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Séance du 5 janvier 1906

DISCRIMINANTS ET SOLUTIONS SINGULIERES

Par L. ISELY, Professeur

Dans la séance du 21 novembre 1878 de la Société
neuchàteloise des sciences naturelles, Jean-Pierre
Isely faisait une communication du plus haut intérêt
sur les solutions singulières des équations différentielles
du premier ordre à deux variables. Cette communication
parut in extenso dans le tome XI du Bulletin. Après
avoir rappelé la nature de ce genre d'intégrales, dont
Taylor, le premier, constata l'existence1, J.-P. Isely
montre comment on peut les déduire directement de

l'équation proposée elle-même, sans passer par la
solution générale. Ce procédé, vraiment ingénieux,
consiste à exprimer que cette équation, assimilée à

une équation algébrique par rapport à la dérivée,
admet une racine double. Les anciens traités de Calcul

infinitésimal, celui de Sturm entre autres, n'en
faisaient nullement mention. Par contre, les auteurs
plus récents, Hoüel, MM. Goursat et Humbert, etc.,
parlent de cette méthode abréviative avec plus ou
moins de détails. Nous y revenons aujourd'hui, en la

simplifiant pai' l'emploi des discriminants et en l'étendant

aux équations aux dérivées partielles.
Soit, tout d'abord, l'équation différentielle ordinaire

du premier ordre et d'un degré quelconque

f(x>y.p)=Q.
1 Methodv.s incrementorum directa et inversa (Lond. 1715).



x étant la variable indépendante, y une fonction de

cette variable et p la dérivée —•
dx

L'intégrale générale de cette équation est une expression

de la forme
F(x,y,C) 0,

C désignant une constante arbitraire.
Au point de vue géométrique, cette intégrale représente

les lignes planes, en nombre infini, de
paramètre C, dites courbes intégrales, chacune d'elles
correspondant à une valeur particulière attribuée à C.

Ainsi, l'équation différentielle

xdx-\-ydy dy ]fx~ ~\~ V% — a%

admet la solution générale

2Q/ + C2 + a2 — x* 0,

qui représente une famille de paraboles.
Mais à côté de l'intégrale générale et des solutions

particulières qu'on en déduit en donnant à la
constante des valeurs particulières, une équation différentielle

du premier ordre peut avoir une autre intégrale,
dite solution singulière1, qu'il serait impossible
d'obtenir en particularisant la constante arbitraire qui
figure dans l'intégrale générale.

Par exemple, l'équation précitée est vérifiée par la
solution

as« + y* —c«==0,

qui représente une circonférence de rayon a, ayant
son centre placé à l'origine des coordonnées. Cette

1 « Quœ est singularis quœdam solutio Problematis. » Methodius

incrementorum, page 27.
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circonférence est l'enveloppe des paraboles définies par
l'intégrale générale.

Du reste, il est facile de prouver que la solution
générale et la solution singulière sont les seules solutions

d'une équation différentielle de cette espèce.
On peut obtenir la solution singulière d'une équation

différentielle ordinaire du premier ordre en
suivant deux voies essentiellement différentes : ou bien,
on la déduit de l'intégrale générale; ou bien, on la
tire de l'équation différentielle proposée sans intégrer
préalablement celle-ci. Nous allons exposer ces deux
méthodes.

La première consiste à éliminer la constante C

entre l'intégrale générale et sa dérivée par rapport à

cette constante, égalée à zéro, ou bien entre cette
même intégrale et sa dérivée par rapport à y, égalée
à l'infini. Le résultat de cette élimination, qui ne
contient pas de constante arbitraire, est précisément la
solution singulière de l'équation différentielle
proposée.

Ainsi, dans l'exemple ci-dessus, l'intégrale générale

était
2 Cy _j_ c% + ai _ ^ 0

L'application des règles précédentes donne
immédiatement

dF dF
— -2y+ 2C 0 ou —=2C^oo.
dC dy

« Cette dernière équation ne conduirait qu'à la valeur
illusoire y 00. La première donne C — y, et, par
SUlte'

a* + y* a«,

qui est la solution singulière1. »

1 Ch. Stürm, Cours d'Analyse, 6n,e éd., t. II, p. 75.
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La solution singulière, résultant de l'élimination
de C entre l'intégrale générale F (x, y,C) 0 et l'équa-

dF
tion dérivée — 0, représente toujours l'enveloppe

dC
des courbes intégrales. Cette remarque va nous
conduire à un autre procédé d'obtenir la solution singulière,

procédé qui n'exige pas la connaissance préalable

de l'intégrale générale.
L'équation différentielle proposée

f{x,y,p)=0
donne, pour chaque point {x, y) du plan, les coefficients

angulaires p des tangentes aux courbes
intégrales qui passent par ce point. Si ce dernier est
dans le voisinage immédiat de l'enveloppe, les deux
courbes intégrales qui y passent sont très voisines et
les coefficients angulaires des tangentes à ces deux
courbes sont eux-mêmes très peu différents. Mais si
(x, y) est sur l'enveloppe, les deux courbes intégrales
se confondent, et, par suite, l'équation proposée, traitée

algébriquement, a, en p, une racine double. La
solution singulière s'obtiendra donc par l'élimination
de p entre les deux équations

f(x,y,p) 0,

dp

Nous nommerons, pour abréger, la relation ainsi
formée,

D 0,

l'équation discriminante de l'équation proposée. Son

premier membre D est le discriminant de la fonction
f(x,y,p). L'algèbre nous le fournit immédiatement,



— 7 —

quel que soit le degré de cette fonction par
rapport à p.

Reprenons, par exemple, l'équation différentielle

x dx -f- y dy — dy |/#2 -\-y2 — a2.

Elle peut aussi s'écrire

(x -fpyf p2 (xa- -f î/2 — a9-),

ou bien
(x°- — a2) p2 — 2 xy p — «2 0,

d'où l'équation discriminante

a*(aj« + j/2 —o«) 0.

Le second facteur, égalé à zéro, donne la solution
singulière

x2 + 2/2 «2,

trouvée précédemment.
L'équation discriminante D 0 convient aussi aux

points de rebroussement des courbes intégrales, car
en chacun de ceux-ci l'équation f(x,y,p) 0 a
évidemment deux racines p égales. C'est même le cas

normal, les cas où une solution singulière se présente
devant être considérés comme exceptionnels 7 En d'autres

termes, les courbes intégrales n'ont en général
pas d'enveloppe. La relation D 0 pourrait, au reste,
convenir au lieu des points de contact de deux
courbes intégrales, non infiniment voisines entre elles.

Soit, par exemple, l'équation différentielle.

\dx/ \dx/
1 Ed. Goursat. Cours d'Analyse mathématique, t. II, p. 515.
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Formons l'équation algébrique en p

4p3 — 6p2 -f- 9 (y — x) 0.

Le premier membre est une fonction rationnelle
entière de p du troisième degré. Or, on sait que toute
fonction de la forme

f(x) a0 x3 -L- 3 ai x* -\- 3 a% x -\- «3

a pour discriminant

D 3 a\ a\ -f- 6 a0 ai «2 as — 4 a0 al — 4 al a3 — al a%

polynôme homogène et isobarique relativement aux
coefficients, de degré 4 et de poids 6.

Dans notre cas,

a0 i,ai — — 2,a2 0, a3 9(y — x). '

L'équation discriminante sera donc

144 (y — x) (2 — 9y -f 9x) 0,

d'où les deux solutions

y x et y x-\

Il est facile de constater que la première ne
convient pas à l'équation proposée. C'est une solution
étrangère. La bissectrice des axes, définie par la relation

y=rx est alors le lieu des points de rebroussement

des courbes intégrales.
En effet, l'équation différentielle en question est du

type de Lagrange. Son intégrale générale

2 (a — C)s + 3(y — C)2 0
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représente une famille de courbes du troisième ordre,
dont les points de rebroussement ont pour coordonnées

x y C. Le lieu de ceux-ci est donc bien la
droite y=x.

L'autre solution, au contraire, vérifie l'équation
proposée. L'enveloppe des courbes intégrales est donc

2
la droite y x-\—, parallèle à la bissectrice y xl.

Appliquons encore cette méthode à l'exemple
suivant, emprunté au Recueil d'exercices de Frenet (5me éd.,
question 579):

(1 -f-/)2) (y — xpf — a2 p2 0.

Cette équation est du quatrième degré par rapport
à la dérivée. Développée et ordonnée selon les
puissances décroissantes de p, elle devient

%*pk — jixyp3-\- («2 + ya- — «2)f— 2xy p+ if 0.

Or, le discriminant de la fonction biquadratique

f(x) — a0 oâ -f- a{ x3 -j- «2 x* -\- a3 x -\- ai

est donné par la relation

27D 4A3^B2,
A et B étant le premier et le deuxième invariants de

f {x), à savoir:

A a\ — 3at a3 -\-12 a0 ai,
B 27al aK-\-27a0 al -f- 2 al — 72 a0 a^ai — 9ai a%a3.

Le discriminant ainsi obtenu est du sixième degré
relativement aux coefficients de la fonction et de

poids 12.

1 G. Humbert. Cours d'Analyse, t. II, pp. 269 et 285.
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Dans notre cas

ft0=£2, al=az — 2xy, a^ x--\-y2—a2, a4 ?/2,

et, par suite,

A (x* +y*-aY,
B 2 (a;2 + y2 — a2)3 +108 a2«2*/2.

On conclut de là que

D — 16a2«2?/2 [(*2 -f y9- — a2)3 + 27a2«2?/2],

d'où l'équation discriminante :

«V [(«2 + ?/2 — «2)3 + 27 a2 a2«/2] 0.

Le facteur entre crochets donne la solution singulière

(a* -f y9 — a2)3 -f 27 a2«2?/2 0,

ou (a2 — «2— y2)3 27fl%V,

ou, plus simplement encore,

A A A
rr3 -(-y3 a3.

Cette courbe est l'hypocycloïde à quatre rebrousse-

ments, engendrée par une circonférence de rayon —
4

roulant sans glissement à l'intérieur d'un cercle fixe
de rayon a. Quelques auteurs lui donnent aussi le
nom d'astroïde.

En mettant l'équation proposée sous la forme

i aP
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est conduit à intégrer une expression du type de

Clairaut. On trouve ainsi pour l'intégrale générale

y Cx '

/1 + C2

qui définit une famille de droites, dont l'hypocycloïde
précédente est l'enveloppe. La portion de chacune de

ces droites comprise entre les axes, supposés
rectangulaires, a une longueur constante a. Cette courbe
est donc l'enveloppe d'une droite de longueur
constante, qui se meut en s'appuyant sur deux droites
fixes rectangulaires.

Les équations aux dérivées partielles se prêtent à

des considérations analogues. Soit, par exemple,
l'équation du premier ordre à deux variables
indépendantes

f(x,y,z,p,q) 0,

en posant, pour abréger,

dz dz

dx dy

Cette équation est susceptible de trois sortes de
solutions, savoir :

1° Une solution renfermant deux constantes
arbitraires. C'est l'intégrale complète.

2° Une solution dépendant d'une fonction
arbitraire. C'est l'intégrale générale.

3° Une solution qui ne contient rien d'arbitraire.
C'est l'intégrale ou solution singulière.

Comme M. Goursat l'explique fort clairement, il
n'y a pas de distinction essentielle entre l'intégrale
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générale et l'intégrale complète. Au contraire, la solution

singulière ne dépend pas du choix de l'intégrale
complète1.

Lagrange a montré2 comment on peut déduire de

l'intégrale complète toutes les autres solutions de

l'équation proposée, à l'aide de simples differentiations

et éliminations. Rappelons succinctement la
marche suivie par l'illustre analyste.

Soit
F (x, y, z, a,b)=rO

l'intégrale complète. La solution singulière, si elle
existe, s'obtiendra en éliminant les constantes a et b

entre les trois équations

(9F dF
F 0, — 0, — 0.

da db

Quant à l'intégrale générale, elle provient de l'élimination

théorique des mêmes constantes entre les
relations

dF dF
F==0, -^ + §%'(a)==0, b «(a),

da do

tp étant une fonction arbitraire.
Un exemple classique nous est fourni par l'équation

(x — af -f (y — bf + z2 R2,

qui définit une double infinité de sphères de rayon
donné R, ayant leurs centres dans le plan des xy.
Elle peut être considérée comme l'intégrale complète
de l'équation aux dérivées partielles non linéaire

y+g»+i)2»=R»,
1 Cours d'Analyse mathématique, t. II, p. 556.
2 Mémoires de l'Académie de Berlin, 1774, p. 266.
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obtenue par l'élimination de a et de b entre l'équation

proposée et ses dérivées par rapport à x et à y,
et qui exprime que dans toutes ces sphères la longueur
de la normale est constamment égale à R.

Pour obtenir l'intégrale générale, remplaçons b par
<t> (a); ce qui donne

(*-«)2 + l>-<P(«)]2 + z2 R2>

équation qui convient à celles d'entre ces sphères
dont le centre parcourt la courbe b — <f(a) du plan
des xy. Il suffira ensuite d'éliminer a en cette relation

et la suivante

x — a + [y — <p (a)] tp' (a) 0.

La surface, représentée par la solution générale
ainsi obtenue, a reçu le nom de surface-canal, dû à sa

forme. Elle sert d'enveloppe aux sphères en question,
chacune de celles-ci la touchant le long d'un grand
cercle.

Les dérivées partielles de l'intégrale complète par
rapport aux constantes qu'elle renferme sont

<9F
— — 2(x — a),
da

dF££ _2(t/ — b).
db Vy ;

Elles s'annulent pour a —a: et b y. Ces valeurs,
portées dans l'intégrale complète réduisent celle-ci à

z2 R2,

OU 2 + R,
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solution singulière. Cette dernière consiste donc dans
l'ensemble de deux plans parallèles à celui des xy,
et tangents à la série doublement infinie des sphères
comprises dans l'intégrale complète.

Par cette méthode, c'est là son défaut capital, il
faut, pour former la solution singulière, déterminer
préalablement l'intégrale complète de l'équation
proposée. Elle n'est donc réellement avantageuse que
dans les cas, fort peu nombreux, où cette détermination

se fait simplement; par exemple, dans celui de

l'équation de Clairaut généralisée

z=px-\-qy-{-<t(p,q),

dont l'intégrale complète est

z ax -j- by -f- tf (a, b),

comme on le vérifie aisément. Cette intégrale représente

une famille de plans dépendant de deux
paramètres arbitraires a et b. L'enveloppe de ces plans
s'obtient par l'élimination de a et b entre

z ax-\-by7rv(a,b), x-\--^=0, y-\-^ 0.
da do

Cette enveloppe, qui est, une surface non développa-
ble, est la solution singulière de l'équation proposée.

Pour avoir l'intégrale générale correspondante,
nous établirons entre a et b une relation arbitraire,
ò <j/(a), et chercherons l'enveloppe des plans

z ax -f- y ii (a) -f- tp [a, ty (a)].

Cette enveloppe est une surface développable tangente
à la solution singulière tout le lonor d'une certaine
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courbe, dont la nature dépend de la fonction
arbitraire «J» (a).

Mais, en général, la recherche de l'intégrale
complète, même dans les cas de possibilité, présente de

grandes difficultés. Aussi est-il préférable, dans les

problèmes qui n'exigent que la connaissance de la
solution singulière, de déduire celle-ci directement
de l'équation différentielle elle-même. On peut alors
opérer comme il suit.

L'intégrale complète de l'équation du premier
ordre

f(x,y,z,p,q) — 0

renferme deux constantes arbitraires a et b. En
faisant varier ces paramètres, on obtient une double infinité

de surfaces, dites les surfaces intégrales de l'équation

proposée.
Soit

F(x,y,z,a,b) 0

cette intégrale complète. On en déduit l'intégrale
générale en établissant entre a et b une relation
quelconque, 6 tp(a), puis en éliminant a entre les deux
équations

dF dF
F [x, y, z, a, <p (a)\ 0, -—h -— <p' («) 0.

da dtp

Le premier membre de la dernière étant la dérivée
de la fonction

F[x,y,z,a,o{a)\,

à un seul paramètre, par rapport à a, le résultat de

l'élimination sera l'enveloppe de la série simplement
infinie des surfaces intégrales remplissant la condition
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6 <p(a). Du reste, chacune des enveloppées touche
leur enveloppe commune tout le long d'une ligne,
appelée caractéristique.

La solution singulière, s'obtenant par l'élimination
de a et è entre

dF dF
F(x,y,z,a,b) 0, — Q, — =0,

da db

est l'enveloppe du système doublement infini des
surfaces intégrales, chacune de celles-ci la touchant en

un nombre limité de points (points caractéristiques). De

plus, il est facile d'établir que la solution singulière
est aussi l'enveloppe de toutes les surfaces données

par l'intégrale générale.
Les exemples cités précédemment à l'appui de la

méthode de Lagrange confirment, jusque dans leurs
moindres détails, ces faits géométriques.

Considérons maintenant une surface intégrale passant

par le point donné (x, y, z) de l'espace. L'équation

du plan tangent à la surface en ce point est de

la forme
Z-«=p(X —aO-fgfY —:y),

les coefficients angulaires de ce plan étant liés par la
relation

f(x,y,z,p,q) 0.

On en conclut qu'en chacun des points où l'une ou
l'autre enveloppe (solution générale ou singulière)
touche une des surfaces intégrales (solution
complète), les valeurs communes de x,y,z,pe\.q doivent
vérifier l'équation différentielle proposée.

Deux surfaces intégrales quelconques se rencontrent

en général suivant une certaine ligne en cha-
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cun des points de laquelle les plans tangents à ces
surfaces sont ordinairement différents. Mais si ces
dernières sont infiniment voisines, leur intersection
est une caractéristique, courbe de contact de l'intégrale

complète avec son enveloppe (solution générale).

Les plans tangents se confondront donc à la
limite, et il en sera de même aux points caractéristiques,

points de contact de l'intégrale complète avec
la solution singulière. Les paramètres directeurs de

ces plans étant alors respectivement égaux, l'équation

f(x,y,z,p,q) 0

admettra deux racines doubles en p et en q simultanément.

De là découle la règle suivante :

Pour avoir la solution singulière de l'équation aux
dérivées partielles du premier ordre

f(x,y,z,p,q)=rO,
oii assimile celle-ci à une équation algébrique en p et q;
puis, on exprime en posant

D^O,
où F>p est le discriminant de la fonction f relativement à

p, que deux valeurs de p sont égales entre elles. Cette

condition fournit alors les valeurs correspondantes de q en

fonction de x,y,z; et, comme deux de ces dernières
doivent être égales, on obtiendra la solution singulière cherchée

au moyen de la relation

dont le premier membre est le discriminant de D,, par
rapport à q.

2 BUI.L. SOG. SC. NAT. T. XXXIV
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Soit, par exemple, l'équation non linéaire

f dz dz\ dz dz 4

\ dx dy/ dx dy

Rendons-la algébrique en posant

dz
L

dz
=rp et —= 0,

dx dy
ce qui donne

if(px-\-qy)p z-\-qy,

ou, en ordonnant selon les puissances décroissantes

' "' xy"* p2 -|- qy3p — z — a?/ 0.

On a alors successivement

Dr» 2/2 (yi f+4*2/9+/ixz) ;

2/4 (f -\~ -4 xy q -|- 4 œz 0 ;

Dp,? 4«(/2(« —z!/2).

Ce discriminant, égalé à zéro, donne la solution
singulière „ „s « — zy2 0,

OU 2
?/2

Il est facile de voir, en effet, que cette relation, qui
ne renferme rien d'arbitraire vérifie bien l'équation
proposée.

Pour rendre plus manifeste la grande simplicité de
la règle ci-dessus énoncée, appliquons-la à un certain
nombre d'exemples empruntés au hasard aux ouvrages
d'analystes contemporains2.

1 Frenet. Exercices, question 61Ï).
2 Frenet. Recueil d'exercices, 2mt partie. — Brahy. Exercices

méthodiques de caletti intégral. — Hoüel. Cours de calcul
infinitésimal, t. III. — Humbert. Cours d'analyse, t. IL — Goursat.
Cours d'analyse mathématique, t. IL



(p* 4-?« + !)«»
P„;=0

R2.

conduit à la relation
(a2 -f 1) z2 — R2

DM z2(R2-
0,

z2) 0.

— 19 —

Reprenons tout d'abord l'équation déjà traitée à

propos de la méthode de Lagrange, dont le point de

départ est l'intégrale complète. Cette équation non
linéaire était la suivante :

Ici

d'où

Le second facteur, égalé à zéro, donne

z ±R,
solution singulière.

La solution étrangère z=0 représente le plan des

xy, lieu des points de contact des surfaces intégrales
(sphères) comprises dans l'intégrale complète. En
effet, au point où deux de ces surfaces non infiniment
voisines se touchent, les plans tangents se confondent
aussi, sans que ce point appartienne à l'enveloppe.

Soit, en second lieu, l'équation de Clairaut généralisée

z=px-\-qy-\-p*-}-qi,
ou p2 -j- px -|- </2 -\- qy — z 0.

Le discriminant du premier membre relativement à

p est

Vp=a?-Mf+ qy-z),
d'où l'équation algébrique en q

4g2 + 4gy —*2 —4z 0.

On en déduit

D,,, 4(a»+#* +4z)=.0.



— 20 —

La solution singulière est donc la quadrique

^ + ?/2 + 4z 0,

enveloppe des plans

z rz= ax -\- by -\- u- 4 b*,

intégrale complète.
Dans certains cas, un simple artifice de calcul rendra

possible l'emploi de cette méthode purement
algébrique. Gonsidéi'ons, par exemple, l'équation

q i / dz dz\ dz dz „z3-\-(x \-y — )z9--\-a 0,
V dx dy) dx dy

qui devient, en posant

dz dz
— —p, — g
dx dy

et en ordonnant par rapport à p,

(xz* + aq)p + z*{z-lrqy) 0.

Multipliant de part et d'autre par la différence
conjuguée du premier membre, il vient

(«z2 + ag)2 p2 — z4 (z + qyf 0,

d'où F)p z!t{z + qyf{xza-Jr aqf.

On a donc, pour déterminer q, l'équation

(zJt-qy)(xzi-\-aq)=:0,
ou ayq*-\-z (a-\-xyz) q-\-xzA — Q.

On en déduit
DP,q zHa-~xyzy.
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Le second facteur, égalé à zéro, donne la solution
singulière

xyz a.

Une équation aux dérivées partielles du premier
ordre, donnée à priori, n'admet pas d'une façon
normale d'intégrale singulière. En d'autres termes, les
surfaces intégrales n'ont qu'exceptionnellement une
enveloppe commune. Dans les cas où cette solution
n'existe pas, les équations qui servent à la déterminer

sont incompatibles. Il en est ainsi de l'équation

f{p),

dont l'intégrale complète est

z ax 4 f (a) y -f" b.

dF
L'équation — 0 se réduit alors à 4 0-.

db
0

L'emploi des discriminants conduirait à la même
conclusion.

La méthode algébrique que nous venons d'exposer
s'étend facilement, au point de vue théorique, au cas

plus général d'une équation du premier ordre à n
variables indépendantes. On arrive alors à des résultats

intéressant la géométrie des hyperespaces.
Soit une équation de la forme

/ \Zl Xi> X%l •••) Xn, Pil Pil •¦¦iPn) =='-',

où z est une fonction des n variables indépendantes

xu x%, ...,xn, et où l'on a pn > h recevant toutes
dXh

les valeurs entières de 1 à n.
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L'intégrale complète de cette équation est une relation

entre z et les xh, qui renferme n constantes
arbitraires. C'est donc une expression de la forme

On peut en déduire toutes les autres solutions de

l'équation proposée, en particulier l'intégrale singulière

lorsqu'elle existe. Il suffit, pour obtenir celle-ci,
d'éliminer les constantes arbitraires entre l'équation
F 0 et les équations dérivées

^ 0,^ 0, **=0.
da{ <9«2 dalt

Proposons-nous, par exemple, d'intégrer l'équation1

2 Pi x\ + ih xï + • • • + P» x" + f(Pi ' P* ¦ ¦ ¦ ' P«)>

qui peut être considérée comme la généralisation de

celle de Clairaut. On a une intégrale complète en

prenant

z ai Xç, -\- Uç, x,2 -j- -f- a„ x„-\-f(ai,aî,..., u„),

a{,a2, ...,«.„ étant des constantes arbitraires; car cette
relation donne

Pl=al' /)2 «.i,..., })n On,

et ces valeurs de z,pi,pi, ...,p„ verdient bien la

proposée. La solution singulière s'obtiendra en éliminant
les n constantes entre cette intégrale complète et ses

dérivées relatives à, avui, ...,«„.
Supposons, pour fixer les idées, la fonction homogène

/'(p,, Ps, • • ¦, P») P'î +pi + Pi

i b'RENET. Exercices, 5"ie éd., question 714.



— 23 —

dans le cas de trois variables indépendantes. L'équation

proposée deviendra

z Pi xi -\-Pi Xi + Ps %'i + PÌ+P1 + pl-

Elle admet l'intégrale complète

Z Ht JL/a ~j ttQ ti/g [ lin ii-O I tv* I Wo I "3*

Eliminons maintenant les trois constantes a1(a2, a3

entre cette relation et les suivantes:

^4204=0,
a?242a2 0,

ic342a3 0.

Nous obtiendrons ainsi la solution singulière

4 2 4 %l + #1 + a?g 0,

qui, dans un espace à quatre dimensions, serait
l'enveloppe des surfaces (hyperplans) définies par l'intégrale

complète.
Pour appliquer la méthode des discriminants, nous

considérerons l'équation proposée

pixl + PiX%-\-p3x3 +pl^t-pl-\-pl — z 0

comme algébrique en p,, et nous exprimerons que p,
est une racine double en posant

x\ — 4(p8aJa-|-psajg+jj| + rô — z) 0,

ou 4/>*44/>2a;244$44p3aJ3 — x\ — 4z 0.

Exprimons maintenant que p2 est une racine double
de cette nouvelle équation, ce qui donne

4pg 4 4|>3 x3 — x\ — x\ — 4 z 0.
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Enfin, la condition pour que p3 soit une racine
double de cette dernière équation est

4 z 4 x\ + xl + xt 0>

solution singulière. Le grand avantage de cette
méthode sur la précédente (celle de Lagrange) s'aperçoit

de nouveau aisément. On y procède à la
détermination de la solution singulière sans connaître
préalablement l'intégrale complète.

Nous reviendrons prochainement sur l'utilité des

discriminants dans la recherche des solutions singulières

des équations différentielles d'ordre supérieur
au premier.
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