d'oscillation pour qu'on puisse substituer
un pendule simple au pendule composé.

3. Simplification proposée pour la formule de JI. Keelhoff.

Même dans ce cas du pendule à mercure usuel, la formule
(7) n'est qu'approchée; ce fait n'a d'ailleurs pas grand
inconvénient en pratique, car il est une autre cause d'erreur beaucoup

plus grande que celle qui résulte de l'emploi de la
formule (7); elle provient de l'incertitude du coefficient de
dilatation de la tige a. Ce coefficient varie beaucoup d'une
tige à une autre. M. Biefler1, en faisant déterminer les
coefficients de dilatation des tubes d'acier dont il se servait pour
ses pendules, a obtenu des valeurs variant de 10,34 x40-6 a

11,62 x 10 -6. Les variations sont donc très grandes, et si le
coefficient n'a pas été déterminé spécialement pour une tige,

1 Riefler. Loc. cit.
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l'erreur qu'on commet en admettant pour ce coefficient une
valeur moyenne peut dépasser V20 du montant total.

Dans ces conditions, on peut se demander s'il n'y a pas
lieu de simplifier encore la formule approchée (7).

Première simplification. — On peut tout d'abord en faire
disparaître la racine en procédant comme suit :

P y + Vy*-r-2Py
y -\- Vif'+2 P y + P- — P-

=y+YXy + P)2-p-
?/+(?/ l-P)|/i- ?/+p

La racine est maintenant développable en série conver-
p

Lçente, car < 1. Donc:
?/ + P

.'/¦ ''^ 1 2\y+P/ «V?/+P/ My+P/ 1

En pratique, // est toujours supérieur ou au moins égal à
P 1

I', de sorte que —- ; il en résulte que le troisième
?/ + P 2

1 z P \4
terme du développement, peut déjà être

abandonné, car sa valeur ne dépasse pas -fm ou l/t00 de la valeur
totale de p, exactitude à laquelle la formule "(7) ne saurait
prétendre. Il reste donc :

qu'on peut aussi écrire :

p2
p 2w + P' J r 2(t/+P)

ou encore :

'=9»+p(1-55Tij) (11)
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Deuxième simplification. — Cette formule (44) est elle-même
inutilement compliquée. Son troisième terme, puisque V^y,
est toujours plus petit que ifiQ du résultat total p. On peut
donc, sans inconvénient, remplacer le deuxième terme de la
parenthèse par une valeur numérique constante convenablement

choisie, ce qui ramène la formule (11) à une forme
linéaire très simple.

p
Voici la valeur pour quelques pendules de types

assez variés : 2 (?/-}-P)

Pendule de Erodsham (cité par M. Lorenzoni) 0,45
» Dencker (cité par M. Wanach) 0,15
» D. Perret (nouveau modèle) 0,25

Il est préférable d'adopter la valeur la plus grande, c'est-
à-dire 0,25='/i, car nous verrons tout à l'heure que si la
formule simplifiée est valable pour une valeur de ce rapport,
elle l'est aussi pour des valeurs moindres, tandis qu'elle ne
l'est pas pour des valeurs notablement supérieures. C'est
pour qu'elle le soit cependant encore pour des valeurs légèrement

supérieures qu'on pourrait rencontrer, que nous choisissons

la valeur la plus grande. La formule (11) devient alors :

"-22/ + 74P

Il n'y a plus aucun intérêt à maintenir ici la quantité
auxiliaire y. Nous avons donc :

p 2«t*il PAP (42)
v — 2 a. — aI -t 'j

Lorsque la tige et le vase sont en acier (et c'est bien la
solution la meilleure) on a a ai =0,000041 en moyenne.
On sait de plus que, pour le mercure, 3 43,60, y 0,000 181.
La formule (42) devient alors, dans le cas d'un pendule
battant fa seconde (Z 99<™,4):

p 634r*-f 7,P

Valeur des termes négligés. — Il nous reste à montrer que
la somme des termes abandonnés dans ces deux
simplifications est vraiment négligeable en pratique; il nous faut
donc comparer les résultats fournis par les formules (7) et

(12). Bemarquons tout d'abord que ces deux formules don-
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lient des résultats identiques pour les deux cas spéciaux
P 0 et P 8/9y. Pour les autres valeurs de P, il y a un
écart donné par la différence des deux formules, c'est-à-dire par

\7yi-\-2Py — y — 8/4 P

Cherchons le maximum de cette quantité en égalant à
zéro sa première dérivée par rapport à P :

-^ '/, 0
yy+2Py

d'où :

4?/-3vV + 2Py
162/2 92/2 + 18Py

l'y0- —18 P y

La solution y 0 ne saurait correspondre à un maximum.
11 reste :

7i/==18P
P 7l8»

L'écart des formules (7) et (42) est donc maximum, entre
P 0 et P —?/, pour la valeur P 7/i8Î/» e* cet écart maximum

a pour valeur :

Vt - Y Vot - îi- 2772 y=73 <j - "/*.* y=V» y

Donc, tant que P reste compris entre 0 et a/9y, l'écart des
deux formules ne dépasse pas ifiiy, c'est-à-dire environ '/«o
du poids total du mercure, et on peut sans inconvénient
employer la formule simplifiée (12).

Mais dès que le poids P dépasse sensiblement cette limite
7,yi, il n'en est plus de même : les résultats fournis par les
deux formules s'écartent de plus en plus. Calculons donc
jusqu'à quelle valeur de P, supérieure à 8/gy, on peut aller sans
tue l'écart dépasse cette même limite '/2*!/- Pour la trouver,
il suffit de poser:

VV+2P2/ - y - 7, P=± y,,y
d'où l'on tire :

324 P2 — 36 (8 +1 P y -f- (1 + 48) y* ¦= 0
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d'où :

D_?±ü
18

p
8 +1+^64 + 64^

En prenant les signes supérieurs de l'équation, on
réobtiendrait la valeur P "/i8y, qui ne nous concerne plus ici
Les signes inférieurs de l'équation donnent :

u 9 + 8/2"P =— — g
18

La valeur positive présente seule un intérêt pratique. Ot
a donc :

P==(ï+ |VA¥) y l,128y* 178?y

Pour résumer toute cette discussion, nous pouvons dont
dire que tant que P ne dépasse pas fa valeur i,/8y, la
formule (12) peut parfaitement remplacer (7), l'erreur commise
de ce fait ne dépassant pas l/60 de la quantité totale du
mercure. Mais par contre, dès que P dépasserait cette limite,
l'erreur deviendrait rapidement beaucoup plus grande; maii-
il faut remarquer en même temps que dès que P dépasserait
sensiblement cette limite, la formule complète (7) elle-même
cesserait d'être applicable, car on s'écarterait trop du cas où
la masse du mercure est prépondérante.

Donc, en pratique, il y a lieu d'employer dans tous le>

cas la formule (12), plus simple, au lieu de la formule (7):
et lorsque le poids P dépassera notablement la limite ll/$y,
il sera nécessaire de recourir à un calcul exact du pendule
composé, d'après la méthode exposée au chapitre suivant.

4. Formule de M. Lorenzoni. Comparaison des résultats.

En 4879 déjà, la question qui nous occupe a fait l'objei
d'une étude intéressante de M. G. Lorenzoni1. Si, en dépit
de l'ordre chronologique, nous n'en avons pas parlé jusqu'ici,
c'est que la méthode suivie par M. Lorenzoni pour résoudre
ce problème est intermédiaire entre la méthode approchée
employée dans les paragraphes précédents et la méthode
exacte qui sera développée au chapitre IL

1 G. Lorenzoni. Loc. cit.
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M. Lorenzoni pose comme condition de compensation
parfaite que le centre de gravité du système ne doit pas être
déplacé par un changement de température (c'est exactement
ce qu'a l'ait M. Keelhoff, mais en spécifiant qu'il s'agit d'une
simplification) ; ce faisant, il considère donc son pendule
comme un pendule simple.

Mais dans la deuxième partie de sa démonstration, .M. Lorenzoni

s'écarte de la méthode suivie par M. Keelhoff. Au lieu
d'admettre pour la distance de ce centre de gravité à la
suspension la longueur du pendule simple synchrone (ce qui
semblerait logique), M. Lorenzoni considère son pendule
comme composé, et cherche alors la relation qui lie ces
deux quantités; cette relation est naturellement compliquée:
M. Lorenzoni n'arrive à la simplifier qu'en en diminuant la
généralité, en remplaçant certains rapports littéraux par leur
valeur numérique dans un cas spécial, en considérant donc
un modèle tout particulier de pendule à mercure. Il obtient
ainsi la formule:

IV II/ 1)"
2v/ +—tJ*±_ 2,, (13)

l>

où P' désigne le poids du vase, P" celui de la tige. Cette
formule, comparable à la formule (6), permet de calculer p
par approximations successives ; on pourrait naturellement
en tirer aussi une formule explicite analogue à (7), puis aussi
une formule simplifiée du genre de (12).

On voit par ces quelques indications que la théorie qu'a
donnée M. Lorenzoni pour la compensation à mercure est un
curieux mélange des deux méthodes; il faut sans doute en
voir la cause dans ce fait que M. Lorenzoni admet comme
condition de compensation parfaite l'invariabilité de position
du centre de gravité du pendule aux diverses températures,
tandis que (nous aurons l'occasion de le voir encore au
chapitre suivant) la condition d'une compensation rigoureuse est
l'invariabilité du rapport du moment d'inertie au moment
statique.

Il y a lieu de remarquer à ce propos que, alors même que
la formule de M. Lorenzoni repose sur une théorie plus
compliquée que celle qui a conduit à la formule (12), il n'est
nullement certain a priori que les résultats qu'elle donne sont
préférables. Pour établir (12), on a introduit partout la
considération d'un pendule simple, et il y a des chances pour que
l'erreur commise de ce fait se compense, en partie du moins:
tandis que M. Lorenzoni n'admet cette hypothèse que dans

15 m'LL. SOC. SC. NAT. T. XXXVII
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une partie de sa démonstration : il y a alors des chances

que l'erreur ainsi commise se retrouve toute entière dans le
résultat. La comparaison pratique des deux formules confirme
cette manière de voir; elle montre qu'en effet la formule (42)
est préférable à celle de M. Lorenzoni.

Ces remarques critiques sont loin d'enlever toute valeui
au travail de M. Lorenzoni; et la formule qu'il proposait est
tellement supérieure aux formules usuelles qu'il est bien
regrettable qu'elle ne leur ait pas été substituée, au cours
des 30 dernières années, dans les nombreux ouvrages que
nous avons cités plus haut.

Pour se rendre compte du degré d'exactitude de ces
diverses formules, le mieux est de comparer leurs résultats
à ceux du calcul exact. C'est ce que nous avons fait pour
quelques pendules :

(La première ligne du tableau suivant se rapporte à m:
pendule simplifié et schématisé par M. Wanach1, et dont il a

1 B. Wanach.
ici les schémas et
M. Wanach. (Pour
tance du centre de

1° Pendule ordin.

Rayons :

P.! 2,r»

R2 2,7
Rs 0,4

Longueurs :

L, 17,41
L2 20

Ls 85

Distances à la
suspension :

E! 99,4
E2 98,l
E3 '.5,6

Loc. cit. Pour la commodité du lecteur, nous reproduison-
les dimensions des deux pendules à mercure étudiés par
chaque partie, R désigne le rayon, L la longueur, K la dis
gravité à la suspension.)

2° Pendule Rieflei

Rayons :

Ri 0,8
R2 0,9
Rs W<

Longueurs :

L, 76

La 122

L, 5,8

Distances à la

suspension :

E1 88

E2 65

E, 104.:

HA M p.,

k
A i\ * \ >

E,E

f v

u-v
Rr-»

ng. 1. ng. 2.
Pendule à mercure usuel Pendule à mercure

de Dencker de Riefler
(d'après il. B. Wanach).

La densité du mercure est de D, =13,60; celle admise pour les parti»
solides (acier) D2 D3 7,8.
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fait le calcul exact. Les pendules qui suivent ont été observés
à l'Observatoire de Neuchâtel1; JJ. Perret 10A et D. Perret
10B désignent un même pendule, calculé pour deux coefficients

de dilatation un peu différents. Tous ces pendules sont
à tige et vase d'acier.)

Dencker 27(Äi
D. Perret 7
D. Perret 9
D. Perret 10 A
D. Perret 10B

formule actuelle formule proposée formule de méthode exacte
(2) (de ï. keelhoff, simplifiée M. Lorenzoni Ichap. II)

(12) 118)

I 39009' 46009- 45009' 40009'
4000 5600 5300 5500
4300 5900 5700 5900
4800 6500 0200 6600
4G00 6200 6000 0300

Les corrections qu'il faudrait appliquer à ces résultats
sont donc :

Formule proposée Formule
Formule actuelle (de M Keelhoff, simplifiée; de M. Loren/oeii

(2) (12) (18)

Tr 7009' 09>- | lOOgr
4500 — 100 -f 200
1600 0 4- 200

Dencker 27 (ÄD. Perret 7

D. Perret 9
D. Perret 10 A
D. Perret 10B

1800
4700

100
100

400
300

On voit combien la formule actuelle est défectueuse : les
deux autres, par contre, donnent des résultats très acceptables.
Ceux de la formule de Lorenzoni sont tous un peu trop faibles ;

ceux de la formule proposée, en revanche, sont exacts en
moyenne, et les écarts individuels ne dépassent pas Y.-,o c'e 'a
valeur entière. La formule proposée est donc très satisfaisante.

5. Formule de correction.

Il arrive souvent qu'on doive corriger la compensation
d'un pendule en tenant compte des marches observées. Le
problème qui se pose alors est le suivant : combien de mercure
faut-il ajouter ou retrancher pour compenser un coefficient
thermique donné.

1 Pour ces pendules Perret, qui sont tous du même type, le poids de la
tige est de 72Ô gr., le poids de la partie mobile (chope, couvercle, etc.) de lui« gr.,
donc le poids total de la partie solide p 2160 gr. Le récipient à mercure (au
travers duquel, dans ce modèle, passe la tige du pendule) a les dimensions
suivantes : diamètre de la paroi extérieure 5cm,4, diamètre de la paroi intérieure 1™,22.
On a admis pour les densités les mêmes valeurs que M. Wanach, et pour le
coefficient de dilatation de l'acier n, 0,000 01()2 pour P 7, 0,000 0109 pour P9, 0.000012,,
pour PIOA et 0,000 011« pour P10B (voir p. 240).
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Il faut d'abord établir une relation générale entre la variation

de marche d'une horloge et la variation correspondant!
de la longueur de son pendule (longueur du pendule simple
synchrone). On sait que la durée d'oscillation T et la longueur /

du pendule sont liées par la relation :

Vf
on en tire par différenciation logarithmique :

d T 1 d l „ T
— d T — — dl
T 2 / 2/

On peut y remplacer les différentielles par les différence'
si les puissances supérieures de celles-ci sont négligeables

T
aT — A*

2/

Soit N le nombre d'oscillations du pendule par jour; il
suffit de multiplier aT par N pour obtenir la variation coi-
respondante Am de la marche diurne :

NT
A Dl ee= A /

2/
mais NT 86400, donc:

Am= a/ (i;)

Ainsi, la relation entre ato et à.1 varie un peu suivai.t
l'endroit où l'on se trouve, puisqu'elle contient la longueur /

du pendule simple synchrone; elle varie aussi suivant le temps
que doit battre le pendule, temps moyen ou temps sidéral.
Pour un pendule battant la seconde de temps moyen, si nous
adoptons Z 99cm,4, la relation (44) devient:

a m 434,6 \l
et inversement :

a / 0,002 301 a,n
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Si, dans ces formules générales, on introduit pour Mn le
coefficient thermique qu'on a observé, c'est-à-dire la variation
de marche pour une élévation de température de 4°,
l'allongement correspondant a£ du pendule s'en déduit
immédiatement.

\l étant ainsi déterminé, voici comment on en déduit
d'ordinaire1 la quantité a/; dont il faut augmenter la hauteur/t
du mercure. On suppose, ici aussi, que la masse de la partie
solide est négligeable par rapport à celle du mercure. L'équation

(4) est donc applicable :

A / / a t
2

Si l'on veut que le pendule soit bien compensé pour une
hauteur h-\-L\h, on aura en outre, d'après (2):

0-/.-''+^
r,

d'où, par soustraction :

et par suite :

a / ¦ z a h
r)

i -A'
a h -----

Si on veut la correction en poids, il faut simplement
multiplier cette valeur par c--—r.r-ò:

2ca/ 2ïtr*8A/
\p (lo)

On peut encore, dans (15), introduire la valeur de a/
d'après (14). Si, de plus, on admet les valeurs numériques
8 43,596 et s 0,000148 (mercure dans un vase d'acier, la
tige du pendule également en acier, a 0,000011), on obtient'2 :

A^ 1.°,30/'2A/«

' Voir, par exemple, Amiîho.nn, loc. cit.
2 Cette formule est donnée par Albrecht, «Formeln et Hilfstafeln». Toutefois,

dans la dernière édition (4"«, 1008) le coefficient a été porté à 1500. Nous
verrons tout à l'heure que ce n'est pas encore suffisant.
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Ces formules donnent toujours des résultats trop faible^
d'environ i/5 ou i/i de leur valeur. On pourrait croire tout
d'abord que cet écart provient, ici aussi, de ce qu'on a négligé 11

partie solide. Il n'en est rien cependant; si l'on tient compte de
cette masse et qu'on introduise les simplilications qui nous ont
conduit à la formule (12), c'est-à-dire si on se base sur un ¦

condition linéaire de compensation, on obtient exactement l;i
même formule. Il est vrai que si on se base sur la condition
de compensation non simplifiée, on obtient d'autres formules,
plus compliquées; mais elles ne présentent guère d'avantagé
sur la précédente, car elles donnent aussi des résultats trop
faibles. Il semble donc que ces écarts proviennent du fait que
nous avons considéré un pendule simple, alors qu'il s'agit en
réalité d'un pendule composé.

La solution la plus pratique est d'employer la formule (45),
mais d'en multiplier le résultat par 1,22, cette constante ayant
été déterminée empiriquement1. On a alors:

2.44itr-'ÒA/
Ap (lui

et, en particulier, dans le cas de l'acier :

a/> 1020 r-A m

Lorenzoni2 propose une formule de correction qui peut
se déduire de la formule usuelle (15) exactement comme lu

formule proposée (12) se déduisait de la formule usuelle (2),
P-I-J'c'est-à-dire en en multipliant le résultat par le rapport ——

P
du poids total du pendule au poids du mercure. On obtient
ainsi :

n P + P A/ oP + P ur2ÒA/
a/;j 2c — 2^—! (17)

P e p -

et en particulier, pour une tige et un vase d'acier :

a/» 1330 £ÜLr« a m

1 On voit au tableau suivant que le rapport de la correction exacte (derni' re
colonne) à celle fournie par la formule actuelle (1" colonne) est de 1,17 et 1,14,
en moyenne 1,16 pour le pendule Dencker, et de 1,23, 1,25 et 1,36, en moyenne
1,28 pour le pendule D. Perret. La moyenne de ces deux résultats est 1,22.

2 Lorenzoni. Loc. cit.
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Cette formule de
formule usuelle (15);
la formule empirique
les résultats suivants,
cas particuliers :

Lorenzoni (47) est bien préférable à la
mais elle est un peu moins bonne que
plus simple (16). C'est ce que montrent
donnés par ces formules dans quelques

Correction de la quantité de mercure calculée par la
formule formule formule de méthode
actuelle proposée M. Lorenzoni exacte

(15) (16) (ITI fchap. 11

Dencker 27 I (MdÄtb) — 360'.i' — 440'." — 430-1' -- 4209

II — 140 — 170 — 160 -- 100
D. Perret 9 + 350 Tr 430 + 481» - - 430
D. Perret 10A -f 870 +1060 4-1160 - -1090
D. Perret 10B —140 — 17d — 190 -- 190

Les corrections qu'il faudrait apporter à ces résultats sunt
donc :

Formule
Formule actuelle Formule proposée île M. Lorenzoni

Dencker 27 I (Äi) — 60»' -f 20»' | 10»'
» II » — 20 | 10 0

D. Perret 9 | 80 (t — 50
D.Perret 40 A -f220 | 30 —70
D. Perret 10B — 50 — 20 0

On voit que les erreurs que laisse subsister la formule (16),
la meilleure des trois, sont absolument sans importance en
pratique. II est bien entendu que celte formule de correction.
elle aussi, n'est valable que pour les pendules à mercure
ordinaires.
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CHAPITRE II

(elicili exact de la quantité de mercure.

1. Cas d'un vase cylindrique. Formule de M. Waiiacli.

Les formules établies au chapitre précédent ne sont
qu'approchées. Dans le cas où l'on connaît un peu exactement le
coefficient de dilatation de la tige du pendule, il y aura avantage

à les remplacer par une méthode plus rigoureuse.
Ces formules, d'ailleurs, ne sont applicables qu'à des

pendules à mercure ordinaires; elles sont absolument sans valeui
pour des pendules à mercure d'autres types, qu'il s'agisse du
pendule à mercure de Riefler, par exemple, ou de tout autre
nouveau système qu'on serait amené à construire dans la
suite. Pour ces pendules-là, il est nécessaire d'abandonnei
définitivement la supposition du pendule simple et de recourir
à la théorie exacte du pendule composé.

Notons qu'on trouve jusqu'ici bien peu d'exemples de
calcul exact de compensation. On ne peut guère citer que
le calcul par approximations successives de Oudemans1 (il
s'agissait de compenser un pendule à la fois pour les variations
de température et pour celles de pression) et plus récemment,
le calcul des pendules à mercure de Riefler (la méthode
employée par ce dernier a été exposée dans ses grande>
lignes par M. E. Anding2).

Il faut sans doute voir la principale cause de ce peu
d'empressement dans le fait qu'on ne connaît généralement pas
avec une précision suffisante une des données indispensables,
le coefficient de dilatation de la tige; dès lors, le calcul exact
paraît superflu ; on se contente d'un calcul approché, quitte à

corriger ensuite la compensation d'après les marches observées.

Le remède à cette situation n'est pas difficile à trouver,
et il est vraiment très désirable qu'on imite de plus en plus
l'exemple donné par M. Riefler et qu'on fasse déterminer le
coefficient de dilatation de chaque tige; alors seulement le

1 J.-A.-G. Oudemans. « Ueber die Compensation eines Sekundenpendels fü
Temperatur und Luftdruck vermittelst eines Quecksilberscylinders und eirn^
Krüger'schen Manometers. » (A. N., 100, 1881, p. 17 et Zeitschr. f. Instr., 1881. i

2 E. Anding. « Bericht über den Gang einer Riefler'schen Pendeluhr.
(A. N., 133, 1893, p. 217.)
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calcul exact pourra permettre d'atteindre du premier coup
une compensation pratiquement parfaite et d'éviter ainsi des
périodes d'essais qui durent parfois plusieurs années.

Mais il semble que deux autres causes encore ont dissuadé
horlogers et astronomes de recourir à cette méthode exacte.
C'est tout d'abord que celle-ci donne des formules très
compliquées, dont il semble difficile de tirer un résultat assez
simple pour être utilisable en pratique. C'est ensuite qu'on a

cru nécessaire d'évaluer le moment d'inertie du pendule,
opération assez longue et fastidieuse quand la forme de la partie
solide n'est pas très simple.

Je me propose de montrer que si l'on emploie une formule
due à M. B. Wanach1, on peut éviter les deux inconvénients
que je viens de signaler; et il n'y a dès lors plus aucune raison
de ne pas préférer le calcul exact à la méthode approchée.

Il y a lieu tout d'abord de bien se rendre compte du degré
d'approximation nécessaire dans les calculs qui vont suivre.
On peut admettre que, pour une horloge astronomique
installée dans des conditions tant soit peu favorables, l'écart de
la tempéralure diurne à la température moyenne annuelle ne
dépasse guère 10°. B.emarquons de plus que des écarts
accidentels de 0S,05 dans la marche diurne sont fréquents, et qu'un
défaut de compensation qui ne produirait pas d'écarts plus
grands que celui-là n'aurait plus d'inconvénient. H suffit donc
que le coefficient thermique de l'horloge soit moindre que
08,005. D'autre part un pendule non compensé, à tige d'acier,
s'allongerait par degré de /a £x0,000011 environ; son
coefficient thermique serait donc, d'après la formule (14) du
chapitre précédent, 0S,48, donc environ '/s s- O" X0l~ 9U i'
suffira de compenser cette quantité à ,/IO0 près pour obtenir
l'exactitude de compensation désirée. Il suffit donc en pratique
d'évaluer au Vioo Pr^s les quantités qui interviennent dans
ces calculs.

On peut dès lors négliger, comme on le fait d'ailleurs
toujours, les puissances et produits des coefficients de
dilatation, puisque le plus grand de ceux-ci, le coefficient de
dilatation cubique du mercure, a pour valeur 0,000181.

On peut aussi ne pas tenir compte du terme du second
degré de la dilatation. On a, par exemple, pour le coefficient
de dilatation de l'acier fondu (anglais) recuit, d'après Fizeau,
la valeur :

[1095 -f1,52 (/ — 40o) 110 -s

1 B. Wanach. /.oc cit.
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Comme nous ne considérons que des écarts de température
de 40°, les coefficients de dilatation qui interviendront

se rapporteront à des températures s'écartant tout au plus de
5° de la température moyenne. Or, pour 5°, on voit que 1 >

coefficient varie d'environ huit unités de la huitième
décimale, donc d'une quantité moindre que !/100 du coefficient
lui-même. Le rapport des deux termes est du même ordre de

grandeur pour les autres métaux qui pourraient être utilisés
Quant au mercure, le coefficient du second terme de sa
dilatation est encore beaucoup plus faible par rapport à celui du
premier.

Voici maintenant une démonstration, un peu généralisée,
de la formule de M. Wanach :

Soient N le moment d'inertie, D le moment statique du
pendule composé. La durée d'oscillation est définie par la

longueur l du pendule simple synchrone donnée par la formule :

I
D

Ces trois quantités sont en général fonctions de la tempt -

rature t. Pour que le pendule soit compensé, il faut que / ne

varie plus avec t, c'est-à-dire que la dérivée — soit nulle. La
dt

condition de compensation d'un pendule quelconque est done :

dl _
1 / di\ rfD

dt~\Y-\ dt
L

dl
i /dN^dDv =0

t dt
'

D

Considérons maintenant plus spécialement un pendule t

mercure. Soient J le moment d'inertie, S le moment statique
de la partie solide du pendule, i le moment d'inertie et s ie
moment statique du mercure. On a :

d'où:
N J + t D--S + .V

dl
dt

1

D

d.\
j di

dt dt
_,/tfS dsY

\dt dl)
(P

Supposons en outre que la partie solide du pendule, de

forme absolument quelconque, est constituée par une seule
substance de coefficient de dilatation a.
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On sait que le moment d'inertie et le moment statique
sont de la forme :

(a désignant l'élément de masse, x la distance de cet élément
à la suspension. (Notons que x n'a pas rigoureusement la
même signification dans ces deux formules : dans la première
x signifie bien la distance de l'élément à l'axe, dans la seconde,
la projection de cette distance sur l'axe de symétrie du
pendule. Mais cette distinction n'a pas d'importance pour ce qui
va suivre.)

Le coefficient de dilatation de toutes ces distances x étant
uniformément a, on a :

il x
.l'y.

dt
de sorte que

dl
: tu 2 x xi 2J

rfS
Vt

Sa

On obtient ainsi :

dt I)
2.1 ¦ /s»4 di

ils

lit
ri)

C'est la condition de compensation d'un pendule à mercure

de forme absolument quelconque.
Supposons maintenant que le récipient à mercure soit de

forme cylindrique (c'est le cas de tous les pendules à mercure
actuellement en usage). On a alors, en appelant h la hauteur
et r le rayon du cylindre de mercure, m sa masse, b la distance
de sa base à la suspension, en appliquant deux formules connues
de la mécanique :

i m
r- 4- m —

12
b

I,
ui

'"
\ 4

s — m i b

Or on a naturellement :

h

r)

17 —bh-\-
iy

dr
~d~t

dA>

Tt
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Si y désigne le coefficient de dilatation cubique absolut
du mercure, t — 2 a ==ß est son coefficient de dilatation en

hauteur, dans un vase de dilatation a. Donc on aura :

dh
dl

h B

On en déduit:

di
— m
dt

(<± + 2b*-bh\«-h(b-^\ï
2 i a. — III [*('-")'-*K

3
2h
J

2ia — m h i b i s

3

2 h

si Ton pose pour abréger: s —s — a v — 3c
De même :

(ls t I, '»a
— ml b% S

dl \ 2
(h B

h
sa. — ml — p a

\ 2 2
ds h
¦— sa — m — s

dt 2

En introduisant ces deux valeurs dans la formule (2), on
obtient :

^. ±r2ja_/s«+2t« — mh (b- —
dt D V 3

I t — IsaT- l m — j i

/ 2
dl
— ~ la.
dt

mh i, 2/t /
6-

D \ 3 2 rondiliOD ic
rorapcnsatioit

).=0/ condition et

(3)

C'est la formule très simple, due à M. Wanach, qu'i
s'agissait de démontrer.

2. Applications de la formule de M. Wanach.

La formule de M. Wanach permet de résoudre très
commodément les diverses questions qui peuvent se poser au
sujet d'une compensation à mercure.
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Calcul du coefficient thermique d'un pendule. — Cette formule

(3) permet d'abord de calculer le défaut de compensation —
dt

d'un pendule donné, lorsqu'on connaît le coefficient de dilatation

a de la substance4 dont il est construit. Les autres quantités
qui interviennent dans la formule (3) peuvent être mesurées

directement. Rappelons que D =S-f-i' et que s=m I b

Quant à S, moment statique de la partie solide, on peut en
déterminer expérimentalement les deux facteurs (S LM).
On place cette partie solide horizontalement sur une arête
quelconque et on cherche sa position d'équilibre ; on mesure
alors la distance L qui sépare cette arête (marquant le centre
de gravité) du milieu du ressort de suspension (ce milieu
marquant assez exactement l'axe même de suspension); on
détermine ensuite par une pesée la masse M de cette partie
solide: le produit LM est précisément S.

Une fois — connu, on peut calculer immédiatement le coef-
dt dm

ficient thermique — à l'aide de la formule (14), chap, I",
dans laquelle les dérivées — et — peuvent être substituées
aux différences j\1 et àm. ^t dt

Calcul de la quantité de mercure. — La formule (3) détermine

la quantité de mercure nécessaire à la compensation.
Il ne faudrait guère songer, toutefois, à exprimer cette quantité

sous forme explicite, car le résultat serait extrêmement
compliqué. Il faut remarquer en effet que l'équation (3) est
du troisième degré par rapport à h ou à m (on peut choisir
l'une ou l'autre de ces deux quantités comme inconnue, car

mon ne connaît que leur rapport — c). 11 faut remarquer de
h

plus que D dépend aussi de h, et en est même une fonction
assez compliquée; enfin, la quantité b, elle aussi, est une
fonction compliquée de la quantité de mercure (dans les
pendules ordinaires seulement). Pour éviter toutes ces
complications, on procède par approximations successives de la
façon suivante :

1 On voit facilement que c'est seulement le coefficient de dilatation de la
tige qu'il importe de connaître exactement; pour celui de la paroi du vase, une
valeur tout approchée suftit, car cette quantité doit être soustraite du coefficient
de dilatation du mercure, toujours beaucoup plus grand.
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a) Pendule ordinaire. — On détermine comme nous l'avons
expliqué ci-dessus S pour deux positions différentes de la

partie mobile du pendule (vase ou lentille, déplacés par la
vis de réglage); on pourra alors obtenir dans la suite, par
simple interpolation, ia valeur de S pour une position
quelconque de la vis de réglage. On mesure aussi b pour une
position déterminée de cette vis. On calcule ensuite la quantité

de mercure à l'aide de la formule approchée (12) chap. Ier :

on introduit cette quantité de mercure dans le pendule, et on
règle approximativement celui-ci au temps qu'il doit battre :

une approximation de ifl00 suffit ici aussi. On possède alors
toutes les données nécessaires pour calculer le défaut de

compensation — du pendule ainsi réglé provisoirement: on procèdi
dt

comme nous l'avons indiqué plus haut. Ce défaut de compensation

connu, il n'y a plus qu'à calculer la correction de la

quantité de mercure par la formule (45) chap. Ier.
On pourrait évidemment continuer de la sorte, mais ces

deux approximations suffiront toujours en pratique : on peut
tout au plus calculer encore une fois le défaut de compensation

à titre de vérification: on obtient une valeur négligeable.

bj Pendule Biefler. — Il faut modifier la méthode
précédente; car les formules (42) et (45) ne sont plus utilisables
dans ce cas. On est obligé ici de partir de deux valeurs de h

choisies un peu au hasard, si possible de part et d'autre de
la vraie valeur, et en tous cas dans son voisinage; on peut
souvent fixer ces valeurs par analogie avec des pendules
déjà construits. Ces deux valeurs choisies, on règle
approximativement le pendule pour chacune d'elles, et on peut alors

calculer le défaut de compensation — du pendule pour ces
dt

deux alternatives; on trouve ensuite, par interpolation ou pai
extrapolation, une meilleure valeur de h. Et on continue ainsi
jusqu'à ce que le défaut de compensation du pendule soit
suffisamment faible. Le nombre d'approximations nécessaires
est un peu plus grand que dans le cas du pendule ordinaire
Notons qu'il n'est pas nécessaire de régler le pendule à chaque
approximation, car on peut, par interpolation également,
calculer chaque fois la valeur de S à partir des deux valeurs
primitives.

Lorsqu'il s'agit, non de compenser un pendule donné,
mais de construire un nouveau pendule, on peut, en suivant
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l'exemple donné par Rietler ', se donner la hauteur du mercure
et prendre pour inconnues la masse de la lentille et sa distance
à Ja suspension. Ce choix des inconnues facilite beaucoup la
résolution du problème; et l'emploi de la formule (3) permet
encore de simplifier notablement les calculs : il suffit de poser
que ces deux inconnues doivent satisfaire à l'équation (3) et à

N
la relation fondamentale l—- — •

D

Calcul du coefficient de dilatation de la tige. — On peut
aussi se servir de la formule (3) pour déterminer * à partir
du coefficient thermique observé, On calcule d'abordH di di
par la formule (44), (ces deux dérivées y remplaçant les di
(Terences U et Am). Ensuite, on tire la valeur de a de l'équation
(3), après y avoir remplacé t par sa valeur v — 3a.

J'ai fait ce calcul pour deux pendules D. Perret. Ce ne
sont pas les marches elles-mêmes, mais leurs différences qui
ont servi de base au calcul du coefficient thermique; c'est de
cette façon que l'effet des variations de la marche avec le
temps est le mieux éliminé. La température n'a été lue qu'une
fois chaque jour, au moment de la comparaison des horloges,
de sorte qu'elle représente sans doute assez peu exactement
la température moyenne de la journée. Les coefficients
thermiques obtenus sont d'ailleurs incertains pour une autre
cause : les observations portent sur des intervalles de temps
trop courts, et les variations totales de température n'ont pas
été très grandes.

L'horloge D. Perret 9 a été observée pendant un peu plus
de trois mois, l'horloge D. Perret 10 a été observée tout
d'abord avec 5% kg- de mercure, pendant quatre mois, puis
avec 6 i/î kg., pendant trois mois; chacune de ces deux
périodes a fourni une valeur particulière de ». Voici les
résultats obtenus2 :

1 Voir E. Andino, loc. cit.
2 On a obtenu par mesures directes les quantités suivantes, nécessaires, à

côté des valeurs ci-dessus, pour le calcul de a :

dt
P9 et P10A P10B

P 0500 gr. 6500 gr.
p 2100 gr. 2100 gr.
h 18c",6 22«\0
b 111"",0 112«',0
L 85™,8 86«-,5

D pL + P | b — — 745000 843000K) ¦
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D.Perret 9. + 0*,039 +12 0,0000109 +2
D.Perret 40 A. -f 0%093 ± 7 0,000 0120 +'
D. Perret 40B. 0*,015 + 5 0,0000116 +-i

L'accord des deux valeurs de a pour A et B n'est pas trè-
bon; cependant ce grand écart n'est pas trop anormal, étaiv
donnée l'incertitude^des coefficients thermiques dont on es^

parti; on peut donc admettre pour D. Perret 10 la valeur
moyenne a 0,0000148.

Correction de la compensation. — Lorsqu'il s'agit d'appliquei
la méthode exacte à la correction d'une compensation, le

coefficient thermique étant donné par les observations, oi
calcule le coefficient de dilatation a comme nous venons de

l'exposer. Le calcul de la compensation se fait ensuite comm''
si ce coefficient de dilatation avait été donné. Dans le ca-
d'un pendule ordinaire toutefois, ces deux calculs pourroni
être le plus souvent remplacés par l'application de la formule
de correction (45), chap. Ier, et on n'emploiera (3) qu'à titn
de vérification.

Bemarques. — Nous avons réussi à résoudre toutes ces questions

sans avoir recours à l'évaluation du moment d'inertie de
la partie solide du pendule; mais il est bon d'ajouter que lu

méthode que nous avons suivie revient à déterminer ce momenl
d'inertie expérimentalement, par le réglage du pendule an
temps désiré. Cette détermination repose donc sur la formule

N
1 —, et il nous reste à établir que celle-ci est bien valahf'

D 4

dans les limites d'exactitude que nous nous sommes données
Trois causes principales pourraient rendre cette formul >¦

inexacte: l'amplitude, l'air ambiant, l'effet du ressort de

suspension et de l'échappement.
N

La formule / — est valable pour des oscillations infini-
D F

ment petites seulement. Mais même si les oscillations
atteignaient une amplitude de 3°, la différence de marche diurne
ne serait que de 15 s., ce qui, comparé aux 86400 s. de la

journée, est bien en dessous de la limite de Vioo- Ces chiffres
concernent un pendule oscillant librement; on sait que poni'
un pendule suspendu par un ressort et actionné par un
échappement, l'etfet de l'amplitude sur la durée d'oscillation
n'est plus le même; il est cependant du même ordre de

grandeur.
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L'effet total de l'air ambiant peut être évalué approximativement

de la façon suivante : le coefficient barométrique
d'un pendule ne dépasse guère 0s,015; c'est l'effet produit
sur la marche diurne par une variation de pression de 1 mm.
L'effet total de l'atmosphère ne dépassera sans doute guère
760x0,045 12 s. environ, quantité encore moindre que la
première.

Evaluer de même l'effet du ressort île suspension et de
l'échappement n'est pas facile, mais on peut présumer qu'il
est du même ordre de grandeur que les précédents.

On peut d'ailleurs vérifier directement que la somme des
trois effets signalés ci-dessus est bien négligeable. Il suffit de
déterminer l, pour un même pendule, par les deux méthodes,

celle de l'expérience et celle du calcul par la formule l - •

C'est ce que j'ai fait pour un pendule à mercure ordinaire
(D. Perret 10, dans les deux variantes A et B) ; les résultats
s'accordent à moins de Vioo> ce 1U1 confirme pleinement nos
conclusions ; il est d'ailleurs fort probable que la légère
ditférence constatée provient bien plus d'inexactitudes dans les
mesures et surtout de simplifications de forme (destinées à

faciliter l'évaluation du moment d'inertie) que des trois causes
mentionnées plus haut.

Les méthodes exposées dans ce paragraphe sont donc bien
exactes.

:{. Cas général.

La formule de M. Wanach concerne seulement les pendules
à vase cylindrique. Il est vrai que tous les pendules de
précision actuellement en usasse rentrent dans cette catégorie;
mais on pourrait fort bien être amené à construire (nous
verrons plus loin pour quels motifs) des pendules à récipients
de forme différente. Il importe donc d'établir une formule
analogue à (3), mais plus générale.

Reprenons l'équation (2) :

dl D \ dt dt '

Pour obtenir les valeurs de — et — dans le cas d'un vase
dt dt

de forme quelconque, remarquons qu'on peut distinguer deux
16 RDLi,. soc. se. nat. t. xxxvii
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parties dans ces variations. Supposons qu'on ait marqué sur
la paroi du vase le niveau auquel atteignait le mercure à lu

température initiale. Si la température s'élève de 4°, le mercuri
atteindra un autre niveau, supérieur au premier. Appelons -.

le moment d'inertie, n le moment statique du mercure situi

entre ces deux niveaux. On peut alors considérer que — se
dt

compose tout d'abord de la variation du moment d'inertie dn

mercure qui va jusqu'au niveau primitif (variation facile à

évaluer, comme nous allons le voir) plus un accroissement
ds

du moment d'inertie égal à i. De même — se composera de

la variation du moment statique du mercure limité par le
niveau primitif, plus un accroissement de moment statique a.

i et s sont de la forme :

i=jjrx!i et s —- s [j. x

Si l'on considère seulement la partie du mercure limité.»
par le niveau initial, on voit facilement que les variations des

x sont données par celles du récipient, c'est-à-dire qu'on a:

dx
e=W

dt

Mais la masse de chaque particule, i* v8, varie aussi avec
la température, car on a d'une part :

dV g— v :i a
dt

et d'autre part :

dò
Of

dt

d'où l'on déduit immédiatement :

dy. dl ^dv
— =v [-8—

dt dt dt
— v8-r + v83a
— »S(T — 3a)
— r-*
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En ajoutant les deux effets que nous venons de distinguer,
on obtient :

di il x du.\
dt \ dt dt '

S (x2 XX a — ,/'2 |j. s) -j- i

2>ar*(2a s)-ft
/(2a- -e)+,

r/,v t dx du.
— 2/(1 f-« —
t// ' df df,

S (ujra—ï|is) J-o
*(« -s) + «

Reste à préciser encore la valeur de t et de -. moment
d'inertie et moment statique de la couche du mercure situé
au-dessus du niveau primitif. Or la masse de ce mercure doit
être égale à mt, produit de la masse totale du mercure m par s

qui est précisément le coefficient de dilatation cubique apparent

du mercure.
Appelons -.. le moment d'inertie de la surface du mercure

(en supposant cette surface de masse 1), par rapport à un axe
passant par son centre et parallèle à l'axe de suspension, et
soit d la distance de cette surface à l'axe de suspension ; on a,
en vertu d'un théorème de mécanique connu :

i — /Mît, -f- /Zlîrf2

»»(#+1,).

D'autre part on a aussi :

a m d t

En introduisant ces deux valeurs dans les résultats précédents

on obtient :

(/s / \ i j«(« — î)-)-///(/£
dl *«-|-(md — *)t



dA,

dl

— 244 —

En remplaçant dans la formule (2), on obtient ainsi :

^jLtaja—iSa-f2*a+[w(d94-t1) — t']« Isa.-1 (md s) 7

la —[i- m(da-~\- i,)-f/ (/«d — s)] î
I)

Ü=jU- —[i ls-\-m(ld d2 *!)]*== 0 (4i
^/ / ]) CoDditioD de

coapeosilion

La quantité q est en général très petite par rapport aux
autres termes de la parenthèse; en pratique, on peut très
souvent la négliger. Lorsque la section du vase, dans le voisi

1
nage de la surface, est circulaire et de rayon r, on a q — r-

Cette formule (4) peut rendre exactement les mêmes sei
vices que l'équation (3), et toutes les remarques du § 2 restent
valables; tant que le vase conserve une formule géométrique
simple le calcul de i et s ne présente aucune difficulté.

4. Quelques cas spéciaux.

Lorsqu'il s'agit simplement d'un calcul approché (pom
l'étude préalable d'une nouvelle forme de pendule par exemple)

on peut supposer tout le mercure concentré sur l'axe du
pendule ; on est ainsi amené à considérer comme forme du
mercure un ensemble de droites et de points matériels de
diverses densités. Il faut alors appliquer à chacune des lignes
les trois formules suivantes, dans lesquelles a et b sont les
distances respectives du sommet et de la base de la ligne
jusqu'à la suspension :

=/>dx — — (b3 — «3)
3

s c(6_a)Hlî==_l(6«_a8)
2 2

m c(b — «)

Premier cas (fig. 3). — Supposons d'abord que tout le
mercure se trouve concentré en un point, à la distance X de la

suspension, mais que le mercure déplacé par la dilatation
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soit transporté de ce point à un autre point, représentant la
surface libre, et situé à la distance d de la suspension. (Ce
cas extrême n'est naturellement pas réalisable, mais on pourrait

s'en approcher de très près.)
On a alors simplement :

i — m \- s m '/. :. 0

et la formule_(4) devient

— ---/* — — |/(À- l)-,d[l d)\t -0
dt D

(5)

/K f T '• t- T t A /\

^3 ~«5

lig. '/. lig. !i. lig. li. li... ',.
Deuxième cas. Troisième cas. Quatrième cas. Cinquième cas.

Schémas de la forme et de la position données au mercure dans cinq cas spéciaux.

Deuxième cits (fig. 4). — Le mercure est concentré en une
ligne au sommet de laquelle se trouve la surface libre. (C'est
la forme simplifiée de tous les pendules à mercure actuels.)
Ici, les valeurs de i, s, m sont simplement celles données au
début du paragraphe. On a de plus:

0

et la formule (4) devient:

dl~ — la —
dt D

_L(//i „aj -_L(fts__ „î)-\-(t(l
3 2

a)(b- a) I)
(6)
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En développant les parenthèses, on peut simplifier un peu
cette expression:

dl c I U1 ab a- l .1
— la-—(b a)\ — (b 4-a)-\-a (l — a)\
dt D ' L 3 3 3 2 ^ I

m
-la

D
m

la¬

mi 2a~
_|_ îi* l l± lÄ

"3 "F "3 2 2

(b d>(| + fV(/'~a)D

m(b — a) b 2« I N

Ü

W ,ZU l \

3+~3 ~ 2/
Si l'on y fait encore la substitution b — « /«, on réobtieni

bien la formule de M. Wanach:

dl m h
— la I b
dl D 3 2 /

(6biä;

Troisième cas (fig. 5). — Supposons le vase de mercuri'
constitué par une ligne communiquant à son extrémité
inférieure avec du mercure concentré en un point. Soit c la densité

de la ligne, q la masse du point, m la masse totale dn
mercure. Il faut introduire dans la formule (4) les valeurs :

» —(6» —rt»)4-çft*
» >

m — c (i — rt) -f- 7
i,—0 d — rt

On obtient :

dl
r=e tr

dt D/ f- (/,;i — //3
/

(ftä_a«)_L.a(i_0)(6_a)

+ q\b(h-!)-{-a(l — a)\ 0 ('¦">

On peut, ici aussi, simplifier en développant les paren
thèses et en se souvenant que :

/; — rt h ch-\-q= m
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dl li— =la 'C
dt Dl

i(ft3_6s_f_368/t_3/,/tä | h*)--(ba- -b1 | 26/» —ä*)

/a —i^c/i
D/.

(6 — A)(/ — 6 + /i)//l-f a[6(6 — /) |.(b — hnl — b | A')]'ä

62-A6 + |-<(6-|) | (h-h)(1-b | /«>

-r7 [6(6 —/) + (6 — /;)(/ — 6^ 6)1 ^

/a
D

ch[l7—hb-\-'^-bl ^ll+bl—IP+hb — hl | 6/> -/»*)

-f v(62 — blTr-bl — b*-\-hb — hl | lib —/7)

D

D

I
/oc

D

2/<2 /6
c/t — "_ \-bl,\ \ ,ic2bl, — lil — li7

2 h I

¦ha-(b-~--)Trqh<2b-li-l)

cha-(b-T'^qh(-b-f >)\4
=i i,\ i,

a \q
DL 3

f-(r6 | 2q) b
2 h r

d'où finalement :

dl
dl ,-U- >'\ >>

I / _L M, -h '
3

d (7b,si

Quatrième cas (lig. 6). — Le mercure est concentré sur une
ligne, mais la surface libre du mercure, au lieu d'être au
sommet de la colonne, est en un autre point, par exemple
plus bas, à la distance d de la suspension. (Une telle disposition

peut fort bien être réalisée, le mercure étant maintenu
au-dessus de son niveau par la pression atmosphérique.)

On a pour /', s et m les mêmes valeurs que dans le
deuxième cas, et la formule (4) devient :

(U

dl~~ a— 'y [i-(63 ¦- aa) — -(62 «â) + d(/- d){b — u)
D[3 2

il

(8)
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On peut la simplifier un peu et l'écrire

dl m
— — la
dt D f+(l~D^+^+^-*)}""0 (8bis>

Cinquième cas (fig. 7). — Même cas que le précédent, seule
ment la ligne de mercure communique à sa partie supérieure
avec du mercure concentré en un point et de masse q. On a

donc ici :

i f (63--«3) + qaa-

.S' i"" — rt2) + qa

ce qui donne:
III - c (b --o)+q

dl _
dl

la-ï-t L> rt3)- i(b>—a*)--1(1--d)(6- ,|
¦f?|rf(« -d)--a(l-a)]L 0 (9)

On ne peut pas sim alifier notablement cette formule.

¦>. Pendules à minimuin de mercure.

Ces formules permettent de discuter une question très
intéressante: celle de la forme à donner au pendule pour
que la quantité de mercure nécessaire à la compensation soit
minimum. Cette question n'est pas seulement intéressante au
point de vue théorique, mais elle a une certaine importance
industrielle, car le prix du mercure intervient pour une bonne
part dans le coût d'un pendule compensé.

Premier cas (fig. 3, p. 245). — Considérons d'abord le
premier cas du paragraphe précédent, qui est le plus simple.
Nous avons obtenu comme condition de compensation l'équation

(5):
cH- u-^ç2-n + id-d*)-,^odt D
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Supposons maintenant qu'on ait à construire un pendule
de ce type battant un temps donné, ce qui revient à dire que
I est constant; supposons en outre que ce pendule doive avoir
une puissance réglante donnée déterminée par son moment
d'inertie N, c'est-à-dire que N, et par conséquent D, doivent
aussi être constants. Le produit:

ta^ — HT-ld — d*)

sera également constant pour tous les pendules compensés
satisfaisant à ces conditions. Pour que la masse /h, du mercure
soit minimum, il faut donc que la parenthèse soit maximum
or cette parenthèse est fonction du deuxième degré des deux
quantités d et X, et peut s'écrire :

II en résulte que cette quantité diminue, et par conséquent que

m augmente, au fur et à mesure que d s'écarte de —, tandis

que la quantité considérée augmente, et que m diminue

lorsque X s'écarte de — •

Donc, pour que la quantité de mercure soit minimum, il

faut que la surface libre du mercure soit à la distance d —H 2
de la suspension ; plus la distance de la surface à la suspension
différera de cette valeur, plus la quantité de mercure sera
grande. Pour que la quantité de mercure nécessaire à la
compensation soit minimum, il faut encore qu'elle se trouve
concentrée à une distance aussi grande que possible du milieu
du pendule; plus le mercure sera rapproché de ce milieu,
moins son effet compensateur sera grand.

En résumé, pour que la quantité de mercure soit minimum
il faut que la surface libre soit le plus près possible du milieu
du pendule, mais le mercure lui-même le plus loin possible.

Cette règle est d'une application générale; il en est de
même de cette autre conséquence, assez inattendue, qu'on
peut tirer de ce qui précède: Le pouvoir compensateur est
le même pour deux vases de mercure exactement symétriques

par rapport au point de distance — milieu du pendule; bien
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entendu, cette symétrie doit concerner, non seulement la

forme des récipients, mais aussi la position de la surface
libre du mercure.

Deuxième cas (fig. 4, p. 245). — C'est celui de tous les
pendules à mercure actuels. La condition de compensation est

ici: (6bi9).
dl mh f, 26 l\— «a I b s 0
dl D V 3 2/

Ln procédant comme dans le cas prédédent on voit que, pou;
que m soit minimum, il faut que la quantité :

26 l\"»-T-i
soit maximum. 6 et h sont les deux variables. On voit
immédiatement que cette quantité croît en même temps que 6; une
des conditious du minimum de m est donc que la base soit
aussi éloignée que possible du point de suspension. En
pratique toutefois on ne recourra guère à ce moyen pour réduire
la quantité de mercure, car on obtiendrait ainsi un penduf'
plus long, donc plus encombrant, et nécessairement moins
compact, partant moins invariable que les pendules ordinaire^
De plus, comme nous le verrons au chapitre suivant,
l'augmentation de b aurait pour conséquence l'augmentation du
coefficient de stratification. Une telle modification présenterait
donc plus d'inconvénients que d'avantages.

Pour déterminer la meilleure valeur de h, dérivons par
rapport à cette variable et égalons à zéro. On obtient :

2 1 2
6 — -h - — -6 0

3 2 3
d'où

"=!H)
4

La deuxième dérivée a pour valeur ; il s'agit donc bien
d'un minimum de m. 3

Ainsi, lorsque la base est donnée, il faut, pour que la

quantité de mercure soit minimum, que la colonne s'élève

non pas jusqu'au point milieu du pendule (point — mais
seulement jusqu'aux 3/* de cette hauteur. \ 2/
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Ge résultat paraît contredire celui du cas précédent; il
n'en est rien toutefois; il y a simplement compromis entre
les deux conditions, ici contradictoires, que le niveau du
mercure doit être au milieu du pendule, tandis que le mercure

lui-même en doit être aussi éloigné que possible.
La formule (10) permet de constater facilement que le

pendule Riefler ne répond pas à cette condition du minimum.
D'après M. Riefler lui-même ', le mercure y atteint une hauteur
égale à environ les 2/3 de celle du tube; comme b - 126 cm.,
cela revient à dire que 6 84 cm. environ. Pour le minimum,

3 3
il faudrait qu'on ait A — (126 — 50) — -76 57 cm.

4 i
Il est intéressant de voir encore dans quelle proportion la

masse du mercure peut être réduite. Nous avons vu que
la quantité de mercure est inversement proportionnelle à

h lb j. Dans un pendule ordinaire on a approximativement

6 410, 6 18, ce qui donne pour ce produit 80i.
Pour le pendule Riefler, à l'aide des données ci-dessus, on
obtient déjà une valeur beaucoup plus forte, 1680. Si, sans
changer la base du mercure dans un tel pendule Riefler, on
satisfaisait à la condition du minimum, ce produit deviendrait

2166. Cela revient à dire que pour avoir un pendule
compensé de même puissance réglante qu'un pendule
ordinaire contenant 5000 gr. de mercure, il suffira d'employer,
avec le système de M. Riefler, près de 2600 gr., tandis que,
pour un pendule à minimum, il ne faudrait plus que 2000 gr.
de mercure.

Nous allons voir qu'on peut encore réduire beaucoup plus
cette quantité de mercure si on renonce à la forme
cylindrique du vase.

Troisième cas (fig. 5, p. 245). — On a comme condition de
compensation (7bi8) :

dl
— :

616. 2b /\
dt DL 3 M 3 2 '

La quantité qui reste constante est :

I h v/, 26 t il
A[?3 + (« + V)(ft—3—^)J

1 RlEFLEH. LOC. Cit.
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Pour qu'on puisse y mettre m en facteur, posons — 1,
m

rapport de la masse de mercure concentré au point inférieu '

à la masse totale du mercure.
L'expression considérée devient :

»4f+(i+,)(*-f-!)]
La quantité qui doit être maximum est donc:

,[,|-Ml+,(,-f4)]

*K"('-H)-i]
ou bien

Les variables sont ici *., 6 et 6. On voit immédiatement
que la quantité considérée sera d'autant plus grande que ¦*,

est plus grand; pour que la quantité de mercure soit
minimum, il faut donc que la quantité de mercure concentrée an
point inférieur soit la plus grande partie possible de la masse
totale du mercure.

On voit de même que cette quantité croit en même temp^
que b. H faut donc, ici aussi, que la base soit le plus bas
possible.

La quantité considérée ne dépend pas de façon aussi simple
de h; il nous faut donc égaler la dérivée à zéro pour obtenir la

condition du minimum. La quantité considérée peut s'écrire

d'où, en dérivant :

(l + ,)(6-i-)-(2+ ,)l-| 0

d'où :

h l.L±l(b^L\ (11)
2 2 4- t, \ 2 /

La quantité —=t) est, par définition, comprise entre 0 et 1.

m
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Lorsque 1=0, on a affaire au deuxième cas, et la formule
donne bien :

/, 1(6-1i '
2

tandis que lorsque i l, on a all'aire au premier cas, et on
retrouve en effet :

6 6-1
2

On voit donc que dans notre troisième cas 6 sera toujours
comprise entre ces deux valeurs.

Pour évaluer la proportion dans laquelle la quantité de

mercure peut être diminuée par une telle disposition,
considérons donc le premier cas, qui est simplement un cas limite.
Le produit inversement proportionnel à la masse du mercure
a ici pour valeur, en prenant la même distance de base que

dans le pendule Riefler, 76(2x76 —3-^) 762 5776. Un

pendule de ce type, ayant même puissance réglante que les
pendules précédemment calculés, ne devrait donc contenir
que 750 gr.

Les pendules à minimum de mercure que nous avons
calculés sont supposés avoir même distance de base que le
pendule Riefler; on peut aussi en calculer de même type,
mais ayant même distance de base que le pendule ordinaire,
pour que la comparaison avec celui-ci soit plus équitable.

On a alors les valeurs suivantes pour les quantités de
mercure nécessaires à la compensation, dans des pendules de
même puissance réglante :

Pendules à vase cylindrique: I ordinaire
(n 0) Il de Riefller

III à minimum
Pendule à minimum: (limite irréalisable)

(i l)
Les chiffres correspondant à notre troisième cas seraient

donc intermédiaires entre ceux des deux dernières ligne>.
On voit qu'on pourrait construire des pendules qui, pas plus
longs que le pendule de Riefler, ne contiendraient plus que
V4 ou même '/5 du mercure nécessaire à la compensation
ordinaire.

Nous pouvons considérer cette question comme complètement

résolue. Il est inutile d'examiner à part les autres cas,
pour les raisons de symétrie signalées plus haut.

li= 110" ' 'i 1->G '•
.1000 g r. —.

— 2600 gr.
3200 2000
1200 750
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CHAPITRE 111

Influence <le la stratification
«le la température sur la marche du pendule.

1. Késumé des travaux antérieurs.

Dans un pendule à mercure usuel, le mercure et la tige
sont à des hauteurs moyennes différentes; si donc il y a uni
différence de température entre le haut et le bas du pendule
et si cette différence n'est pas constante, la compensation ne
fonctionnera plus régulièrement et la marche de la pendule
en sera affectée. Il semble que, dès l'origine, on a vu dan:
ce fait le principal inconvénient du pendule à mercure; c'est
sans doute ce qui lui a fait quelquefois préférer le pendule ;

gril, pourtant plus compliqué et plus difficile à régler.
Toutefois c'est seulement en ces dernières années qu'on

s'est efforcé d'étudier cette influence de façon un peu précise
et d'en déterminer la grandeur, soit à partir des marche
observées, soit théoriquement. Ces recherches sont encon
très peu nombreuses; elles sont d'ailleurs insuffisammen
connues; je vais donc en résumer ici les résultats.

Je note tout d'abord qu'il est facile d'évaluer approximativement

l'importance de cet effet de la stratification de
température sur la marche d'un pendule à mercure ordinaire
La différence des hauteurs moyennes de la tige et du mercuri
est d'environ 7s m- Si donc il se produit une augmentation
du gradient (différence de température par mètre de hauteur1
de 4°, le mercure se trouvera à une température trop bassf
de 0°,5. L'effet sur la marche sera le même que si, pour un
augmentation de température de 0°,5, la compensation n'avai
pas du tout fonctionné, c'est-à-dire si le pendule n'avait pa:
été compensé. Nous avons vu1 que le coefficient thermique
d'un pendule en acier, non compensé, est de 0,50 environ
Le coefficient de stratification d'un pendule à mercure usuel.
à tige d'acier, est donc à peu près la moitié de cette quantité,
soit 0S,25.

Pour tirer parti de cette donnée, il faut encore savoir
dans quelles limites varie le gradient. Dans la tour de l'équa-

1 Voir p. 283.
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torial de Berlin1, le gradient pour 0m,72 de hauteur a varié
entre + 0°,25 et —0°,15, donc en tout de 0°,4, ce qui fait 0°,50
de gradient (pour 1 m.). L'effet de cette variation du gradient
sur la marche doit donc être d'environ 0s,25x0,56 0s,14:
assez peu de chose, en somme. Ajoutons que la variation
annuelle de la température elle-même était dans ce cas de
44 à 15°.

A l'observatoire de Neuchâtel, dans la tour de l'équatorial
également, on a observé que le gradient, pour 60 cm. dt»

hauteur environ, varie de 0°,6. Donc le gradient par mètre
y varie d'environ 4°. L'effet de cette variation sur la marche
doit être d'à peu près 0*,25, donc déjà plus sensible que dans
le cas précédent. Ici, la variation totale de température est
d'environ 20».

Dès qu'un local est chauffé, la variation du gradient y est
beaucoup plus grande. Ainsi, dans la salle des pendules de
l'Institut géodêsique de Potsdam2, salle située en sous-sol et
maintenue à une température constante (la température n'y
varie pas au cours de l'année de plus de 3°) le gradient varie
parfois de 0°,5 d'un jour à l'autre et de 2°,3 pendant l'année.
Ces variations de gradient correspondent respectivement à
des variations de marche de 0S,12 et 0S,57.

La variation du gradient est encore plus grande loisque le
chauffage est irrégulier, ainsi que l'aération du local; elle
peut alors atteindre et même dépasser 3°, et l'effet d'une
pareille variation sur la marche est de presque 1 s. Il faut
d'ailleurs ajouter que le gradient se maintient rarement
pendant un jour entier à l'une de ces valeurs extrêmes, de sorte
qu'en général les marches diurnes ne sont pas influencées
d'autant que cela. Il y a là néanmoins une cause importante
d'irrégularités dans la marche d'un pendule à mercure.

La première tentative de détermination d'un coefficient
de stratification d'après les observations est sans doute due à

M. Max Zwink3. Dans son étude des marches de la pendule
Tiède 400 de l'observatoire de Berlin, il obtient pour l'effet
d'un accroissement du gradient de 1° sur 72 cm. de hauteur

la valeur -f-Is,592 + 0,115. Cela donne pour un gradient
de 4° (par mètre) la valeur extraordinairement élevée de
-f-4s, 146+ 0,083 d'effet sur la marche. La faiblesse de l'erreur
moyenne par rapport au coefficient lui-même semble mettre

1 Max Zwink. Die Pendeluhren in/ lufdicht verschlossenen Räume,
Halle, 1888.

2 B. Wanach. Loc. cit.
3 Loc. cit.
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la réalité de celui-ci absolument hors de doute. Malheureusement

il s'agit ici, non d'un pendule à mercure, mais d'«,'
pendule à gril. Pour un tel pendule, il paraît dès l'abord qu'un
effet de la stratification de la température n'est pas admissible,
puisque les deux métaux compensateur et compensé se trouvent

à la même hauteur. C'est d'ailleurs ce que confirment
les calculs rigoureux de M. B. Wanach. Il en résulte que 1"

gros coefficient obtenu par M. Zwink n'est certainement pa
réel. Ce résultat factice provient sans doute du fait suivant:
Le gradient suit une période annuelle qui, pour l'horloge
de Tiède, coïncide à peu près exactement avec la période
annuelle de la température elle-même; on le voit facilement.
en consultant les résultats d'observation publiés par M. Zwink
les maxima et minima de ces deux quantités tombent aux
mêmes époques. Il n'est dès lors guère possible de séparer
ces deux effets. Les deux coefficients obtenus, l'un pour la

température, l'autre pour le gradient, sont justes comme effet
total, mais leur rapport ne peut pas être déterminé. C'est un
exemple frappant de l'inconvénient qu'il y a à introduire dan>
les formules de marches des coefficients qui ne sont pas
justifiés par d'autres considérations que le désir d'amoindrir les
écarts résiduels : on aboutit à des résultats absolument factices.
et il faut dans ce cas ne pas trop se fier aux faibles erreur-
moyennes.

Un peu plus tard, le constructeur Riefler1 faisait connaître
la disposition qu'il avait adoptée pour ses pendules à mercure.
Le mercure y est contenu dans la tige du pendule et est ainsi
réparti sur une plus grande hauteur : le tube est rempli de

mercure jusqu'aux deux tiers. Un des principaux avantages
de cette nouvelle disposition devait être précisément, d'après
le constructeur lui-même, d'éviter presque complètement les
inconvénients résulant de l'inégalité de la température à

diverses hauteurs. 11 semble en effet évident à première vue
que cet effet doit être considérablement atténué, puisque la
différence des hauteurs moyennes du mercure et de la tige est
beaucoup moindre que dans les pendules à mercure usuels.
Un bon nombre d'horloges de précision furent munies de
pendules à mercure de ce nouveau modèle.

C'est précisément par l'étude des marches de l'une d'entrt
elles (Riefler 20) que M. B. Wanach fut amené à s'occuper de
cette question et à lui consacrer un très important mémoire2.

1 S. Riefler. « Queksilber Kompensationspendel neuer Konstruktion. «

Zeitschr. f. Instr., Bd. 13, 1893, p. 88.
3 B. Wanach. «Ueber den Einfluss der Temperaturschichtung auf verschif

dene Uhrenpendel. » A. N., Bd. 166, Nr. 3967 3968, 1901 Nous avons déjà cit.
maintes fois cet article au cours du présent travail.
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Cette pendule, alors même qu'elle était installée dans la cave
des pendules de l'Institut géodêsique de Potsdam (local à

température à peu près constante), présentait dans sa marche
une période annuelle bien marquée. Or, comme nous l'avons
dit déjà, si la température est sensiblement constante dans ce
local, le gradient par contre y varie beaucoup avec la saison.
M. Wanach parvint à établir que c'est bien à cette cause
qu'il faut attribuer les variations de marche de cette pendule
Riefler, et il déduisit des observations un coefficient de
stratification égal à +0S,213 +0,014. Pour un pendule à mercure
ordinaire (Dencker 27) se trouvant dans le même local, les
observations donnent un coefficient de stratification de

+ 0s,44 + 0,04. Les calculs théoriques immédiatement entrepris

par Al. Wanach donnent de leur côté pour ces deux
pendules les coefficients de stratification + 0S,260 et +0241.
Le fait que les valeurs observées sont plus faibles que les
valeurs théoriques n'a rien d'étonnant, car la différence de
température en hauteur est vraisemblablement moins grande
dans le pendule bon conducteur de la chaleur que dans l'air
ambiant où on la mesure.

Ce travail de M. Wanach contient donc les premières
déterminations authentiques du coefficient de stratification,
tant à partir des marches observées que par la théorie. Un
autre résultat important de ce travail, c'est que M. Riefler
s'était trompé dans ses prévisions en construisant son pendule
à mercure, puisque l'observation et la théorie s'accordent à
montrer que cette nouvelle forme de pendule, loin d'être insensible

aux variations du gradient, y est au contraire encore un
peu plus sensible que le pendule à mercure ordinaire.

Il est juste d'ajouter que, deux ans plus tôt, M. E.-F. van
de Sande Backhuyzen1, en discutant les marches de l'excellente

pendule Hohvii 17 de l'observatoire de Leyde, chercha
à expliquer par les variations du gradient les irrégularités
de marche qui ne provenaient ni des variations de la température,

ni des variations de pression. Toutefois le résultat de
ces recherches fut négatif, cette supposition ne diminuant pas
les irrégularités résiduelles. Il faut dire que les conditions
étaient ici bien moins favorables qu'à Potsdam, où le gradient
variait beaucoup plus. L'insuccès de ces recherches ne montre
donc pas que l'effet de stratification n'existe pas dans ce cas.
mais seulement que, dans les conditions ordinaires, il est fort
difficile de le déduire des observations. Ce qui le prouve bien,
c'est qu'à Potsdam même, depuis que le chauffage de la cave

1 E.-F. van de Sande Backhuyzen. «Over de perindiciteit » et « Voor-
looping onderzock » Versi. Akad. Amst., vol. 11, 1902. p. 19, 187 et 357.

17 mil.?.. SOC. SC. NAT. T. XXXV1I
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aux pendules a été abandonné (pour éviter ces trop grands
gradients), il est devenu très difficile de déterminer un peu
exactement les coefficients de stratification1. Cette difficult''
est due à deux causes :

4° Les variations du gradient qu'on observe dans le cabinet
d'une horloge à l'aide de deux thermomètres ne sont pas
nécessairement celles qui se produisent dans le pendule lui-
même. Dans la tige d'un pendule, à cause de la meilleur'1
conductibilité, les différences de température en hauteur sont
probablement atténuées: elles sont plus faibles que dans l'air
ambiant. D'autre part, des effets de chaleur rayonnante sui'
le pendule ou sur les thermomètres viennent compliquer la
tâche de l'observateur. Il est donc extrêmement difficile de
connaître les variations réelles du gradient.

2° D'autre part, il est souvent difficile de séparer l'effet
des variations du gradient de celui des variations de la
température elle-même. Tandis que les variations barométriques
se produisent suivant des périodes toutes différentes et beaucoup

plus courtes, ce qui permet de déduire très facilement
des marches observées, même pendant un court laps de

temps, d'excellentes valeurs du coefficient barométrique d'une
horloge, les variations de température et les variations du
gradient suivent toutes deux une période annuelle, et il est

presque impossible de séparer leurs deux effets dans lis
marches observées. On peut affirmer que de ce fait la valeur
du coefficient thermique d'un pendule à mercure, telle qu'on
la déduit des observations, est bien souvent inexacte. Bien
souvent aussi, des modifications apparentes de cette quantité
sont simplement attribuables à l'effet perturbateur des variations

du gradient.
On voit par là que la sensibilité du pendule à mercure

vis-à-vis de la stratification de température est un très grand
inconvénient: non seulement les variations du gradient entraînent

des variations de marche, mais ces variations de gradient
se dérobent aux observations; on ne peut donc guère en tenir
compte avec succès par le calcul. De plus, cet effet de
stratification empêche d'obtenir une valeur exacte du coefficient
thermique de l'horloge.

Il est bien naturel dès lors de se demander s'il n'y aurait
pas possibilité de construire un pendule à mercure qui serait,
comme le pendule à gril, complètement insensible à ces variations

du gradient. La chose paraît au premier abord possible:
il semble qu'il suffit d'élever suffisamment le vase à mercure

i Jahresbericht des Direktors des K. Geod. Instituts, 1904-1905, 1905-1906,
1906-1907, 1907-1908, Veröff. Nr. 22, 26, 33, 38.
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pour obtenir ce résultat. M. Wanach a abordé aussi cette
question et il est arrivé à la conclusion1 que «le plus court
pendule à secondes (acier et mercure) compensé simultanément

pour la température et pour la stratification de température

aurait plus de 2m,20 de longueur et ne serait donc pas
utilisable en pratique». Cette longueur minimum concerne
d'ailleurs un cas théorique: la longueur d'un pendule doublement

compensé serait en réalité encore plus grande.
Tels sont, en résumé, les principaux résultats des travaux

auxquels le présent chapitre fait suite. Je vais tout d'abord
y établir des formules aussi simples et commodes que possible
pour calculer le coefficient de stratification d'un pendule à

mercure de forme quelconque. Je montrerai ensuite que le
dernier résultat de M. Wanach est bien exact pour le cas oii
il a été établi, c'est-à-dire si l'on suppose le vase à mercure
de forme cylindrique, et la surface libre du mercure située
au sommet de la colonne, mais qu'il ne l'est plus lorsqu'on
se place dans d'autres conditions; je montrerai en particuliei
qu'il est parfaitement possible de construire des pendules à

mercure compensés à la fois pour les variations de température
et pour celles du gradient2.

• B. Wanach. A. N., 3968, p. 116.
2 II semble vraiment que tous ceux qui se sont occupés de cette question

d'influence de la stratification de la température sur la marche du pendule
devaient se laisser égarer par le simple bon sens. Ainsi, M. W.-A. Nippold,
dans son article sur «Ein neues für Temperatur und Luftdruckschwankungen
kompensirtes Pendel », Zeitschr. f. Instr., Bd. 9, p. 197, après avoir proposé
une forme très ingénieuse de pendule, consistant en deux bras de dilatation
inégale, l'un supérieur à la supension et de faible dilatation, l'autre inférieur
à la suspension et de dilatation plus grande, ajoute que «puisque les deux
métaux différents employés à la compensation ne sont pas, comme dans le
pendule à gril, à coté l'un de l'autre, mais l'un au-dessus de l'autre, les variations

de la température en hauteur auront ici une plus grande influence
perturbatrice». Pour atténuer cet inconvénient de son nouveau pendule, M. Nippold
propose même de le placer dans un cabinet à fermeture non hermétique, et qui
serait ventilé.

Le fait qu'un tel pendule doit être très sensible à la stratification de température

parait évident. Et cependant le calcul exact montre qu'il n'en est rien,
et qu'on peut même facilement déterminer les dimensions du pendule de façon
à ce que cet effet soit entièrement compensé.

La condition de compensation thermique d'un tel pendule (en conservant
les notations de M. Nippold) peut s'écrire :

21 (v.p*a -t- 1 );= L (y.pa — 1)

D'autre part, on trouve aisément comme condition de compensation pour la
stratification :

il Up'a ¦+- 1) — L (y.p2a — 1)

On voit qu'il suffit de choisir p (rapport des longueurs des deux bras) égal à 1

pour que ces conditions se confondent. Si, dans ce cas, le pendule est compense
pour les variations de température, il le sera en même temps pour les variations
du gradient. Cet exemple, venant s'ajouter aux précédents, montre qu'en cette
affaire il faut raisonner avec beaucoup de prudence.
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2. Calcul du coefficient de stratification.

Voyons d'abord comment on peut calculer le coefficient de
stratification d'un pendule à mercure absolument quelconque.

Soit t la différence de température par unité de hauteur,
comptée positivement quand la température augmente de bas
en haut. Soit un pendule à mercure quelconque, pour lequel :

j
N J_+j
D S + .v

Par dérivation, on obtient l'équation suivante, analogue à

la formule (4bi8) du chapitre précédent :

ûi—A ["—+—— f—+—M
dl^Dlih ih \dx d*)\ (1)

Le moment d'inertie et le moment statique de la partie
solide du pendule sont de la forme :

,] jZ1xx- S=S[xa;

Nous supposerons (car on n'a pas besoin dans cette question
d'une approximation très grande) que toute la matière du

pendule est concentrée dans un même plan passant par l'axe
de suspension, et vertical quand le pendule est au repo<.
Grâce à cette simplification, les quantités x figurant dans les
deux formules ci-dessus sont bien identiques entre elles.

Or on a:
dx x-
lh~~~~2a

OC

car la température moyenne de la longueur x sera dt si

la température est supposée nulle à la suspension. On aura
par suite :

dì ^ r, / X- \2rr.2xl — — t*| — Sixa;''a — Iva
dx \ 2

si l'on introduit la quantité auxiliaire :
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Et de même :

dS_2 /_£:a\ v v- c*a__ l

dx *{ 2 / " 2'' 2

En introduisant ces valeurs dans (1) on obtient:

dl 1

ih' D
,l.t di ds~]

— K a T J o T / —T

2 dx dxj
(2)

Reste à remplacer dans cette formule — et —- par leurs
(/ x d-.

valeurs. Nous nous servirons ici d'un raisonnement analogue
à celui qui nous a permis d'établir la formule (3) du chapitre
précédent.

Les quantités i et s sont de la forme :

(r=ï|i x- s ¦— Ha.!'

On peut distinguer deux parties dans la variation de ces
quantités. La première partie s'obtient en supposant que,
lorsque la stratification de température dx se produit, le mercure

continue à arriver au même niveau, qu'on s'imagine
repéré sur la paroi du vase. Mais en réalité le mercure est,
par suite d'une variation positive du gradient, à une température

inférieure à celle de la suspension ; il s'est donc
contracté (beaucoup plus que le récipient qui le contient) et
n'atteint plus à son niveau primitif; il en résulte une
diminution i-, de i et une diminution a2 de s, qui constituent les
secondes parties des variations de ces deux quantités.

Pour le calcul des premières parties on a simplement :

dx x \ x'2¦(-+¦)d- \ 2 2

De plus, puisque |j.= eò (volume X densité d'un élément de
masse de mercure) :

du, do jlv— — r U —
dx ,/x d-.
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mais on a :

dS „,
ch

— ?'(—XÓa)- — ÓVXa
d-

donc on trouve :

df* „, «J

dx

Ces valeurs préliminaires étant connues, on peut calculer

facilement — et —. On a :

dx lidi

/ -, dx ,dix\y-H^'y+*'¦£)-'<

Si l'on pose pour abréger, et par analogie :

notre expression devient :

di
r - K{Z a) —- '.j

dx

On trouve de même:

ds i dx di+as t ax a im— s r1 h*— - "->

dx V dx dx /
2 |Ji a j + X 'rX £ — s»

a
eS^' '

2

e ^ (-ï)
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Reste encore à remplacer t, et u2 par leurs valeurs. Nous

venons de voir que— [*.#£. Si le mercure atteignait encore
dx

son niveau primitif, sa masse aurait donc dû augmenter de

s(*#£=:se; en réalité, la masse est restée constante; ss est
donc la quantité de mercure qui paraît manquer (par rapport
au niveau primitif). »2 et h sont par définition la diminution
du moment statique et la diminution du moment d'inertie
dues à cette diminution toute fictive de la masse du mercure.
On a donc :

*.r=sdi '-, *(«, +d+
d étant la distance du niveau du mercure à la suspension,
t, étant le moment d'inertie de la surface du mercure
(supposée de masse 1) par rapport à un axe contenu dans la
surface et parallèle à l'axe de suspension. Cette quantité
s'annule si on suppose, comme nous l'avons fait dans tout ce
chapitre, que la masse du pendule est tout entière concentrée
dans un plan vertical passant par l'axe de suspension. Alor>-
on a plus simplement:

D'où finalement les valeurs cherchées:

di
— =A(J — a) — sd*=-
dx

dx \ 2 '

Si nous introduisons ces valeurs dans l'équation tie
stratification (2), celle-ci devient:

— -\—Ka-r-S * + ku —a)-Sit2*.-lit z — -\4-lsdt
dx D L 2 V 2 '

qu'on peut écrire:

- -a + i[-(;a+;/,-/,+,sw/(/-d):e
(It '2 TU[ ^

en posant :

K + A=G

(3)
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Telle est la formule tout à fait générale pour le calcul du
coefficient de stratification d'un pendule à mercure. Il y a

quelquefois intérêt à laisser G séparé en K et k. Cette formule
s'écrit alors :

—==—*—- L- A-<t - «)+¦; u—sdd—d) ;
si

dx 2 d|_ ' ' J
(4)

3. Quelques cas spéciaux.

De même que nous avons tiré de la condition générale de

compensation quelques formules spéciales concernant certain-
types bien déterminés de pendules à mercure, nous pourron-
spécialiser aussi cette formule (4). Il y aura lieu d'employer,
pour une droite matérielle quelconque située sur l'axe du

pendule, à côté des valeurs déjà utilisées plus haut :

i (63 _<,:.)

m — c(b — a')

la nouvelle formule :

¦;li= j cx3dx — — X1 4-(ô»-«*)
4

Nous allons reprendre successivement les cinq cas
particuliers étudiés déjà au chapitre précédent.

Premier cas (fig. 3, p. 245). — On a simplement /c—wX:.
et la formule (4) devient :

dl /2 I I 1
— -a —- Ka — ,»À»(e — a) \-] l ml* — dmUl — d) *
dx 2 D L \ > ¦ J

ou bien :

— —a | Ka — ml) Xs(s— a) — l/X — d(l — d)le ; \ (T))
dx 2 D \ '
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Deuxième cas (fig. 4, p. 245). — On a: d a, et, pour k, la

valeur donnée plus haut. La formule (4) donne :

dl l* 4 /' i6*—a\. I.
— — a Ka —c' (s —a — I/
t/x 2 ü f 4

63
¦ml — a)^•0

(ti)

On peut en déduire une formule analogue à la formule
(6bi8) du chapitre précédent, par quelques transformations:

l^q-i/Ka+^+^+^+ ^
dx 2 D \ ' 4

&-fa 63-f a6*+ «*6 + a3'
— a(J — «)-

6- I t/6-4 ,/¦-'

¦)
mats :

63_f_flft4_j_(ISfc_J_<|3

— <

=-r(63+63 — 6*6 + 63 — 26*6 + 66* (-63—36*6 4 366* —6:l)
4 3 6:;

-6:i — — 6*6 + 66*
2 i

de même :

.6* + «6 1 tv* 6 + »i ,62 + 6* —66 | bJ- — 2bliT 6*
l ' (t(/ — (t)—!——l—' -3 2 3

6*—66 | A*—266 + 6* P—26*6 +66*+63—36*6 | 366*—/r'

66 6*

donc

W^—I^ + ft3 —— 6*6 _f- 266*——
\ 2 6 / '

2 2

_A_'

3
:
^ /é _ A\ _t_ /r<_ il bä 6 -{ 2 6 6*--

[HVih^+^-Mii^H»-!)'
et en introduisant ces valeurs dans (6) :

— a 1 Ks+»l '

ri;
h

Ü«—I/Ka+ mW63-—6*6 + 6 6* —— f:
2 D V I

'
2 4 '

+ 6 [ïKH'-i)1-0 <t)bis)
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Cette formule est déjà passablement compliquée; les formules
analogues pour les cas suivants le seraient encore plus: nous
renoncerons donc désormais à cette transformation.

Pour tous les pendules à mercure actuels, la formule (61,
ainsi que (6bis), permet de calculer le coefficient de stratification.

Au premier abord, la formule (6) paraît plus avantageuse.

Toutefois, pour les pendules à mercure ordinaires,
il est bon de noter qu'il faut conduire le calcul avec plus de
chiffres qu'on n'en désire d'exacts dans le résultat, car, au
cours de ce calcul, on doit faire des différences de termes à

peu près égaux.
La formule (6bis) présente ce même inconvénient, mais a

un moindre degré. Pour les pendules à mercure ordinaires,
cette dernière formule est donc plus avantageuse.

La quantité K qui figure dans ces deux formules dépend
naturellement de la forme de la partie solide du pendule,
forme qui varie beaucoup d'un pendule à l'autre. Il faut done
calculer à nouveau cette quantité pour chaque type de
pendule. On pourra simplifier ce calcul en remplaçant la partie
solide du pendule par une forme plus simple mais équivalente,

composée par exemple exclusivement de droites et de

points matériels.
A titre de vérification, j'ai fait l'essai de ces deux formule-

pour les deux pendules à mercure Riefler 20 et Denker 27
tels qu'ils ont été légèrement simplifiés et schématisés, puis
calculés exactement par M. B. Wanach1. Pour le calcul de K,
j'ai supposé que la masse de la partie solide était, comm'
celle du mercure, concentrée dans la ligne centrale du
pendule. J'ai fait ce calcul, d'abord très approximativement, avec
une table de multiplication de Creile (trois chiffres
significatifs), puis un peu plus soigneusement, à 5 décimales. Voici
les résultats obtenus:

Pendale Riefler Pendule ordinai re
(n» 20) (Denker 27)

dl_ dj._
Calcul avec trois chiffres: d-.~ dj~

Formule (6) 0,0587 0,0682
» (6bis) 0,0589 0,0564

Calcul avec cinq chiffres :

Formule (6) 0,0599G 0,05680
» (6bis) 0,05995 0,05614

Valeur exacte, calculée par M. Wanach 0,05986 0,05556

Loc. cit. Voir aussi les fip;. 1 et 2 et les données numériques de la p. ¦'•/ti
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On voit que, pour le pendule Riefler, l'accorti est bon.
Par contre, la valeur fournie pour le pendule ordinaire par
la formule (6), calculée avec trois chiffres significatifs seulement,

est absolument inacceptable : nous en avons déjà indiqué
la cause. Le calcul par la même formule, avec cinq décimales,
donne toute l'exactitude désirable, car la connaissance du
coefficient de stratification jusqu'à V20 ou V30 ^e sa valeur est
toujours suffisante. Les chiffres ci-dessus confirment done
que nous étions bien autorisés à négliger les dimensions
horizontales des pendules en supposant toute la masse concentrée
dans le plan de symétrie : en effet, il n'y a pas de différences
systématiques de quelque importance entre les résultats fournis
par les formules (6) et (6bis) et ceux calculés par M. Wanach
sans cette simplification.

Des valeurs de — ainsi obtenues, on peut immédiatement
dx

déduire les coefficients de stratification proprement dits, à

l'aide de la formule (14) qu'on suppose divisée par dx. Les
valeurs de M. Wanach donnent ainsi les nombres que nous

avons déjà cités plus haut — -+ O%260 pour le pendule
dm dx

Riefler, et — + 0s,241 pour le pendule à mercure ordi-
dx

naire (effet d'un gradient de 1° par mètre sur la marche).
L'évaluation tout approximative du début tie ce chapitre se
trouve ainsi confirmée, à savoir que, pour tous les pendules
à mercure actuels battant la seconde, le coefficient de
stratification est d'environ +0S,25.

Troisième cas (fig. 5, p. 245). — On a ici :

6

i
et (4) devient :

dl r- 1 / „— a K a —
dx 2 D \

-c\ — (64— t^M: — a)-
1 4

ri(&s_«»»)

— — {l — «)(6? — fl2) M — qh) b3(=-—a) — [lb — a{l — u)\i'\
< 1
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Quatrième cas (fig. 6, p. 245). — k, i, s ont ici mêmes valeurs
que dans le deuxième cas ; la seule différence est que d reste
une grandeur indépendante. (4) devient :

- -a-i(Ka-cji(6*-rt*)(e-a)
dx 2 D \ l 4v

-[{(63-«3)-|(/-d)(62-t(*)jsj

Cinquième cas (fig. 7, p. 245). — Ici :

(8)

k
C

-(6'_ a*)+ 7 a3,

et on a

dl_
dx_

/*
— a —
2

1

D
/Ka-

/4V -«*)(«- alri (63-a3)

-Ui-
2

-d)(6* -0?)li J — 7 « ; a i(E —a) — lo-d(J —d)f ;

(9)

4. Iiitluciicc possible de la stratification
sur le coefficient thermique.

Nous avons dit plus haut que les variations de stratification
observées à Rerlin par M. Zwink1 présentent une période
annuelle qui concorde presque exactement avec celle des

variations de la température elle-même. Si ce phénomène
était général, il entraînerait, pour tous les pendules à mercuie
actuels qui ont, à peu de chose près, le même coefficient de

stratification très élevé, un défaut de compensation. Il y aurait
lieu de tenir compte de ce fait dans le calcul de cette
compensation thermique : on pourrait en effet s'arranger pour que
celle-ci compense du même coup la partie de l'effet de
stratification qui varie proportionnellement à la température.

Voyons d'abord, d'après les observations de M. Zwink,
quelle est la grandeur des quantités dont il s'agit. En nie
servant des températures extrêmes observées chaque année
et du gradient observé en même temps, j'obtiens que, pour
une variation moyenne de 44<>,5, ce gradient varie de 0°,249,

1 Loc. cit.
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sur une hauteur de 0m,72. On en déduit qu'une augmentation
de température de 1° entraîne un gradient de 0°,024 par mètre
de hauteur. Or nous avons vu que le coefficient de stratification
des pendules à mercure actuels est d'environ tfi de seconde,
pour un gradient de 4° par mètre. Donc notre augmentation
de température de 1° produira ainsi indirectement un change-

4
ment de marche de — X 0,024 0\000. c'est-à-dire altérera

4
d'autant le coefficient thermique. Cette quantité est à peine
supérieure à la limite des quantités que nous étions convenu
de négliger.

Pour savoir si cette coïncidence des périodes des deux
phénomènes est générale, j'ai pu encore utiliser les observations

de température faites à la pendule Hipp installée dans
la tour de l'équatorial à l'Observatoire de Neuchâtel. La
différence des températures extrêmes a été ici en moyenne de
20°,0 et la variation moyenne correspondante du gradient :

0°,187 pour 0m,60 de hauteur; cela donne, pour une variation
de température de 1°, une variation du gradient de 0°,015
par mètre, donc notablement plus faible que dans le cas de
M. Zwink. L'effet systématique de la stratification sur la
compensation est ici négligeable. Il n'y a donc pas lieu de tenir
compte de cette influence d'une façon générale.

Ceci n'infirme d'ailleurs en rien ce que nous avons dit
plus haut de l'intluence de la stratification sur la marche, car
il ne s'agit ici que de la partie de cet effet qui a même période
que la température, et pas de l'effet entier. 11 est curieux de
noter en particulier que (comme nous l'avons déjà tlit) la
variation totale du gradient est plus grande dans le second
des cas ci-dessus que dans le premier, tandis que la partie
de cette variation du gradient qui coincide avec celle de la
température est plus faible dans le second que dans le premier.

5. Compensation de l'effet de stratification.

Les formules établies jusqu'ici nous permettent d'aborder
maintenant l'étude d'un problème particulièrement intéressant
et important : est-il possible de construire un pendule à mercure
compensé simultanément pour les variations de la température
et pour les variations de stratification de la température. Si
une semblable construction est possible, il faut évidemment
s'empresser de l'adopter, car elle supprimerait le principal.
on peut presque dire le seul inconvénient de la compensation
à mercure.
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On pourrait croire au premier abord que rien ne s'oppose
à ce perfectionnement: il suffit, semble-t-il, de placer le mercure

assez haut pour que l'effet de stratification disparaisse.
En réalité, la question est loin d'être aussi simple; c'est que.
au fur et à mesure qu'on élève le mercure, son pouvoir
compensateur diminue, et on est obligé d'en augmenter la masse.
D'ailleurs, on ne peut pas élever le mercure indéfiniment,
puisque, comme nous l'avons vu déjà, tout le mercure situe

au-dessus du milieu du pendule (point à la distance — de la

suspension) est non seulement inutile, mais nuisible à la
compensation. D'autre part, le fait de transporter ainsi le

mercure vers le milieu du pendule entraîne une autre
conséquence: la partie solide doit alors être en grande partie
concentrée en un point très bas, pour que le pendule entier
continue à battre la seconde; on aboutit donc, lorsqu'on veut
construire de tels pendules doublement compensés, à des
formes tellement allongées qu'on ne peut pas songer à les
réaliser dans la pratique.

La question qui se pose est donc celle-ci : quelle sera la

longueur minimum d'un tel pendule doublement compensé.'
Nous étudierons tout d'abord le cas d'un vase cylindrique:
c'est le deuxième des cas traités au § 4 du chapitre II et au
§ 3 du présent chapitre. Les résultats qui y ont été établis
sont ici immédiatement utilisables.

La condition de compensation pour la température est

(formule (6), chap. II):

/« ^rì(63-«3)-|(6*-a*)+ a(/-a)(6-«)ls

et celle de la compensation de la stratification (formule (6) du

présent chapitre) :

/* 1 / ib* — a* f.63-«3 ^2-«2! /
— a — Ka— c ' (e— a) — l a (l — a)
2 D\ 4

V
L 3 2 M

Nous ne diminuerons en rien la généralité de notre démonstration

si nous supposons que notre pendule a une longuem
réduite, /, donnée, ainsi qu'un moment d'inertie, N, donné;
car, pour passer d'un tel pendule à un pendule de longueur
quelconque, il suffira d'en multiplier toutes les dimensions
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par un rapport déterminé; si l'un de ces pendules est
doublement compensé, l'autre le sera aussi, et d'autre part, pour
passer d'un tel pendule à un pendule d'un autre moment
d'inertie, il suffira de multiplier les différentes masses par
un facteur constant, la double compensation n'étant pas
affectée par une telle transformation, tant qu'on néglige.
comme il est convenu, les dimensions transversales du
pendule. Nous pouvons donc poser, pour simplifier les calculs.

l i et N —1. Alors, d'après la formule / —, on a aussi
D

D l, et nous devons ajouter aux deux équations ci-dessus
les deux nouvelles équations :

D S+£(6*-a*)=l
N .1 + - (63 — a3) J

^3
Pour poursuivre notre démonstration, il faut faire ici une

supposition quant à la forme de la partie solide <lu pendule:
nous supposerons tout d'abord, à l'exemple de M. Wanach.
que toute la masse solide est concentrée en un point. Soit Q
cette masse, F sa distance à la suspension. On a alors pour
S, J et K les valeurs les plus simples possibles:

S QF J=QF* QF3

Il nous reste à déterminer la valeur minimum de F pour
un pendule doublement compensé de ce type. D'après tout
ce que nous avons dit plus haut, la solution la plus favorable
sera celle où le mercure a son niveau exactement au milieu
du pendule, c'est-à-dire celle

• A l 1

ci-dessus, « — —
2 2

d'équations suivant :

où on aura, dans les formules

Nous aboutissons ainsi au système

QF + - 6* — -1 1 O V -|63
3 \

~^QF3a
8 ' 8/4 s)<—»- ïï(6'- 6* A
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Nous avons ainsi quatre équations pour quatre inconnues
On peut sans difficulté en éliminer trois; les calculs sont un
peu longs: qu'il me suffise donc d'indiquer ici la marche
suivie.

La troisième équation permet d'exprimer c en fonction dt
b; on introduit cette valeur dans les trois autres équations
on peut alors en tirer les valeurs de QF, QF* et QF3. En
prenant le rapport de la deuxième de ces quantités à la première,
puis de la troisième à la deuxième, on obtient deux valeur^
de F qu'on n'a plus qu'à égaler pour former une équation à

une seule inconnue, 6. Voici cette équation :

2463s (t — a) — 4 6* (9e* — 4ea — a*) + 2 6 (9s* — 11 sa + 4a«)

— (3e* + 2sa —a*) 0

Cette équation résolue, on a, pour calculer les trois autre--
inconnues, les formules suivantes :

F
IV 3 /, 1\

3a

'-!)*•
•1 - - I 6*

Q
l'-

On a, pour un pendule à mercure en acier, a 0,00061!
e 0,000148, et l'équation du troisième degré en 6 devien
approximativement :

1622 63 — 2540 6* -f 4198 6 — 229,5 0

Une résolution, grossièrement approchée, m'a donné pour
les inconnues:

6 0,941 c 2,61
F 2,23 Q 0,0775
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Ces résultats concordent bien avec ceux auxquels M.
Wanach avait abouti par une méthode sensiblement différente.
Du tableau des résultats de M. Wanach, je tire les valeurs
suivantes pour le cas du minimum de F :

E 717 E'= 2220 (i 0,0674 L 433 '

Les valeurs que nous venons d'obtenir donneraient pour
ces mêmes quantités les nombres suivants:

E 720 E' 2-230 y. 0,0677 L - i il
Si l'on remarque que je suis parti de constantes un peu

différentes, 1 1 au lieu de / 0,994 et £ 148.10-« au lieu
de 148,36.10~°, et que de plus je me suis borné à des calculs
très peu précis, on conviendra que l'accord est très satisfaisant.

La conclusion à laquelle M. Wanach était parvenu est ainsi
confirmée, à savoir qu'un pendule à seconde, à mercure et en
acier, qui serait simultanément compensé pour les variations
de température et pour celles de stratification, aurait plus de
2m,20 de longueur, et que de ce fait il ne serait guère réalisable.

Toutefois il faut noter que ce résultat assez inattendu n'a
été obtenu qu'en faisant deux spécialisations: la partie solide
a été supposée concentrée en un seul point, et le mercure
supposé constituer une colonne cylindrique. Ces deux
suppositions sont-elles de nature à influencer sensiblement le
résultat?

Si l'on suppose que la masse solide n'est plus concentrée
en un point, mais répartie en une tige et une lentille, la
longueur de cette partie solide sera vraisemblablement encore
plus longue que les 2m,20 obtenus ci-dessus. Mais, comme
nous l'avons vu à plus d'une reprise au cours de ce travail,
il est imprudent de se baser sur de simples vraisemblances
dans cette question. C'est pourquoi j'ai procédé à quelques
essais numériques, et ces calculs de pendules ainsi constitués
et doublement compensés ont pleinement confirmé cette
supposition. Le cas où la masse solide est concentrée en un point
est un cas limite et correspond à la longueur minimum de
cette partie solide; pour toute autre forme, la longueur nécessaire

pour atteindre une double compensation est plus grande.

1 Dans les notations de M. Wanach, L est la longueur de la colonne de

mercure, E la distance de son centre de gravite à la suspension, E' la distance
P de la masse solide à la suspension, enfin y le rapport de cette niasse solide à
celle du mercure.

18 nui.i.. soc. se. NAT. T. XXXVII
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Il semble par contre qu'on pourrait, en renonçant à la
forme cylindrique de la colonne de mercure, et en supposant
que celui-ci est concentré en grande partie en un point, et se

transporte par dilatation jusqu'au milieu du pendule, réaliser
ties conditions plus favorables (car l'effet compensateur d'une
masse donnée de mercure est ainsi plus grand) et réduire
dans une proportion notable la longueur de la partie solide.

Pour trancher cette question, il nous faut simplement
refaire le même calcul que ci-dessus, mais pour le premier
des cas spéciaux étudiés plus haut. Les conditions des deux
compensations sont ici les formules (5):

U — h {1 — 1)4- d(l — d)\ t

-a -(Ka—na^y2(z — a) — \ll — d(l — ll)\^Ta—d(i — d)l
2 D\ L J V

Nous posons, exactement comme ci-dessus, 1 1, N 1,

d'où D 4. Alors :

D QF + »a l
N Q F* + m X* 1

De plus, si nous plaçons le niveau du mercure au milieu

du pendule, nous aurons d — —. Nous aboutissons ainsi
2 2

au système des quatre équations suivantes :

QF + »a l
QF* + wa* l

a -m X(X—1)-|—P ou bien a =m(l— — ]

2-a QF3a-mX|x*(e-a)+('x_i\Sj

ou bien QF3-^[(x_iy£-X*al i

•>

a ¦ *

Pour résoudre ce système, on procède de même que dans

le cas précédent. La troisième équation nous donne la valeur
tie m, en fonction de X:

m

l--V
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En introduisant cette valeur dans les deux premières et

dans la quatrième des équations ci-dessus, on obtient:

0 F

UF*.

a -x

0 I-"

/.- se

FÏÏ>

e+r
c-.:)"

En divisant membre à membre la deuxième équation par
la première et la troisième par la deuxième, on obtient les
deux valeurs suivantes de F :

(>+)¦

F
[H)'-

X

En égalant ces deux valeurs de F on obtient une équation
en X, qu'on peut simplifier notablement; il reste finalement:

3 s

»<-«>-*(-9" — )+^ f?"-)
Une fois cette équation résolue, on peut calculer F à l'aide

de la première des deux valeurs ci-dessus :

(>+>

(;-i1 \2
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Puis, la troisième formule du système dont nous sommées
partis donne :

m -

9

Enfin, Q se calcule le plus facilement à partir de la
première des équations du début; on obtient:

; — X :

\ <¦>

Q

F X -iy.2/

Pour un pendule à mercure en acier, on a en moyenne
a llxl0-6, e 448xlO-G, et l'équation en X devient:

274 X3 — 422 X* + 211 X — 37 0

Deux racines sont imaginaires. La racine réelle a poni'
valeur X 0,762. Les valeurs correspondantes des autres
inconnues sont: F 2,12, m 4,08, Q 0,0829. C'est la

valeur F 2m,42 qui nous intéresse plus particulièrement :

On voit que le gain réalisé est bien minime (la longueur
n'est réduite que de 10 cm. environ). Nous en concluons que,
quelle que soit la forme qu'on donne au récipient à mercure,
la partie solide aura plus de 2m,40 de longueur.

L'espoir qu'on pouvait conserver de réussir, par une
semblable disposition, à réaliser un pendule doublement
compensé est donc déçu. Cela ne veut pas dire toutefois qu'il
faille renoncer définitivement à résoudre ce problème Nous
n'avons jusqu'ici envisagé que le cas où le mercure est situé
en entier au-dessous de sa surface libre. Or, puisque le
pendule oscille sous une pression d'une atmosphère lorsqu'il est
à l'air libre, et souvent aussi sous une pression assez
considérable quand il est dans une cloche hermétiquement close,
il y a possibilité de maintenir, par cette pression de l'air,
une partie du mercure au-dessus de sa surface libre. On

peut espérer arriver par ce stratagème à construire un
pendule doublement compensé parfaitement utilisable.

C'est dans ce but que les conditions de compensation ont
élé étudiées pour des pendules de ce genre (voir le quatrième
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et le cinquième des cas spéciaux traités plus haut). Au lieu
de calculer ici simplement, comme pour les cas précédents,
le pendule de longueur minimum (ce qui eût été un peu
plus compliqué puisqu'il y a une variable de plus) j'ai préféré
calculer quelques cas de pendules vraiment réalisables, c'est-
à-dire dont la partie solide ne soit pas seulement constituée
par un seul point matériel, mais bien par une tige pesante
portant un tel point à son extrémité (la lentille).

Nous avons vu que plus le mercure est éloigné du milieu
du pendule, plus son pouvoir compensateur est considérable.
Malheureusement, lorsqu'on envisage des pendules avec mercure

au-dessus de la surface libre, deux raisons s'opposent à

éloigner beaucoup le mercure de ce milieu; tout d'abord, si
on ne modifie pas la façon actuelle de suspendre le pendule,
le sommet de la colonne de mercure devra rester à 10 ou en
tout cas à 5cm. au-dessous du point de suspension; ensuite,
il semble utile de laisser la pression atmosphérique en excès
important sur la pression du mercure. Dans les cinq cas que
j'ai calculés, j'ai donc choisi a =10; j'ai pris successivement
pour 6 les valeurs: 90, 100, 105, 410, 120. La première tie
ces valeurs détermine donc une colonne de mercure disposée
symétriquement par rapport au milieu du pendule; il semblait
à première vue que cette disposition devait permettre le plus
facilement de compenser l'effet de stratification. Les valeurs
suivantes ont été choisies plus grandes dans le but d'avoir
une plus forte action compensatrice-du mercure. Quant à d,

on l'a naturellement choisi ici aussi égal à —= 50 (en prenant
Zi

£ 100) puisque cette valeur est la plus favorable. De plus,
et pour que les masses soient à peu près dans l'ordre tie
grandeur qu'elles devraient avoir en pratique, j'ai posé

D=4000000 et N=100000000, ce qui donne bien /---- 100.4 D
Pour le calcul d'un pareil pendule doublement compensé

on dispose alors des équations suivantes:

4. Moment statique:

D S +^(6*-^
2. Moment d'inertie :

N J + -(63 —a3)
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3. Condition de compensation thermique (formule (8)
chap. II):

?a=^ri(63-a3)-|(6*-a*) + d(/-d)(6-fl)js

4. Condition de compensation de la stratification (8):

/* -1 / il_a -(Ka —c -(6* —«4)(£ —a)
2 DV U V A

-r|(63-fl3)-|(/-d)(6*-a*)li

La troisième formule permet de calculer c, puis les trois
autres donnent S, J et K, c'est-à-dire les données relatives à

la partie solide du pendule. J'ai fait ces calculs pour les cinq
valeurs de 6 mentionnées ci-dessus, et j'ai obtenu les résultats
suivants :

6= 90 100 105 110 120
c= 174,1 418,0 96,5 79,6 54,7
S= 304 XlO3 416 XlO3 473 XlO3 522 XlO3 609xiU:i
J= 577 XlO5 607 XlO5 628 XlO5 647 XlO5 685 X lü5
K= 743x40' 844x40' 919x10' 985x10' 1106x40"

Nous connaissons ainsi le moment statique, le moment
d'inertie et le moment du troisième degré de la partie solide
de chacun de ces cinq pendules; voici comment on peut en
déduire les dimensions et les masses: supposons chacun de
ces pendules constitué par une ligne matérielle homogène de

longueur B et de densité C masse de l'unité de longueur).
L'une des extrémités de cette ligne est à la suspension, l'autre
porte une masse Q. On a donc, par définition:

S -B*+ QB
2

"j=|b3+qb* »

K=-lf4 f QB3
4
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En soustrayant membre à membre la deuxième équation
de la première multipliée par B, et tie même la troisième de
la deuxième multipliée par B, on obtient:

S 1! — .1

J I! —K

C
R3 /

12
B< \

(2)

Q est ainsi éliminé. On élimine de même G entre ces deux
dernières équations, et on trouve :

SB* —3.1 B + 2K (3)

L'équation (3), la première des équations (2) et la première
des équations (1) donnent alors pour les inconnues:

13 — 3J++ 9J*-8SK
~

2 S

0(SB —,1)

B

l!;!
C

B

En appliquant ces formules aux nombres obtenus
précédemment, on arrive aux dimensions et masses suivantes :

b -- 1)0 100 105 110 120

B, 471 305 227
C, -1-4.00 — 14,0 — 22.9 0J o
Q, - 509 — ; /o — 515 '5 '5

i

se SP i

B., - 99.8 133 171 s
a
E

C, — 165 — 13.8 1 21,7 "1Q, -f--Il200 | 4050 1 913

On voit tout d'abord par ces résultats que, dès que b

dépasse sensiblement 105, on aboutit à des valeurs imaginaires

pour la partie solide du pendule. De plus, des six
pendules calculés (à valeurs réelles) un seul est réalisable.
car pour un seul C et Q sont simultanément positifs. Il en
résulte que 6 ne peut varier que dans d'étroites limites pour
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une valeur donnée de a. On a une représentation meilleure
de ces résultats si on les groupe selon la longueur B du
pendule :

b I! c Q

90 471 h 4,90 — 509
I 100 305 - 14,0 — 775

105 227 + 22,9 — 515

105 174 + 24,7 + 913
II 400 133 — 13,8 -f 4050

90 100 - 16,5 + 11 200

On voit bien par ce tableau que 6 doit rester très près d>-

105 si l'on veut obtenir un pendule réalisable, car dès que b

dépasse un peu cette valeur, on obtient des résultats
imaginaires; et d'autre part, dès que 6 est sensiblement inférieur
à 105, soit Q, soit C devient négatif.

De plus, par ce tableau, un résultat que nous avions déjà
établi précédemment se trouve confirmé, à savoir que, toute-
conditions élant égales d'ailleurs, c'est le pendule réduit à un
seul point matériel qui est le plus court. On voit en effet que
si B diminue à partir de la valeur 171 correspondante à

6 105, on continue à obtenir des valeurs positives pom
C et Q jusqu'au moment où C 0, c'est-à-dire jusqu'au
moment où le pendule se réduit à la masse Q. Ce cas tout
spécial et tout théorique nous donnerait ici pour le pendule
une longueur minimum d'environ 140. Mais en pratique,
C doit avoir une valeur appréciable, et on ne pourrait guère
descendre au-dessous de C 20 environ, correspondant à

6 105 et à B 170. Donc en pratique, un pendule doublement

compensé du type que nous étudions actuellement seri
encore trop long. La différence entre ces deux longueurs nous
montre en outre que, dans les cas précédemment étudiés, où
le minimum théorique était de plus de 2 m., le minimum
pratique eût sans doute été de 2 V» m- ou 3 m.

Par le type que nous venons de considérer, nous nous
sommes rapprochés de la solution, mais nous ne l'avons pas
encore atteinte. On diminuerait sans doute encore un peu la

longueur totale si l'on prenait a 5 au lieu de a 10, et en
faisant subir à 6 une augmentation correspondante; mais ie

gain réalisé de cette façon ne serait probablement pas très
considérable. Un pendule ainsi construit serait donc encore
trop long; il aurait de plus, comme le précédent, le désavantage

de nécessiter trop de mercure (et bien inutilement, comme
nous allons le voir). Tout cela provient de ce que, dans ee

type, comme nous l'avons dit déjà, le mercure est trop rap-
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proche du milieu du pendule, ce qui diminue son pouvoir
compensateur. Le seul moyen d'obvier à cet inconvénient, si
l'on ne veut pas faire monter le mercure au-dessus de la
suspension, c'est d'en concentrer une partie en un point,
au sommet de la colonne. Ge cas a été examiné comme
cinquième cas spécial.

J'ai entrepris le calcul approximatif de quelques pendules
doublement compensés de ce nouveau type. On a, ici aussi,
quatre équations à satisfaire, exprimant que le pendule doit
battre un temps donné, qu'il doit posséder une puissante
réglante donnée (moment d'inertie), qu'il doit être compensé
pour la température et qu'il doit l'être aussi pour la stratification.

Ces quatre équations sont (les deux dernières sont
les équations (9) du chapitre précédent et du présent chapitre) :

D -| (6*-«*) + ,,« -l-S

N |(63-«3) + 7t7* + J

U L\c\—(b* — a3) — — (6* — a2) + d(l — d)(b — a)
I

D / | 3 2
r

J

d(l — d) — a(l — a)y

-a:- -(k* — c.\- (17 - rt4) (s — a) — \-
2 D\ (i [A

(17-11')

-|-(/-d)(6*-rt*)ljs-(7«ja*(s-a)-T«rt-d(7-d)l3J

Dans ces équations, les quantités S, J, K se rapportent à

une forme absolument quelconque de la partie solide. Pour
passer aux calculs numériques, il est nécessaire de spécialiser
cette forme de façon simple. Nous supposerons donc que la
partie solide consiste en une ligne matérielle partant du point
de suspension, de longueur B et de densité C, et en un point
matériel de masse Q situé à la distance F de la suspension.
On a alors :

S -B* + QF
2

J -B3 + QF*
3

K. —B4 I OI-1
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En introduisant ces valeurs dans le système d'équations

précédent, et en les ordonnant de façon un peu différente,

on obtient (en remarquant encore que 1 — ):

c |1 (P - „») _1 (b2 - «*) + d (t - d) (6 - «)j e

-f q \d(l — d) — a (l — a)l c D l a — c
S - (64 - rt4) (s — a)

|(ft»_fl»)_|(/_d)(6«_a*)l.j-ça|a«(.-«)

Jff_,.i(/ —d)lej+^B4a + QF:,a= —a

^-(6*-«*) +g«+-|B* + QF D

| (63 _ «3) + q a* _J_
C

B3 + Q F2 N

Puisqu'il y a seulement quatre équations à satisfaire, on
peut choisir toutes les quantités à volonté, sauf quatre d'enti e

elles qu'on prendra comme inconnues, et dont on obtiendra
la valeur en résolvant ce système d'équations. Pour la
commodité du calcul, il semble préférable de choisir les masse-
et les densités, c'est-à-dire c, q, C, Q comme inconnues, car
le système est linéaire par rapport à ces quantités.

J'ai donné à D, N, i et d les valeurs suivantes qui, plus
encore que celles du cas précédent, seraient directement
utilisables pour un pendule à secondes:

D 500000 N 50000000 / — 100 d -=50
D 2

J'ai calculé ensuite les coefficients de ce système d'équ; -

tions pour quelques valeurs de a, b, B et F. Voici, à titre
d'exemple, les équations auxquelles on aboutit lorsqu'on
prend a 5, 6 B=120, F 115:

21,04 c + 0,300 q 550

-4 236 c— 1,497(7+ 570 C+ 16,73 Q= 213i)
5 q-\~ 7200C+ 115 Q= 500000

25 q + 570 000 C + 13 225 Q 50 000 000
7 190

576000 c
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La résolution approximative de ce système donne:

c 16,75 t7 660 C 11,72 Q 2540

Ces calculs ont été répétés pour trois autres cas: voici les
résultats obtenus :

1" cas i""' cas Sm* cas i— oa*

Données :
b
1!

F

10
120
120
110

10
120
120
115

10
115
115
115

5
120
120
115

Inconnues :

t:

7
C

Q

15.7
989

3.33
3215

10.4
951

9.78
2630

21.1
822

5,01
2750

16.75
660

11.72
2540

Masse du mercure e (b
Masse de la partie solide
Masse totale -

-a)-\
GB-I

'J

y
2720
3610
0330

2760
3800
6560

ë8S

2590
3940
0530

Rayon de la colonne de mercure
Rayon extérieur du tube
Epaisseur du tube

0.61
0.71
0.10

0.02
0.88
0.26

0.70
0.85
0.15

0.62
0.93
0.31 |

J'ai fait figurer au tableau, à côté des inconnues elles-
mêmes, des résultats qui s'en déduisent immédiatement: la
masse du mercure, la masse de la partie solide et la masse
totale du pendule. J'ai ensuite supposé que la ligne matérielle
solide est réalisée par un tube d'acier destiné à contenir sur
une partie de sa longueur la colonne de mercure. Le rayon
intérieur de ce tube est donc fourni [»ar la densité c de la
ligne de mercure; son rayon extérieur s'en déduit alors
facilement en considérant la densité C de la ligne solide.

De ces quatre modèles, le dernier est certainement préférable

pour deux raisons: tout d'abord parce que c'est celui
qui exige le moins de mercure, ensuite et surtout parce que
l'épaisseur obtenue pour la paroi du tube est la plus forte.
Les quatre cas d'ailleurs paraissent tous facilement réalisables ;

mais il y aurait lieu, si on voulait construire un tel pendule,
de se rapprocher le plus possible du quatrième cas. J'ai
calculé encore, pour ce quatrième cas, le rayon qu'aurait le
réservoir de mercure du sommet de la colonne, si on le sup-
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pose de forme sphérique, et j'ai obtenu 2cm,26. Quant à la
lentille, représentée par un point matériel Q, elle aurait,
supposée sphérique elle aussi et en acier, un rayon de 4cm,27.
(Voir fig. 8.)

Le problème du calcul d'un pendule à mercure doublement

compensé est ainsi résolu.
S'il s'agissait de construire un tel pendule, on choisirait

un tube d'acier se rapprochant le plus possible comme dimensions

du type qu'on aurait choisi; la valeur de c serait par là

même déterminée; on devrait alors choisir
une autre inconnue au lieu de cette quantité,
par exemple la distance de la lentille à la
suspension F, et on procéderait à la résolution
du système des quatre équations de condition.

On construirait ensuite le pendule en
réservant les dimensions exactes de la lentillt
Elles seraient fixées après coup, de façon que
le pendule soit exactement compensé pour la

température, d'après la méthode que nous
avons indiquée plus haut (p. 239). La compensation

de stratification sera suffisamment
approchée, alors même qu'on a négligé, par
exemple, la masse de la paroi du vase de

mercure au haut de la colonne, ainsi que celie
d'autres détails du pendule: pour la stratification,

comme nous l'avons déjà vu, une appre-
ximation très grossière suffit.

Si l'on admettait que le pendule puisse
être prolongé au-dessus de sa suspension (ee
qui semble très facilement réalisable) on pourrait

encore construire des pendules doublement

compensés d'un type un peu différent :

on pourrait éloigner davantage le mercure du milieu du
pendule, ce qui permettrait d'éviter le réservoir à mercure au
haut de la colonne, c'est-à-dire d'en rester à la forme
cylindrique, plus simple. Mais il faudrait alors séparer le mercure

en deux colonnes distinctes, pour qu'il reste toujours,
au haut de la colonne supérieure, un excès de pression suffisant.

On pourrait, par exemple, admettre pour la hauteur de
la colonne supérieure 50 cm. Si l'on veut placer cette colonne
de la façon la plus avantageuse, il faut réaliser la condition
du minimum de mercure. La distance séparant l'extrémité
inférieure de la colonne du milieu du pendule doit être égale
au tiers de la hauteur de la colonne, soit à 47 cm. environ.

A ',/l/t

LB

hR

Fig. 8.
Schéma d'un pendule
à mercure doublement

compensé.
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La colonne dépasserait alors d'autant la suspension. On
disposerait à la partie inférieure une deuxième colonne exactement

symétrique par rapport au milieu du pendule.
Les autres éléments du pendule se calculeraient ensuite

très facilement de la manière suivante : On se donnerait
encore la longueur de la partie solide, qui devrait pouvoir
contenir ces deux colonnes de mercure, c'est-à-dire avoir
417 cm. au-dessous de la suspension et 17 au-dessus. Les
quatre équations de condition permettraient alors de calculer
d'une façon analogue aux précédentes les quantités c, C, Q et F.

Les formules seraient légèrement plus compliquées que
précédemment, tout d'abord parce qu'on a deux colonnes île
mercure au lieu d'une, ensuite parce que les équations ne
sont pas linéaires par rapport à F. Mais la résolution numérique

approximative d'un tel système d'équations ne présente
aucune difficulté.

Un pendule de ce type serait sans aucun doute
parfaitement réalisable. Il serait plus avantageux que le modèle
précédemment décrit, parce que de forme plus simple. La
construction d'une horloge munie d'un tel pendule ne
manquerait pas d'intérêt. Mais s'il s'agit simplement de substituer.
dans une horloge existante, un pendule à mercure doublement
compensé à n'importe quel autre pendule, on pourra, sans
modifier la suspension, adopter fa première forme de pendules
doublement compensés.

On voit qu'ainsi la question se trouve résolue de façon à

satisfaire à tous les besoins.
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CHAPITRE IV

Influence de l'air ambiant
sur la compensation thermique d'un pendule.

1. Introduction.

L'influence de l'air ambiant sur la marche du pendule est
connue depuis plus d'un siècle et demi; elle a été l'objet d'un
très grand nombre de travaux tant théoriques qu'expérimentaux

: Les astronomes ont déterminé pour leurs horloges le
coefficient barométrique, c'est-à-dire la variation de la marche
diurne correspondant à une variation de pression de 1 mm.;
les géodésiens ont déterminé pour leurs pendules une constante
analogue, celle de la réduction au vide; enfin, les physiciens
ont abordé l'étude théorique du problème et résolu celui-ci
pour les formes les plus simples de pendule; leurs résultats
s'accordent avec ceux de l'expérience.

11 n'est évidemment pas possible de reprendre ici toute
cette vaste question, ni même d'en résumer les résultats
obtenus; cela sortirait d'ailleurs du cadre de cette étude. Je

me borne donc à rappeler que l'effet du milieu ambiant sur
le mouvement d'un pendule est double: 1° l'amplitude est

progressivement diminuée; 2° la durée d'une oscillation pour
une amplitude donnée est augmentée. Ce second effet est le
seul qui nous intéresse ici, puisque dans les horloges le
mécanisme maintient l'amplitude à peu près constante.

L'augmentation de la durée d'oscillation d'un pendule peut
être considérée comme proportionnelle à l'augmentation de
la pression atmosphérique, car, en un même endroit, les
variations de cette pression sont faibles. Mais il faut noter
que ce n'est pas la variation de pression comme telle qui
produit un changement dans la durée d'oscillation, mais bien
la variation de densité qui en résulte. En d'autres termes, la

pression du milieu ambiant paraît être sans influence appréciable

sur la durée d'oscillation d'un pendule; cette durée
d'oscillation dépend seulement de la densité du milieu ambiant '.

1 Les travaux classiques sur cette question ont élé réunis par G. Woi.r:
« Mémoires sur le pendule. »

On trouve un bon résumé des résultats dans l'Encyclopédie des sciences
mathématiques, édition allemande, Bd. IV n, 7, article de Pn. Furtwahglkii.
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Mais alors, la variation de température du milieu ambiant

aura aussi quelque effet sur la durée d'oscillation, puisqu'elle
entraîne, elle aussi, une variation tie densité. Le milieu ambiant
doit donc avoir une influence sur la compensation thermique,
et nous devrons modifier les résultats obtenus jusqu'ici. C'est
à ce titre, et à ce titre seulement, que nous avons à nous
en occuper ici.

11 semble qu'on n'a jamais, jusqu'ici, tenu compte de cette
influence dans le calcul de pendules compensés au mercure,
et bien rarement pour d'autres types de pendules1, el cependant,

comme nous allons voir, cet etfet est très appréciable.
Voici comment on peut en obtenir une première approximation

à partir du coefficient barométrique du pentitile:
La densité 3 de l'air est une fonction de la pression p el

de la température absolue T, de la l'orme 6 si l'on sun-ï
pose la pression exprimée en atmosphères, et la température
absolue en unités 273-j-15 —288 fois plus grandes que le
degré centigrade, et si l'on prend pour unité tie densité celle
de l'air à la pression 1(=760 mm.) et à la température
absolue 1 15° C).

On en déduit les relations suivantes entre les variations
correspondantes de ces quantités :

di t/p de :— (/T

Mais si on change d'unités et qu'on prenne pour évaluer dp
le millimètre de mercure, et pour dT le degré centigrade,
ces formules deviennent:

dò —dp ih —--1 ,/T
760 '288

Il en résulte qu'un changement de pression dp et un changement

de température d'V produiront exactement le même

1 M. W.-A. Nippoldt a tenu compte de cet effet dr l'air ambiant dans le
calcul de sa nouvelle compensation, en se basant uniquement sur les recherches
de Bessel : W.-A. Nippoldt, «Ein neues für Temperatur- und Luftdruckschwankungen

kompensiertes Pendel», Zeitschr. f. Instrumentenkunde, 188'.t, p. l'.fi.
De son côté, M. Ch.-Ed. Guillaume a calculé cet effet pour les pendules d'acier
nickel, mais en tenant seulement compte de l'effet de la variation de la poussée
de l'air. Nous verrons que ce n'est guère que la moitié de i'elïet total. Voir :

Ch.-Ed. Guillaume, « L'action de l'air sur la compensation du pendule ». Journ.
suisse d'horl., XXIX, p. 109, 190'j.
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changement de densité (et par conséquent le même changement

de marche) pourvu qu'ils soient liés par la relation:

4 1
dp d T

760 ' 288
d'où:

dT -^dp
760 F

En particulier, une augmentation de pression de 1 mm.
produira sur la densité, donc sur la marche, le même elfe!

qu'une variation de température de — -— — 0°,379. SiF 760
nous appelons b le coefficient barométrique d'un pendul-*
(correction à apporter à la marche diurne quand la pression
augmente de 4 mm.), nous aurons donc comme coefficient
thermique 8 résultant (correction à apporter à la marche
diurne quand la température de l'air augmente de 1°):

6 — _ 2,646
0,379

En admettant, par exemple, un coefficient barométrique de

0s,014 pour les pendules cylindriques, et de 0s,012 pour les

pendules aplatis, on obtient pour ces deux cas :

e, _ o,037 e2 —0*,032

Ces modifications du coefficient thermiques sont loin d'êtie
négligeables. Il résulterait donc de ce premier calcul que
l'effet de l'air ambiant est de compenser environ 4/12 ou l/u
de la dilatation de la tige; de sorte qu'un pendule parfaitement

compensé pour le vide serait surcompensé dans l'atmoe--
phère et. qu'on devrait lui enlever environ t/12 ou i/u de son
mercure.

Mais en réalité, comme nous allons le voir au paragraphe
suivant, le phénomène n'est pas tout à fait aussi simple: c'est
que le ralentissement de marche d'un pendule dans l'atmosphère

ne dépend pas seulement de la densité, mais aussi du
coefficient de frottement intérieur ou de viscosité de l'air, et

que ce coefficient est lui aussi fonction de la température.
Nous verrons que l'effet de la température sur la viscosité de
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l'air est opposé à celui de la température sur la densité et en
compense une faible partie. L'etïet total de la température
est donc un peu moindre que celui mentionné ci-dessus.

Avant de passer à une étude plus complète de toute cette
question, notons encore une conséquence inattendue de ce
qui précède ' : c'est qu'un pendule exactement compensé à

l'air libre ne le sera plus sous pression constante : car It;

terme «pression constante» signifie en réalité densité
constante; les variations de température de l'air ne produisent
donc plus de variations de densité, ni de marche, et il ne
reste plus caie l'effet de la variation du frottement intérieur
avec la température, variation qui est donc de sens contraire.

•î. Données théoriques.

Il résulte des études théoriques de Stokes que l'effet d'un
gaz ambiant sur la durée d'oscillation d'une sphère est de la
forme :

AS | b/t7s

« étant la densité du gaz, r, son coefficient de frottement
intérieur, A et B des constantes dépondant de la dimension, île
la masse et de la position de la sphère.

Pour des formes autres que la sphère, le problème n'a
pas été jusqu'ici entièrement résolu. On obtient pour le
cylindre une série dont les termes prépondérants sont
exactement de la forme ci-dessus. 11 était assez naturel d'en
déduire qu'en pratique on pourrait très probablement
employer une formule pareille pour des formes de pendule assez
diverses.

Les expériences faites par Peirce2, Defforges 3, Kühnen
et Furtwängler4 sur huit pendules à réversion différents.
dans leurs deux positions, soit en tout seize pendules
distincts, ont montré qu'en effet cette formule représente fort
bien l'action de l'air ambiant sur la durée d'oscillation.

1 Conséquence déjà signalée par M. Ch.-Ed. Guillaume, loc. cit.
2 Peirce. «Methods and results of measurements of gravity at initial

stations in America and Europa. » U. S. Survey, 1N76, App. 10.
3 Defforges. « Observations du pendule. » Mémorial du dépôt penerai de

ia guerre, t. XV, 1894, p. 56.
4 F. Kühnen et Pu. Furtwangler. «Bestimmung der absoluten Grösse der

Schwerkraft zu Potsdam mit Reversionspendeln.» Ver. Preuss. Geud. Inst.,
1906, p. 253.

19 nt'LI.. SOC. SC. NAT. T. X\XVII
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Faute d'autres renseignements, nous admettons que cette
formule s'applique aussi aux diverses formes de pendmes
utilisées dans les horloges astronomiques.

Si l'on suppose que, dans celte formule, on a donné aux
constantes A et B des valeurs telles que la densité 3 et le

coefficient de frottement r\ soient dans les conditions normales
désignés tous deux par l'unité, on en déduit pour la variation
de marche produite par des variations de densité ou de
coefficient de frottement une expression de la forme :

dm (A-\--B\dZ-r-lrBd7i

Cette formule linéaire est bien suffisante tant qu'on ne
s'écarte pas trop de la pression normale et de la température
moyenne adoptée.

Il reste à exprimer dS et d** en fonction de la variation de

la température de l'air d'Y.
On admet aujourd'hui (les théories et les expériences les

plus récentes sont d'accord sur ce point ') que le coefficient
de frottement intérieur d'un gaz est donné par la formule :

ff
1 + c/T

où T est la température absolue, et a et c des constantes
particulières au gaz. Pour l'air atmosphérique, on a en
particulier c 114.

Supposons qu'on prenne pour unité de température absolue,
non pas le degré centigrade, mais l'intervalle de 288°. Cette

formule deviendra:

V'ï __.,,
T3

¦n a 1/288 —r— a'

si on pose:

14__£_ T + C

288 T

«/288 «' et
'" ll4

288 288

1 Voir par exemple Winkelmann, Handb. d. Phys., p. 1379, article de

Graef : « Reibung der Gase ».
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Si, de plus, on décide de prendre pour unité de r, le coefli-
cient de frottement de l'air à l'état normal, c'est-à-dire à

T=l, notre formule deviendra:

I -f-c

On en tire la relation cherchée :

.F-2(1 + 0-1.,T_ ,3 1

(1 -f c')2
(/ r, 1 -f ,¦') HM7L71 -1 d ï 117 L_ | g T

' : ' ' \2 1-4-c'/

Nous avions pour l'air

114 1 288
donc

288 1 -f c' i02
d'où enfin :

flh 0,784 rfT

Quant à la variation de densité t/S, il est évident qu'elle
est nulle dans un récipient hermétiquement clos, c'est-à-dire
pour les pendules sous pression constante. Ce qui va suivre
ne s'applique donc qu'aux pendules oscillant dans l'air ambiant
libre. On a alors :

*=P_
T

d'où, si les unités sont convenablement choisies:

,h dp — dT

En réunissant ce résultat au précédent, on obtient:

4o Pour les pendules oscillant à l'air libre:

dm= /A+i-B^ dp - A + 0,216^ <IT

2° Pour les pendules sous pression constante:

dm 0,784- d'Y
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Ces deux formules s'appliquent naturellement à des états
voisins de l'état normal. Le résultat de la dernière devra dont;
être modifié si la pression constante est sensiblement
différente d'une atmosphère. On voit facilement qu'il faudrait
simplement multiplier le chiffre obtenu par V^==Vp ¦

Par les deux formules précédentes, le problème est ramené
à la détermination des coefficients A et B de la formule tie
réduction au vide.

3. Evaluation du premier coefficient, A.

La détermination théorique des coefficients A et B d'un
pendule n'a été faite, à ma connaissance, qu'une seule fois,
par Peirce, pour les deux positions de son pendule à réversion.
Je m'en vais refaire exactement le même calcul pour deux
pendules d'horloges choisis comme types des deux catégories
qu'il faut nécessairement distinguer ici : les pendules à vase
cylindrique ou pendules à mercure ordinaires, et les pendules
à lentille aplatie, tel le pendule à mercure de Riefler. Au point
de vue de l'influence de l'air, les pendules à gril peuvent
vraisemblablement rentrer aussi dans cette dernière catégorie.

Je choisis comme types les deux pendules à mercure que
M. Wanach a étudiés dans son travail, et qui sont les formes
un peu simplifiées et schématisées de deux pendules existants.
Nous en avons donné les dimensions et les densités à la

note 1 de la page 20 du présent travail. Ajoutons que neus
prendrons pour la densité de l'air à la pression d'une
atmosphère et à la température de 15° le chiffre admis par Peirce :

0,001206 obtenu en supposant que l'air contient une quantité
de vapeur d'eau un peu moindre que la moitié de la saturation.
Le mémoire de Peirce n'étant pas facilement accessible à

chacun, je vais transcrire ici tous les détails de mon calcul
Peirce rappelle que l'air ambiant retarde l'oscillation d'un

pendule pour quatre causes :

4° La poussée de l'air déplacé (diminution du moment
statique).

2° L'air enfermé dans les parties creuses (augmentation
du moment d'inertie).

3° L'effet hydrodynamique (air entraîné à l'extérieur du

pendule et augmentant, lui aussi, le moment d'inertie).
4° L'effet de la viscosité ou frottement intérieur de l'air.
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Le premier terme de la réduction au vide, c'est-à-dire la
constante A dépend des trois premières causes. Le deuxième
terme et sa constante P> sont dus uniquement à la quatrième
cause.

On suppose que les parties creuses, s'il y en a, communiquent

avec l'air extérieur. Si elles étaient hermétiquement
closes, il faudrait considérer l'air y enfermé comme faisant
complètement partie du pendule, et tenir alors compte tie la
poussée correspondante à cet espace ; tandis que lorsque les
parties creuses communiquent avec l'extérieur, il faut
simplement tenir compte de l'air y contenu, qui est entraîné
avec le pendule.

1. Poussée. — Pour 1 mm. d'augmentation tie la pression,
l'effet de la poussée augmente de :

1 moment statique de l'air déplacé
fl, —- — C

2 moment statique du pendule

Dans cette formule, ainsi que dans les suivantes, — provient

de la differentiation par laquelle on obtient une formule linéaire
à partir de la formule exacte contenant une racine carrée :

/ -tH r 8r,40°
t i i •

t iti/ —, et C — est une constante necessaire pourX g 760
'

passer de l'etfet sur une oscillation à l'effet sur la marche
d'un jour entier, d'une part, et d'autre part pour réduire
l'effet produit par toute l'atmosphère à celui produit par
1 mm. de pression.

On a pour les deux pendules considérés:

_C^it[0,42X8f>x45,0-)-(2.7-—2.5-)20x!IX,l -|-2.ôâX 17,ilX'J'J.i]0.001 :'ni.

2 *{[0,i2X 83X45,0 + (2,72—2,5ä)2nx'.)K.lj7,X-f[2.3'-X 17,41 x,.),.>,l]l3.r>o)

— 0,0055., (pendule ordinaire)

Cit[(0,92—0,8-) 122X03 -f-(4,8:i2—0.1l-)ri..SxlO'i.l-|-0.8äX76x88]0. OÙ 12i ifi

2 «{[(n,!r2-0.Sa)122XiM-f(',.,S:!a--O,^).\SXlOi,l|7,,S-|-[O.S--!x7riX.«||:!,iiil)

0,007 S,., (pendule Riefler)
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2. Air enfermé. — L'effet de cet air enfermé sur la marche

diurne, pour une variation de pression de 4 mm., est de:

1 moment d'inertie de l'air enfermé
2 moment d'inertie du pendule

Les moments d'inertie figurant ici au dénominateur
s'obtiennent le plus facilement en multipliant les moments
statiques des dénominateurs des formules précédentes, à savoir.
1053000 et 4 098000, par la longueur du pendule simple
battant la seconde: 99,4. On obtient ainsi: 104700000 et
109100000.

Pour calculer le moment d'inertie des cylindres d'air, il

faut d'abord connaître leur rayon de gyration. Pour celui du

pendule ordinaire, on peut simplement prendre 90. Quant à

celui d du pendule Riefler, on Je calcule d'après la formule
connue :

# E2 + — (R2 + —\ =272+i (0,82-f ~ : «Ht:

En introduisant ces valeurs on a :

1 *2,52 X 2,59 x 902 X 0,001 206
Pendule ordin. a- — C 0,UUU. t.

2 104 700000
4 f, ^0,82x46x905x0,001206 A/WlliPendule Riefler a- — C '- ' 0,0001 >;

2 109100000

3. Effet hydrodynamique ou air extérieur entraîné. — Peirce
se base ici sur les résultats obtenus par Green, en considérant
les cylindres comme des cas spéciaux d'ellipsoïdes. 11 obtient
ainsi que, pour un cylindre notablement plus long que large
et oscillant suivant un méridien, la quantité d'air entraîné
extérieurement est égale à l'air déplacé. Pour des cylindres
courts, il y a lieu de modifier cette formule par l'introduction
d'un coefficient convenable.

Appliquons d'abord ce résultat aux deux tiges. Nous aurons:

1
p moment d'inertie de l'air déplacé

2 moment d'inertie du pendule
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On a d'abord, pour les carrés des rayons de gyration de^
volumes cylindriques d'air déplacé :

i si~ -
Pendule ordinaire 15,ô2 -f- - (I, i- | y— -,hS| '

Pendule Riefler. 658-f— /0,1"»*-4--"-") 517(1

d'où ensuite :

D i n*. 0,42 x 85 x 0,001 200 x 2680
Pend, ordin. « — —(. —— 0,0001-

2 lOi 700000

d i u.¦« ' 1 r,^.0,92x 122X0,001 206x5470
Pend. Riell. fl» — G— — 0,002 1.

'2 109100 000

Le vase cylindrique du pendule ordinaire est assez allongé
pour qu'on puisse lui appliquer exactement la même formule.
On a pour son rayon de gyration :

1 202
!>8,l2 + -i(2,7H ~ )=905O,

d'où:

D1 „ 1 r.^-2,72x 20x0,001200x9050
Pend, ordin. a — L — 11.0( »,> 8„

2 104 700000

Quant à la lentille du pendule Riefler, il faut remarquer
qu'elle n'a pas la forme indiquée sur le dessin, mais qu'elle
est taillée en biseau, ou plutôt formée de deux troncs de cônes
très aplatis et accolés par leurs grandes bases. De cette façon
elle coupe l'air et en entraîne fort peu. fl est extrêmement
difficile d'exprimer par une formule la quantité d'air entraîné
par une telle forme; on peut cependant déduire des remarques
de Peirce que l'effet sera très faible et ne dépassera probablement

pas celui de la partie correspondante de la tige. Nous
n'avons donc rien à ajouter à l'effet de l'air entraîné par la
tige entière, tel que nous l'avons calculé ci-dessus. Il en serait
d'ailleurs de même si on avait affaire à une lentille aplatie
placée verticalement, comme c'est le cas tlans d'autres
pendules de Riefler et dans presque tous les pendules à gril.
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L'effet total de l'air entraîné, pour ces deux pendules, est
donc :

Pendule ordinaire. «3 «3'-|-«3" 0,00595
Pendule Riefler a3 a.{ 0,002 lv

Nous avons ainsi évalué successivement toutes les parties
du coefficient A.

4. Evaluation du second coefficient, B.

Dans l'état actuel de la théorie, l'évaluation a priori de

l'effet de la viscosité de l'air sur la marche d'un pendule
serait très malaisée; c'est pourquoi Peirce ne l'a même pas
tentée. Il a réussi cependant à évaluer ce coefficient B en se

basant sur un résultat remarquable des recherches de Stokes,
à savoir que cette constante B se retrouve aussi comme
coefficient d'un terme analogue, en jA,?, dans la partie linéaire du
décrément d'un pendule. Peirce a donc pu, des observations
de diminution progressive d'amplitude de son pendule, déduire
ainsi indirectement ce coefficient B de la formule de réduction
au vide.

Pour un pendule d'horloge, une telle détermination ne
serait pas aussi aisée, car l'effet du ressort de suspension ne

manquerait pas de se mêler à celui de l'air ambiant. Pour
séparer ces deux effets, il faudrait faire des observations comparatives

du décrément sous la pression ordinaire et dans le vide;
il faudrait donc avoir à sa disposition une horloge sous cloche,
et l'employer à toute une série d'expériences. Je n'étais pas
en situation d'entreprendre une telle recherche, et comme
toute cette question est un peu accessoire dans le présent
travail, je me suis borné à évaluer plus ou moins exactement
ce coefficient B, en me basant sur quelques analogies.

J'ai déjà dit plus haut que les coefficients A et B ont été

déterminés expérimentalement pour les deux positions de

huit pendules à réversion ; voici les chiffres obtenus :



CONSTANTKS I)K OUEI/JUES PENDULES A REVERSION

Auteurs Désignation du pendule

e
o

Poids « « E
S S 2

Longueur
du pendule

simple
A

1

B
2

1

M/A
Ü

I.44X
: »/ao

70'"'

pynchrome 0,00 0.000

024 8

2

Peirce Pendule américain ü,3k« 100"" 0 '287 0 0,09 0.13
» 30 » 0 049 3 003 3 0,10 0,14

Déflorées Pendule français long 5,2 60 100 0 206 0 035 4 0,17*
» 40 i) 0 313 4 053 0 0,17*

» Pendule français court 5,2 30 50 01261 022 2 0,18* -
'20 » 01923 033 9 0,18*

Kühnen & Fürtwängler Pend, à sec. de l'Institut géod. prussien 5,6 ou 100 0 309 7 035 5 0,11 0,10
» :îi 1) 0 702 0 074 0 0,11 0,10

» Pendule italien 5,9 O'.l 100 0 300 8 031 3 0,10 0,14
» 31 » 0 009 0 073 8 0,11 0,10

I

» Pendule autrichien lourd 0,2 71 100 0 282 1 020 8 0,09 0,13
» '20 » 0 093 0 073 1 0.11 0.10

» Pendule autrichien léger '2,0 70 100 0 445 9 051 8 0,12 0,17
» 30 » 1 014 7 125 3 0,12 0,17

D Pendule à demi-seconde 3,5 10 25 0 155 7 (110 0 0,11 0.10
» il » 0 287 5 033 0 0.12 0.17

Moyenne des
Moyenne des jut re s valeurs 0 107 0,154
Moyenne générale des * et des 1.44 \ ' Il \ 0.159
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A la troisième colonne, les lettres B et H marquent la
position du pendule: B poids en bas, H poids en haut.
Les trois colonnes suivantes donnent les caractéristiques essentielles

de ces divers pendules.
Mais ce sont les valeurs de A et de jB qui nous intéressent

plus spécialement. (Notons que nous avons pris pour le pendule

Peirce la moyenne des valeurs théoriques et des valeur-
expérimentales que cet auteur indique.) A et ~B sont exprimée-
en fraction d'oscillation et correspondent à une atmosphère
entière, sauf pour le pendule à i/i seconde, dont les coefficients

sont déjà réduits à la seconde entière. Si l'on voulait
déduire de ces valeurs de A et de —B les parties correspondantes

du coefficient barométrique, il faudrait donc les multiplier

par le nombre de secondes par jour, et les diviser par 760.

Defforges donne les valeurs de A et de ^-B en d'autres unités :

nous les avons donc transformées pour faciliter la comparaison :

tandis que les constantes des autres pendules sont celles même
données par les auteurs cités.

L'examen de ces chiffres montre que A et i-B varient dans

une large mesure, leurs valeurs extrêmes étant dans le rapport
de 1 à 7 environ ; mais par contre le rapport d'un coefficient
à l'autre, s'il n'est pas constant, se maintient cependant dans
des limites assez étroites, ce que montre bien l'avant-dernière
colonne.

On remarque toutefois que les quatre valeurs de jB/k
(marquées d'un *) correspondant aux pendules de Defforgee-
sont passablement isolées et très supérieures aux autree-
(moyenne 0,175 contre 0,107). On serait tout d'abord tenté
d'attribuer ce résultat au fait que les pendules de Defforges
sont d'un type spécial, avec les poids à l'intérieur du tube,
tandis que tous les autres pendules sont du type de Bessel.
avec les poids extérieurs au tube.

Toutefois la cause principale de cette différence est tout
autre; elle provient de ce que les valeurs de A publiées pai'
Defforges ne sont pas celles données directement par
l'expérience, mais ont déjà été corrigées de l'effet de l'air enfermé:
elles ne concernent donc plus que l'effet de poussée et l'effet
de l'air extérieur entraîné. Il y a donc lieu de faire la même
réduction sur les valeurs de tous les autres pendules si l'on
veut les comparer utilement. Or, d'après le calcul théorique
des diverses parties du coefficient A fait par Peirce pour les
deux positions de son pendule, on voit que le rapport du
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coefficient entier A à la partie provenant de la poussée et de
l'effet hvdrodvnamique, est égal, dans l'une des positions, à
2693

'
0181 .,„1,437, et dans l autre position a — 1,443, donc en

1874 4285
moyenne égal à 1,44. Si l'on admet ce même rapport pour
les autres pendules, qui sont d'ailleurs tous à peu près du
même type, on voit qu'il suffit de multiplier les chiffres de
l'avant-dernière colonne par 1,44 pour obtenir des valeurs
comparables à celles données par Defforges. C'est ces produits
qui sont inscrits dans la dernière colonne.

On voit qu'après cette correction l'accorti est beaucoup
meilleur; les valeurs de Defforges, alors même qu'elles restent
un peu supérieures (moyenne 0,175 contre 0,154) ne sont
plus isolées. En somme, l'accord de tous ces rapports est très
bon; et on voit que si on prend, au lieu tie l'un quelconque
d'entre eux, leur valeur moyenne 0,159, l'erreur commise ne
dépasse guère i/G de la quantité.

Or la caractéristique de ces pendules à réversion est qu'ils
sont tous composés de cylindres réunis; à part cela, leurs
formes, leurs dimensions et leurs masses sont très diverses.
On peut donc admettre avec quelque vraisemblance que pour
un pendule à mercure ordinaire, également composé de
parties cylindriques, ce même rapport, de valeur moyenne
0,159, sera approximativement valable; c'est-à-dire que la

partie -^B du coefficient barométrique, due à la viscosité.

pourra s'obtenir sans grosse chance d'erreur en multipliant
par 0,159 les parties du coefficient dues à la poussée et à

l'effet hydrodynamique, c'est-à-dire a{-\-a3. Or nous avions
trouvé a1 0,00552, «3 0,00595, donc «,-(-a3 0,011 i7.

On en déduit pour le coefficient de viscosité :

Pendule ordinaire i-JB 0,011 i7 X 0,159 0,001 8â

Nous ne pouvons naturellement pas utiliser, dans le ca>
d'un pendule aplati, ces mêmes rapports 1,44 et 0,159: ils ne
sont sans doute plus valables pour un pendule qui n'est pas
composé uniquement de cylindres : ainsi, d'après la théorie,
l'effet de l'aplatissemet sera à la fois une diminution de la

quantité d'air entraîné et une augmentation du frottement,
d'où augmentation considérable du rapport 0,159.

Nous ne pouvons d'autre part déterminer directement ces
rapports, car nous ne possédons aucune détermination des
coefficients A et B pour des pendules aplatis. ¦
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Faute de déterminations directes, nous devons nous baser
sur les seules données suivantes: le capitaine Basevi, dans
Survey of India*, a obtenu empiriquement, pour deux
pendules invariables très aplatis, les formules suivantes de réduction

au vide :

Pendule 4 d N =0,23206 2
1 -f 0,0023 (/ — 32«)

-f 0,022/p (461« -f t) + 0,123 -

/461»+ /

Pendule 1821 d N 0,23549 £
¦1+ 0,0023 0' —32°)

+ 0,020/^(461» +T) + 0,172 y=^=-
y ï61»-|-/

où dlS désigne la correction à apporter au nombre d'oscillations

par jour, p étant évalué en pouces de mercure, t en
degrés Fahrenheit.

Si on introduit d'autres unités et qu'on calcule plutôt
l'effet sur la marche diurne (en tenant compte du fait que le
pendule 4 battait en moyenne 86080 oscillations par jour, 1°

pendule 1821, 85980) ces deux formules deviennent:

Pendule 4 a m 5,727 S- + 2,744 \ lïl T- 0,883 -Ç-.
T -r VIT y,,.

Pendule 1821 am 5,813-^ -f 2,495 /pT +1,235-^
T /T

Il y a lieu de faire de grosses réserves au sujet de ces
formules, qui ne concordent pas avec la théorie, puisqu'elles
diffèrent passablement de la formule bien plus probable :

AS-f-BjA. On peut néanmoins supposer avec quelque
vraisemblance que, puisque ces formules ont été déduites de
l'expérience, elles s'accorderont suffisamment bien avec les
faits dans le voisinage de l'état normal; en d'autres termes,
que la formule différentielle qu'on en peut déduire sera sans
doute admissible.

On en tire par differentiation, pour le voisinage de l'état
normal :

Pendule 4 ti ?n 8,423 dp —4,796 dT
Pendule 1821 dm 8,912 dp — 5,183 dT

1 Survey of India, 5, p. [72], 1876.
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L'exactitude de ces formules étant admise, on pourra, en
suivant le raisonnement inverse de celui de la fin du §2, en
tirer les valeurs de A et de ^lt. Nous avions en effet établi
que :

dni tATr-Yi)dp- (A-)-0,210
l! IrfT

tandis que nous avons maintenant une expression de la forme :

dm -C dp—Y) d'Y

On en déduit facilement que :

1b=g^
2 0,784

et

A t;— -Bo
On obtient, d'après ces formules, et par une voie un peu

tortueuse, il faut le reconnaître, les valeurs suivantes de A et
de ^-B pour les pendules de Basevi :

Pendule 4 0,0050, 0,0001,
Pendule 1821 0,005 4,, 0,0003"

Moyennes 0,005 2, 0,0062,

Remarquons toutefois que nous ne pouvons pas simplement

adopter la moyenne de ces coefficients des pendules de
Basevi pour les pendules aplatis des horloges astronomiques.
Ce qui le montre bien, c'est que nous avons obtenu pour le
coefficient A de ceux-ci, par évaluation directe, A «1-f-«e
-j-a3 0,009 77, tandis que pour les pendules de Basevi nous
venons de trouver A =0,005 2-.

Nous ne pouvons pas même adopter, pour nos pendules
d'horloges, le rapport 4-B/A des constantes de Basevi, car ce*-

pendules de Basevi sont extrêmement aplatis: non seulement
leur lentille, mais aussi toute la tige; de sorte qu'on peut
s'attendre à ce que, pour eux, ce rapport soit plus grand que
pour nos pendules d'horloges.

La seule conclusion que nous pouvons tirer de ce qui pré-
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cède est que la constante yB relative au pendule à mercure
de Riefler est comprise entre celle que nous avons obtenu"
pour le pendule ordinaire (cylindrique) et celle des pendules
Basevi (très aplatis).

Il nous faut donc avoir recours à une interpolation pour
obtenir une valeur approchée de cette constante. Voici les
chiffres dont nous disposons (nous considérons, non pas A

entier, mais a{ -f- a3, parce que les pendules de Basevi ne
contiennent pas d'air enfermé) :

cri 4- az —B
2

Pendule ordinaire 0,01147 0,001 8a

Pendule Riefler. 0,009 70 x
Pendule Basevi 0,005 25 0,0062,

Pour l'interpolation même, il m'a paru plus rationnel de

procéder, non pas par interpolation arithmétique, mais par
interpolation géométrique (si je puis dire ainsi), car j'ai fail
intervenir, non les différences de ces quantités, mais leur^
rapports, en posant :

1147 / 970
__ s/182

970/525 ~621/a;

Ce qui donne pour le coefficient cherché :

Pendule Bieller Ìb £ 0,00269
2

.». Résultats.

Nous avons, dans les deux paragraphes précédents, cherché
à évaluer tant bien que mal la part des diverses causes dans
le coefficient barométrique des pendules, en utilisant tous les

renseignements que nous avons pu recueillir sur ce sujet.
Voici les chiffres obtenus :

Poussée de l'air déplacé
Inertie de l'air enfermé
Inertie de l'air extérieur entraîné

Pendule ordinaire Pendule Riefltr

«,-- 0,00552
a%= 0 00054
a3= 0,005 95

0,007 5,
0,0000;
0,002 1,

A 0,0120, 0,00977
Viscosité }B= 0,00182 0,0020,,

Coefficient barométrique b k + \B 0,01383 0,012 y
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Il ne faut, pas se dissimuler toutefois que ces nombres

reposent sur des bases bien précaires. Nous avons heureusement

une vérification à notre disposition. On a, en effet, de
divers côtés, déduit des observations directes des marches, la
valeur du coefficient barométrique d'un assez grand nombre
de pendules. La liste la plus complète de ces coefficients est
celle donnée par M. Hartmann1.

Parmi les dix-huit coefficients barométriques qui y sont
cités, quinze se rapportent à des pendules à mercure
ordinaires, trois à des pendules à mercure système Riefler ou à

des pendules à gril. Les moyennes respectives des coefficients
de ces deux catégories sont: -(-0,0139 et -{-0,0122. On voit
que l'accord avec les valeurs théoriques est très bon. trop
bon même, et on doit sans doute l'attribuer en partie à un
heureux hasard.

Quoi qu'il en soit, nous sommes autorisés par ce bon
accord, à admettre provisoirement, les valeurs obtenues, et
cela d'autant plus que nous n'avons nullement besoin ici de
connaître très exactement ces constantes : une approximation
assez grossière nous suffit.

Les valeurs de A et de yB déduites ci-dessus étant admises,
on en tire immédiatement l'influence de l'air ambiant sur la
compensation des pendules de ces deux types, à l'aide des
formules de la fin du § 2.

Nous avions, pour un pendule oscillant à l'air libre :

B\A+ ^B\dp- A + 0,216^ rfTt/ m

L'influence de l'air sur la compensation est donc, en appelant
6 la correction à apporter à la marche pour une augmentation

de température de l'air ambiant tie 1° :

It
B — / A -{ 0.210^)

Pendule ordinaire
Pendule Riefler

o — 0,033
o — 0,027

Quant aux pendules sous pression constante, nous avions:

dm= +0,784 -rfT
1

o

1 Hartmann. « Ueber den Gang einer mit Riefler' sehen Pendel versehenen
Uhr», Leipzig. Ber. (math. phys. Gl.), 4'.). 1897, p. ü6i.
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Ce qui donne, pour un changement de température de l'air
de 4° :

Pendule ordinaire o -|- 0,004
Pendule Riefler e -[-0,005

Ces deux derniers nombres sont valables pour une densité.
donc une pression normale. S'il y a vide partiel, il faut encoiv
les multiplier par /8 y p; ils sont alors négligeables.

8 est la correction à apporter à la marche pour une augmentation
de température de l'air de 1°. La variation correspondante
de la longueur du pendule simple synchrone s'obtieni

par ((>), chapitre Ie

43200
L\l

l
d'où:

il l /x 0,000 023XO
43200 '

On a en particulier pour des pendules oscillant à l'air
libre :

Pendule ordinaire a / — / x 0,000 000 8
Pendule Biefler. il — /x0,0000006

Il faut donc modifier en conséquence les résultats obtenm
dans les deux premiers chapitres de ce travail. Toutes les

valeurs de — qui y figurent sont incomplètes, puisqu'elles ne
dt

tiennent compte que du solide et du mercure, et pas de l'ai'
ambiant. 11 faut partout y ajouter la valeur il /XO,000023X'
que nous venons d'obtenir. Ce nouveau terme pourra partoui
être réuni au terme h. Pour tenir compte de l'influence
de l'air ambiant sur la compensation, il suffit donc de
remplacer, dans les conditions de compensation, le terme la par
l(a + 0,000023X8), c'est-à-dire par l (a — 0,0000008) pour les
pendules ordinaires, et par l(a — 0,0000006) pour les
pendules Biefler, s'ils oscillent à l'air libre.

Cette modification s'applique aussi à la quantité auxiliaire y
qui figure dans les formules d'approximation du chapitre Ier.
Par contre, la formule de correction (chap. 1er, § 5) ne doit
pas être modifiée, car le terme en 6 s'en trouve éliminé en
même temps que le terme U.

L'air entre aussi en ligne de compte pour l'effet de
stratification ; mais son action est ici très faible et on peut presque
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toujours la négliger. L'air déplacé et l'air entraîné sont, par
suite du gradient, à une température différente de celle au
point de suspension. On peut prendre / comme distance
moyenne approximative de cet air à la suspension. Les

valeurs de — calculées au chapitre III sont done incom-
ih. l

plètes; il faut leur ajouter la correction —£2X0,000023X8.
Cela revient à y remplacer partout le terme l- - par le terme

I- (~ — 0,000023X8). D'ailleurs pour tous les pendules à

mercure actuels, ce terme /-—- est le seul important dans la
<¦)ji z.

valeur de —. On voit par là que l'air ambiant a pour effet
ih

d'augmenter le coefficient de stratification de ces pendules

d'environ — tie sa valeur, c'est-à-dire tie —0,25— 0,03. Or les
8 8

variations de gradient ne dépassent guère 1°,5 de part et
d'autre de l'état moyen. L'effet dont il s'agit ici est donc à

peu près à la limite de ce que nous étions convenus île
négliger (effet maximum de 0\05 sur la marche).

On pourra donc négliger cette influence dans le calcul ties
pendules doublement compensés : mais, il faudra tenir compte
de celle de l'air ambiant sur le coefficient thermique, telle
que nous l'avons obtenue ci-dessus. Le calcul, ainsi modifié,
se ferait de la même manière, et les résultats ne seraient pas
essentiellement différents.

'-'Il RI I.I.. SO( SC. NAT. T. WW11
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RESUME DES RÉSULTATS

(r^es notations sont expliquées à la page 21t.)

1. Pour un pendule à mercure usuel, la quantité de
mercure peut se calculer approximativement par la formule :

p 2itr2ò/ PAP (Form. 12, p. ±h\
'( — 2 a | — a

Si la tige et le vase sont en acier (a—=a, =0,000011) on ;i

631r2 | 3/J>

2. La quantité de mercure à ajouter pour corriger la
compensation d'un pendule à mercure usuel est donnée par :

ir»*8 /
An 2,44 Mil (l'i.p. 228, et 16, u 2""l

7 — 2a,— a 13,200

Pour un pendule en acier on a:

ip -.4620r*Aj«

3. Pour un pendule à mercure à vase cylindrique, la quantité
de mercure peut être calculée plus exactement en faisant

— 0 dans la formule de Wanach :

dt
dl, mh/, 2h l\— la lb )e (3,,, ¦>.',(.)

dt I) V 3 2/
La méthode à suivre est exposée à la p. 237. L'exactitude

du résultat dépendra principalement de l'exactitude avec

laquelle on connaît a.

4. Pour un pendule à mercure quelconque, on doit employer
la formule plus générale :

di =rla — — | i — h -f m (l d - d2 - t,) 11 (4, p M i

dt 1)
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5. L'action compensatrice du mercure est d'autant plus
grande que ce mercure est plus éloigné du milieu du pendule

(pointa la distance — de la suspension) et que la surface

libre du mercure est plus proche de ce milieu.

tî. Pour un pendule à mercure quelconque, le coefficient
de stratification se calcule par la formule générale:

dl I2
lhi

rfx 2 D1

Quand le pendule est à vase cylindrique, on a les formules
6 et 6bis, p. 265.

7. il est possible tie construire un pendule à mercuri'
compensé simultanément pour les variations de la température

et pour celle du gradient. Pour que les dimensions du
pendule soient acceptables, il faut qu'une partie du mercure
soit au-dessus de la surface libre et y soit maintenue par la

pression atmosphérique. (Voir p. 280-285.)

8. On peut tenir compte de l'elfet de l'air ambiant sur la

compensation thermique en ajoutant au second membre îles
formules sous 1, 3 et 4, le terme :

/ \ 0,000 023\ 8 ip. .iii'n

où on a en particulier :

<
Sous nue pression constant*

POUI" Uli pendule à mei'CUre A l'air libre .l'une atmosphère

ordinaire e — 0,033 o | 0,004
Pour un pendule à mercure

Riefler 0 —0,027 8= I 0,005
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