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Séance du 5 janvier 1906

DISCRININANTS ET SOLUTIONS SINGULIERES

Par L. ISELY, PrROFESSEUR

Dans la séance du 21 novembre 1878 de la Société

neuchateloise des sciences mnaturelles, Jean-Pierre

Isely faisait une communication du plus haut intérét
sur les solutions singuliéres des équations différentielles

du premier ordre a deux variables. Cette communication

parut «n extenso dans le tome XI du Bullefin. Aprés
avoir rappelé la nature de ce genre d’intégrales, dont

Taylor, le premier, constata l'existence!, J.-P. Isely
montre comment on peut les déduire directement de

I’équation proposée elle-méme, sans passer par la
solution générale. Cie procéde, vraimenl ingénienx,

consiste 4 exprimer que cette équation, assimilée a

une équation algébrique par rapporl a la dérivée,

admet une racine double. Les anciens traités de Cal-

cul infinitésimal, celui de Sturm entre autres, n’en

faisaient nullement mention. Par contre, les auteurs

plus récents, Hotiel, MM. Goursat et Humbert, etc.,

parlent de cette méthode abréviative avec plus ou

moins de détails. Nous y revenons aujourd’hui, en la

simplifiant par 'emploi des discriminants et en I'éten-

dant aux équations aux dérivées partielles.

Soit, tout d’abord, I'équation différentielle ordinaire

du premier ordre et d’'un degré quelconque

[ (@, y,p)=0,

1 Methodus incrementorum directa et inversa (Lond. 1715).



— A —

# étant la variable indépendante, y une fonction de

cette variable et p la dérivée Z—y
x

L’intégrale générale de cette équation est une expres-

sion de la forme
F(z,y,C)=0,

(. désignant une constante arbitraire.

Au point de vue géométrique, cette intégrale repré-
sente les lignes planes, en nombre infini, de para-
meétre C, dites courbes intégrales, chacune d’elles cor-
respondant a une valeur particuliére attribuée a C.

Ainsi, 'équation différentielle |

vdo—+ydy=dyy «*+y*—a
admet la solution générale

2Cy+ G+ a2—a2=0,

qui représente une famille de paraboles.

Mais a coté de 'intégrale générale et des solutions
particuliéres qu'on en déduit en donnant a la con-
stante des valeurs particuliéeres, une équation différen-
tielle du premier ordre peut avoir une autre intégrale,
dite solution singuliére!, qu’il serait impossible d’ob-
tenir en particularisant la constante arbitraire qui -
figure dans l'intégrale générale.

Par exemple, I’équation précitée est vérifiée par la
solution |

22yt — a2 =0,

qui représente une circonférence de rayon @, ayant
son centre placé a lorigine des coordonnées. Cette

L« Quee est singularis queedam solutio Problematis.» Metho-
dus incrementorum, page 27.
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circonférence est U'enveloppe des paraboles définies par
I'intégrale générale.

Du reste, il esl facile de prouver que la solution
générale et la solution singuliére sont les seules solu-
tions d’'une équation diftérentielle de cette espéce.

On peut obtenir la solution singuliére d’'une équa-
tion différentielle ordinaire du premier ordre en sui-
vant deux voies essentiellement différentes: ou bien,
on la déduit de I'intégrale générale; ou bien, on la
tire de I'équation différentielle proposée sans intégrer
préalablement celle-ci. Nous allons exposer ces deux
méthodes. |

La premiére consiste a éliminer la constante C
entre I'intégrale générale et sa dérivée par rapport a
cette constante, égalée a zéro, ou bien entre cette
‘méme intégrale et sa dérivée par rapport a ¥, égalée
a Vinfini. Le résultat de cette élimination, qui ne con-
tient pas de constante arbitraire, est précisément la
solution singuliére de I'équation différentielle pro-
posée. . |

Alnbl dans lexemple ci-dessus, l'intégrale géné-

L’application des régles précédentes donne immé-
diatement

’

OF gy 190—0 on OF. —2C =00,
o | oy
« Cette derniére équation ne conduirait qu’a la valeur
illusoire y=occ. La premiére donne G=—y, et, par
Sl]lte; .ng—f—ygf—”’aQ,

~qui est la solution singuliére?. »

1 Cu, STURM, Cours d’_A nalyse, 6me éd., t. I, p. 75.
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La solution singuliére, résultant de I'élimination
de C entre I'intégrale générale F (x, y, C) =0 et I'équa-

tion dérivée %:O, représente toujours I'enveloppe

des courbes intégrales. Cette remarque va nous con-
duire a un autre procédé d’obtenir la solution singu-.
liere, procédé qui n’exige pas la connaissance préala-
ble de l'intégrale générale.

L’équation différentielle proposée

f(z,y,p)=0

donne, pour chaque point (z,y) du plan, les coeffi-
cients angulaires p des tangentes aux courbes inté-
grales qui passent par ce point. Si ce dernier est
dans le voisinage immédiat de l'enveloppe, les deux
courbes intégrales qui y passent sont trés voisines et
les coefficients angulairés des tangentes a ces deux
courbes sont eux-mémes fres peu différents. Mais si
(z,y) est sur I'enveloppe, les deux courbes intégrales
se confondent, et, par suite, I’équation proposée, trai-
tée algébriquement, a, en p, une racine double. La
solution singuliere s’obtiendra donc par 1’élimination
de p entre les deux équations

f(i?, y?p):(J?
of _p

* ap

Nous nommerons, pour abréger, la relation ainsi
formée,
D=0,

Véquation discriminante de 'équation proposée. Son
premier membre D est le discriminant de la fonction
f(z,y,p). L’algébre nous le fournit immédiatement,
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quel que soit le degré de cette fonction par rap-
port a p.
Reprenons, par exemple, I'équation différentielle
wdr - ydy =dyy/ 22 -2 — o

Elle peut aussi s’écrire

(x +py)?=p* (22 4-y* —a?),

ou bien
(22 —a2)p? —2axyp — 22 =0,

d’ou I'équation discriminante
22 (2?92 —a®)=0.
Le second facteur, égalé a zéro, donne la solution

singuliere
: 2 | 42— g2
P2 P =t

trouvée précédemment.

L’éguation discriminante D=0 convient aussi aux
points de rebroussement des courbes intégrales, car
en chacun de ceux-ci I'équation f(z,y,p)=0 a évi-
demment deux racines p égales. C’est méme le cas
normal, les cas ou une solution singuliére se présente
devant étre considérés comme exceptionnels!. En d’au-
tres termes, les courbes intégrales n’onl en général
pas d’enveloppe. La relation D=0 pourrait, au reste,
convenir au lieu des points de contact de deux
courbes intégrales, non infiniment voisines entre elles.

Soit, par exemple, I'équation différentielle.

4 (%)3— 6 (%>2+ 9 (y — o) — 0.

1 Ep. GoursaT. Cours d Analyse mathématique, t. IT, p. b15.
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Formons I’équation algébrique en p
4p? —6p*+9(y —zy=0.

Le premier membre est une fonction rationnelle
entiére de p du troisieme degré. Or, on sait que toute
fonction de la forme

[ (0) =ay8°+ 30, 2%+ Bagz+- o
a pour discriminant
D=3dlal+6a,a,a0y0;— Lagas—4aday— aya,

polynome homogeéene et isobarique relativement aux
- coefficients, de degré 4 et de poids 6.
Dans notre cas,

L’équation discriminante sera donc
144 (y — ) (2 — 9y +92)=0,

d’ou les deux solutions
w:xmy:$+§-

11 est facile de constater que la premiére ne con-
vient pas a 'équation proposée. (est une solution
étrangére. La bissectrice des axes, définie par la rela-
tion y== est alors le lieu des points de rebrousse-
ment des courbes intégrales.

En effet, I’équation différentielle en question est du
type de Lagrange. Son intégrale générale

2 (@ —C)2 -3 (y—C)2=0
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représente une famille de courbes du troisiéme ordre,
dont les points de rebroussement ont pour coordon-
nées x—y=_. Le lieu de ceux-ci est donc bien la
droite y —=. | -

L’autre solution, au contraire, vérifie I’équation
proposée. L’enveloppe des courbes intégrales est donc
la droite y=ua-} g, paralléle a la bissectrice y=ua1.

Appliquons encore cette méthode a 'exemple sui-
vant, emprunté au Recueil d’exercices de Frenet (5me éd.,
question 579):

A +4p?) (y —ap)* —a? p*=0.

Cette équation est du quatriéme degré par rapport
a la dérivée. Développée et ordonnée selon les puis-
sances décroissantes de p, elle devient .

w?pt—2xy PP + (2 +y* — o®) p* — 2ay p+ y* =0.
Or, le discriminant de la fonction big uladratique
[ () =ayx* - a, 23 ay 22+ as 2 a,
est donné par la relation
21D =4 A3 — B2,

A et B étant le premier et le deuxiéme inwvarianis de
f{(x), a savoir: -
R - &
A=a;—3a,0,+120,a,, _ _
B=2Taja,+2Tag 05+ 205 — T2y a50, — Yy aga;.
Le discriminant ainsi obtenu est du sixiéme degré

relativement aux. coefficients de la fonction et de
poids 12.

1 G. HumBerT. Cours d’4Analyse, t. 11, pp. 269 et 28d.



Dans notre cas

ay :an, CL1:a3i—m2x?/, ag#agi’_l_yg__ (19, a!*:yg,
et, par suite,

— @y —a,
B=2(22+} 42— a?)® 108 a2a?y?

On conclut de la que
D=—16a%22y? (22 + 4% — a®)? 4 27 a®22y?,
d’ou I’équation discriminante :
Le facteur entre crochets donne la solution singu-
liere
(a2 4y — ) 42T aay? =0,
ou (02 — 22 — ) =27 a?2%y?,
ou, plus simplement encore,

2
8.

2
x® —H/s —
(Cette courbe est I'hypocycloide a quatre rebrousse-

: : , a
ments, engendrée par une circonférence de rayon 7

roulant sans glissement a U'intérieur d’un cercle fixe
de rayon a. Quelques auteurs lui donnent aussi le
nom d’astroide. -

En mettant ’'équation proposée sous la forme

y__px+V1+PQ
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on est conduit & intégrer une expression du type de
Clairaut. On trouve ainsi pour l'intégrale générale

(.
Y11 C2
qui définit une famille de droites, dont ’hypocycloide
précédente est I'enveloppe. La portion de chacune de
ces droites comprise entre les axes, supposés rectan-
gulaires, a une longueur constante a. Celte courbe
est donc I'enveloppe d’une droite de longueur con-
stante, qui se meut en s’appuyant sur deux droiles
fixes rectangulaires. : _

Les équations aux dérivées partielles se prétent a
des considérations analogues. Soit, par exemple,
I'équation du premier ordre a deux variables indé-
pendantes | | |

y =Gz +

f@,y,2p q)=0,
en posant, pour abréger,

0z 07
P—-gg g== E’/
Cette équalion est susceptible de trois sortes de solu-
tions, savoir :
10 Une solution renfermant deux constantes arbi-
traires. C'est Vintégrale compléte.
20 Une solution dépendant d’'une fonction arbi-
traire. G'est 'énlégrale générale.
30 Une solution qui ne contient rien d’arbitraire.
(est 'indégrale ou solution singuliére.

Comme M. Goursat I'explique fort clairement, il
n'y a pas de distinction essentielle entre lintégrale
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générale et I'intégrale compléte. Au contraire, la solu-
tion singuliére ne dépend pas du choix de l’mtegrale
complétel.

Lagrange a montré? comment on peut déduire de
I'intégrale compléte toutes les autres solutions de
I'équation proposée, a l'aide de simples différentia-
tions et éliminations. Rappelons succinctement la
marche suivie par lillustre analyste.

Soit

F(z,v,2a,b)=0

Pintégrale compléte. La solution singuliére, s1 elle
existe, s’obtiendra en €liminant les constantes o et &
entre les trois équations

oF oF

F=0, —=0, —=0.

da ob
Quant & I'intégrale générale, elle provient de I'élimi-
nation théorique des mémes constantes entre les rela-
tions |

L @) =0, b=1 (@),

¢ étant une fonction arbitraire.
Un exemple classique nous est fourni par I'équation

(€ —a)+ (y — b)* 422 =R,

qui définit une double infinité de sphéres de rayon
donné R, ayant leurs centres dans le plan des zv.
Elle peut étre considérée comme l'intégrale compléte
de I’équation aux dérivées partielles non linéaire

(P2 1) 2 =R,

1 Cours d’Analyse mathématique, t. II, p. 556.
2 Méwmoires de U'Académie de Berlin, 1774, p. 266.
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obtenue par I’élimination de a et de b entre I'équa-
tion proposée et ses dérivées par rapport & z et a y,
et qul exprime que dans toutes ces sphéres la longueur
de la normale est constamment égale a R. |

Pour obtenir I'intégrale générale, remplacons b par
¢ (#); ce qui donne

(0—af+-[y — s @] 4= =R,

équation qui convient a celles d’entre ces sphéres
dont le centre parcourt la courbe b=¢(a) du plan
des zy. Il suffira ensuite dellmmm a en cetie rela-
tion et la suivante

z—a+[y—¢(@)]¢ (0)=0.

La surface, représentée par la solution générale
ainsi obtenue, a recu le nom de surface-canal, di a sa
forme. Elle sert d’enveloppe aux spheres en question,
chacune de celles-ci la touchant le long d’un grand
cercle.

Les dérivées partielles de I'intégrale compléte par
rapport aux constantes qu’elle renferme sont i

oF
—=—2(z—a),
oa @ )
oF
=2y —b).
= (y—190)

Elles s’annulent pour a=z et b=y. Ces valeurs,
portées dans l'intégrale compléte réduisent celle-ci a
7 =B,

ou z2=-1R,



— 14 —

solution singuliére. Cette derniére consiste donc dans
I'ensemble de deux plans paralléles & celui des xy,
et tangents a la série doublement infinie des sphéres
comprises dans l'intégrale compléte.

Par cette méthode, c’est 1a son défaut capital, il
faut, pour former la solution singuliére, déterminer
préalablement I'intégrale compléte de I’équation pro-
posée. Elle n’est donec réellement avantageuse que
dans les cas, fort peu nombreux, ou cette détermina-
tion se fait simplement; par exemple, dans celui de
I'équation de Clairaul généralisée

q),

dont 'intégrale compléte est

r=uax -+ by-to(a,b),

comme on le vérifie aisément. Cette intégrale repré-
sente une famille de plans dépendant de deux para-
métres arbitraires . a et b. L’enveloppe de ces plans
s’obtient par I'élimination de a et b entre

s—ar by o, 0), 2+ 27 —0, 4% —o.

Cette enveloppe, qui est une surface non développa-
ble, est la solution singuliere de ’équation proposee.

Pour avoir [l'intégrale générale correspondante,
nous établirons entre « et & une relation arbitraire,
b=1 (a), et chercherons I’enveloppe des plans

s =ax -y () +ola, b (@)

Cette enveloppe est une surface développable tangente
a la solution singuliére tout le long d’une certaine
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courbe, dont la nature dépend de la fonction arbi-
traire ¢ (a).

Mais, en général, la recherche de l'intégrale com-
pléte, méme dans les cas de possibilité, présente de
grandes difficultés. Aussi est-il préférable, dans les
problémes qui n’exigent que la connaissance de la
solution singuliére, de déduire celle-ci directement
de 'équation différentielle elle-méme. On peut alors
opérer comme il suit. |

L’intégrale compléte de I'équation du premier
ordre |

[ y,2,p,9)==0

renferme deux constantes arbitraires o et b. En fai-
sant varier ces paramélres, on obtient une double wnfi-
nité de surfaces, dites les surfaces intégrales de ’équa-
tion proposeée.
Sotit
F(x,y,2,a,b)=—0

cette intégrale compléte. On en déduit I'intégrale
générale en établissant entre « et b une relation quel-
conque, b=y (aj, puls en éliminant a entre les deux
équations

~ OF | oF ,
Flz,y,2,0,¢()]=0, —+ —¢' (0)=0.
da  dy¢

Le premier membre de la derniere étant la dérivée
de la fonclion
F [a:, y} Z, 0, r?("“")]7

a un seul paramétre, par rapport a «, le résultat de
I'élimination sera l'enveloppe de la série simplement
infinie des surfaces intégrales remplissant la condition
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b=v¢(a). Du reste, chacune des enveloppées touche
leur enveloppe commune tout le long d’une ligne,
appelée caractéristique.

La solution singuliére, s’obtenant par I'élimination
de a et b entre |

F(z,y,z,a, b)=0, %‘:O, @:0,
oa ob

est ’enveloppe du systéme doublement infini des sur-
faces intégrales, chacune de celles-ci la touchant en
un nombre limité de points (points caractéristiques). De
plus, il est facile d’établir que la solution singuliére
est aussi 'enveloppe de toutes les surfaces donneées
par l'intégrale générale.

Les exemples cités précédemment a Pappui de la
méthode de Lagrange confirment, jusque dans leurs
‘moindres détails, ces faits géométriques.

Considérons maintenant une surface intégrale pas-
sant par le point donné (x,y,z) de P'espace. L.’équa-
tion du plan tangent & la surface en ce point est de

la forme )
L—z2z=pX—a)+q—y),

les coefficients angulaires de ce plan étant liés par la
relation |

f(xa Y2, D5 Q):O

On en conclut qu’en chacun des points ou l'une ou
lautre enveloppe (solution générale ou singuliere)
touche une des surfaces intégrales (solution com-
pléte), les valeurs communes de «,, z, pet ¢ doivent
vérifier 1'équation différentielle proposée. |

- Deux surfaces intégrales quelconques se rencon-
trent en général suivant une certaine ligne en cha-



cun des points de laquelle les plans tangents a ces
surfaces sont ordinairement différents. Mais si ces
derniéres sont infiniment voisines, leur intersection
est une caractéristique, courbe de contact de I'inté-
grale compléte avec son enveloppe (solution géné-
rale). Les plans tangents se confondront donc a la
limite, et il en sera de méme aux points caractéristi-
ques, points de contact de l'intégrale compléte avec
la solution singuliére. Les parameétres directeurs de
ces plans étant alors respectivement égaux, I’équation

f(x, 'ya 2‘7 pa (1) "-:O
admettra deux racines doubles en p et en ¢ simulla-
nément.
De la découle la regle suivante:

Pour avoir la solution singuliere de I équalion anx
dérivées partielles du premier ordre '

f(z,y,2,p,9) :0,

on assimile celle-ct ¢ une équation alqebmque en p et q,
puis, on exprime en posant

D, =0,

ou D, est le discriminant de lu fonction [ relativenment a
P, que deux valeurs de p sonl égales enlre elles. Celle
condilion fournil alors les valeurs correspondantes de q en
fonction de x,y,z ; el, comme deux de ces derniéres doi-
vent étre éqales, on obtiendra la solution singuliére cher-
chée aw moyen de la relation

D, , =0,

dont le premier membre est le discriminant de D, par
rapport a q.

2 BULL. 80C. 8C. NAT. T. XXXI1V
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Soit, par exemple, I'équation non linéaire
oz
==Y
( LT J J) e ! Sy
Rendons-la algébrique en posant

iz___ et é-%——
ax——? 8y_q’

ce qui donne
2 (pr+-qy)p=2-1qy,

ou, en ordonnant selon les puissances décroissantes
de p, )
2 ne 3 2] ——
2y* p*+qy*p —2—qy=0.
On a alors successivement

Dy =y* (y* >+ 4oy g+ 4x2);
vt ¢+ ey g+ 4oz=0
Dy, g=kay® (2 — 2.

Ce discriminant, égalé a zéro, donne Ia solution sin-

uliere

5 x—2y? =0,
x

Y

Il est facile de voir, en effet, que cette relation, qui
ne renferme rien d’arbitraire vérifie bien I'équation
proposée.

Pour rendre plus manifeste la grande simplicité de
la régle ci-dessus énoncée, appliquons-la a un certain
nombre d’exemples emprunlés au hasard aux ouvrages
d’analystes contemporains 2.

ou ==

2

1 FrENET. Exercices, question 619.

2 FreneT. Recueil d’exercices, 2ve partie. — Brany. Exercices
méthodiques de caleul integral. — HoligL. Cours de calcul infini-
testmal, t. I11. — HuomBERT. Cours d’analyse, t. II. — GOURSAT.

Cours d’analyse mathématique, t. 11.
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Reprenons tout d’abord I'équation déja traitée a
propos de la méthode de Lagrange, dont le point de
départ est lintégrale compléte. Cette eqmtlon non
linédaire était la suivante:

P s=Re

Ici ' Dyi=A conduit a la relation
(¢*-}1)22— R2=0,
d’ou D, ,=2*(R?—22)=0

Le second facteur, égalé a zéro, donne

e
solution singuliére.

La solution étrangére z =0 représente le plan des
ay, lieu des points de contact des surfaces intégrales
(sphéres) comprises dans l'intégrale compléte. En
effet, au point ou deux de ces surfaces non infiniment
voisines se touchent, les plans tangents se confondent
aussl, sans que ce point appartienne a 'enveloppe.

Soit, en second lieu, I'équation de Clairaut généra-

lisée _
r=px—qy+p*+q°,
ou  pPApr4+¢Hqy—2=0.

[.e discriminant du premier membre relativement a
p est _
D, =a*— 4(¢*4-qy —2),
~d’ou 'équation algébrique en g
4q*+bdgy —a?—42=0.
On en déduit

p}—ﬂﬁ+y+4@ﬂ0
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La solution singuliére est donc la quadrique

22+t hr=

enﬁeloppe des plans

2 = ax 4 by - a* +- b,

intégrale complete.

Dans certains cas, un simple artifice de calcul ren-
dra possible 'emploi de cette méthode purement al-
gébrique. Considérons, par exemple, I'équation

23+(xiz_|_ ) 22 a &_zéf
ox oy

qui devient, en posant

o0z 07
I}’)’ ——
ox oy

=y

el en ordonnant par rapport a p,

(w2* - aq) p+2* (2 +qy) =0.

Multipliant de part et d’autre par la différence con-
juguée du premier membre, il vient
(222 4 ag)? p? — 2* (2 + qy)* =0,
d’ou D, =12* (21 qy)? (x2® - ag)?.
On a donc, pour déterminer ¢, I'équation
(2 +qy) (@2* +-ag) =0,
ou  ayq4-2(atxy2) gt 222 =0.

On en déduit
Dy, =2 (0 — xy2)®.



Le second facteur, égalé a zéro, donne la solution
singuliére |
ZUG ==l :

Une équation aux dérivées partielles du premier
ordre, donnée a priori, n”admet pas d’une facon nor-
male d’intégrale singuliére. En d’autres termes, les
surfaces intégrales n’ont qu’exceptionnellement une
enveloppe commune. Dans les cas ol cette solution
n’existe pas, les équations qui servent & la détermi-
ner sont incompatibles. Il en est ainsi de 'équation

=),

dont I'intégrale compléte est
z=az—+[(a)y+b.

L’équation EaE':O se réduit alors a 1=0.
ob |
L’emploi des discriminants conduirait a la méme
conclusion., -
La méthode algébrique que nous venons d’exposer
s’étend facilement, au point de vue théorique, au cas
plus général d’'une équation du premier ordre a n
variables indépendantes. On arrive alors a des résul-
tats intéressant la géométrie des hyperespaces.

Soit une équation de la forme

‘ f(zn Lyy Lyy ooy Xn, Pys Pay "'7pﬂ) :07
ou z est une fonction des » variables indépendantes
i oz -
Ty, XLgy ...y Ln, €6 0 l'On @ p,=——; h recevant toutes

a_:I-‘h
les valeurs entiéres de 1 a n.



1’intégrale compléte de cette équation est une rela-
tion entre z et les x,, qui renferme n constantes arbi-
traires. ("est donc une expression de la forme

F (2, 2y, Ly coey @ny gy oy ooy ) =0,

On peut en déduire toutes les aulres solutions de
I'équation proposée, en particulier I'intégrale singu-
liere lorsqu’elle existe. 11 suftit, pour obtenir celle-ci,
d’éliminer les constantes arbitraires entre I'équation
=0 et les équations dérivées

oF or ok
==, = - : =),

oa, oty od,

Proposons-nous, par exemple, d’intégrer I’équation?

Z:pi St‘i ‘}_palﬂg‘l— e “_pnwn”l_f(p1)p2? ey p”)’

qui peut étre considérée comme la généralisation de
celle de Clairaut. On a une intégrale complete en
prenant

ve=ty o o Xy o 1 a Ba 1+ [(Ay, gy ooy ),

iy, ty, ..., ¢, 6tant des constantes arbitraires; car cette
relation donne

p,j :“11 Z}QICIQ-‘ v0 ey ?.)n.:(’ﬂ)

et ces valeurs de z,p,, py, ..., p. vérifient bien la pro-
posée. La solution singuliére s’'obtiendra en éliminant
les n constantes entlre celte intégrale compléte et ses
dérivées relalives a, a,, d,, ..., t,.
Supposons, pour fixer les idées, la fonction homo-
géne
[(P1s Pas - Py =P+ D2+ P55

1 FRENET. Exercices, dve éd., question 714,
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dans le cas de trois variables indépendantes. L’équa-
tion proposée deviendra

2=py &y + Py X+ p3 X3+ P+ P2+ 5

Elle admet I'intégrale compléte

r== g By g Gy g Ty + a3 - ay -

Eliminons maintenant les trois constantes a,, a,, a;

- enfre cette relation et les suivantes: . ~
X + 2 )= 07
Ly 209 =1,
x5+ 2a,=0.

Nous obtiendrons ainsi la solution singuliére

hetaf+afFat—0,

qui, dans un espace a quaire dimensions, serait l'en-
veloppe des surfaces (hyperplans) définies par l'inte-
grale compléte.

Pour appliquer la méthode des discriminants, nous
considérerons l’équation proposée

Py %y + po T+ Py s+ pi -+ ps +ps —2=0

comme algébrique en p,, et nous exprimerons que p,
est une racine double en posant

s — 4 (py 3+ ps 25+ ps+p5—2) =0,
ou  4pi+ 4pyxy+ 4ps+hpyxy— 2] — 42=0.

Exprimons maintenant que p, est une racine double
de cette nouvelle équation, ce qui donne

Apit-dpyxy— a2 — ) — 42 =0.
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Enfin, la condition pour que p; soit une racine
double de cette derniere équation est

4ot a2} 4ot =0,

solution singuliére. Le grand avantage de cette
meéthode sur la précédente (celle de Lagrange) s’aper-
coit de nouveau aisément. On y procéde a la déter-
mination de la solution singuliére sans connaitre préa-
lablement I'intégrale complete.

Nous reviendrons prochainement sur I'utilité des
discriminants dans la recherche des solutions singu-
lieres des équations différentielles d’ordre supérieur
au premier.
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