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Séance du 20 janvier 1905

Simplification du calcul du rayon vecteur et de l'équation flu centre

Par E. LEGRANDROY, Professeur

Si r désigne le rayon vecteur d'une planète, v son
anomalie vraie (c'est-à-dire l'angle que le rayon vecteur
fait avec la ligne des apsides), on sait que quand on
néglige l'effet des perturbations, ces deux quantités
sont liées entre elles et au temps par les équations

a cos2* ™ C c, t ht(1) r — ¦— (2) r8dv (4 M
1 -\- e cos v J

dans lesquelles a désigne le demi-grand axe de l'orbite
planétaire, e son excentricité, <p un angle tel que <p e,

jj. son moyen mouvement (c'est-à-dire le déplacement
angulaire de la planète dans l'unité de temps, en
supposant son mouvement uniforme) et t le temps compté
à partir du passage au périhélie.

On sait que l'équation (2) n'est intégrable sous forme
finie que dans le cas de la parabole (e l); sinon, on
la rend intégrable par l'introduction d'un angle auxiliaire

m, qu'on appelle l'anomalie excentrique et qui est
tel que (3) r a (1—ecosu). On a alors l'égalité

¦ a (1 — e cos m),
1 -f- e cos v

d'où l'on tire aisément



(9)
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» cos tp sin m .„. rsinv
(4) sin v (b) sintt

r a cos tp

/r, aCcosu — e) ._ r(cosv-4-e)
(5) cost — '- (7) cosi*= — J—i-

r a cos2 e?

En introduisant dans l'équation (2) les expressions
de,r et de v en fonction de u, et intégrant, on obtient
l'équation de Kepler (8) m — esinit=M\ On peut donc
calculer u par cette équation, puis r et v par les équations

(4) et (5).
L'excentricité des planètes étant toujours assez

petite, l'idée de développer r et v-M.1 en séries ordonnées

suivant les puissances de cette quantité a dû
tout naturellement se présenter à l'esprit des géomètres.

Laplace, dans sa Mécanique céleste, et Poisson,
dans son Traité de mécanique, ont donné de ce
problème des solutions à la fois élégantes et rigoureuses.
Je n'ai pas, bien entendu, la prétention de faire mieux
qu'eux : je voudrais montrer seulement qu'on peut
obtenir les premiers termes de ces séries, les seuls

importants pour la pratique, par des calculs tout
élémentaires et propres à être introduits dans
l'enseignement. Mettons les équations (4) et (5) sous la forme

i r sin v a cos sin u
Ì r cos v a (cos u — e)

et dilïérentions-les par rapport à e: on a

dr dv d<f du
smv f-rcosv — — a sin co sin« —-—|- a cos? cos« —

\ de de de de

t dr dv du
¦ cos v r sin v — — a sin w j-1

de de \ de

1 C'est la différence v-M, ou l'excès de l'anomalie vraie sur l'anomalie

moyenne, que les astronomes appellent l'équation du centre.
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En differential de même les équations

u — e sin u M, sin e,

d?

de

on obtient

du

de
- e cos u

du

de
— sin u 0 COSç

d'où
du
de~~ 1

sm u a sin h

— e cos u r

ou, en verlu de 1 'équation (6),

(10)
du

de

sin v

cos?
D'autre part

(11)
d<?

de

1

COStp

1,

En introduisant dans les équations (9) ces expressions,

ainsi que celles de sin m et de cosu données

par les équations (6) et (7), on a

¦' dr dv r sinv r(cosv-\-e) sinv
i sin t" f- r cos v —- — a sin <p (- a cos <? ¦ —

' —
\ de de a cos2?

'
a cos2? cos?

/ dr dv /rsinv sinv
F COS« •sin w — —- —a

de de \ a cos cos

ou, en simplifiant:

dr dv r sin v cos v
i sin v 1- r cos i> —
\ de de cos2?
/ rfr dv r sin2 w -f- a cos2
F cos v r sin v — — ' L

de de cos2

d'où l'on tire aisément
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,.n, dr rdv /r-4-a cos2 o\
(12) — — acos» — (—! 'jsint'

de de \ cos2?
ou

/ao\ dv /1 a\
(Id) —=( 1— sin v.

de \ cos2 r /
La série de Mac-Laurin donne

1 ~r° + i \de)0 1.2 \de*)0

e /dv\ e2 ftfiv
v v0-\— t-

1 \dej0 1.2 \de*j0

les quantités affectées d'indices étant ce que deviennent

ces mêmes quantités sans indices quand on vfait
e 0.

De r a(i— e cos«) on tire r0 a.

r .,.<_. »rsinv=acos?sinit „.Les égalités J

,u — e sin m M, smc- p
'rcosv—a(cosu—e)

deviennent, poure 0,

(sinvy„^sini/n „ n „ -{ u v un=M, d ou i>n= M ; &n=O, d ou cos i.
(cosi>0=cosm0 u " '¦" "

On a ensuite, d'après (12) et (13) :

—) — o cos M, /—\ 2 sin M.
dej0 \dej0

Pour obtenir les dérivées suivantes, posons

ijü P(Q + R),

formule dans laquelle

P sin v, Q cos— 2?, R ar_I.
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On a alors:

P' cos v —, Q' ^ee 2 cos ^8 sin — e= 2 sin cos -4 R' — — ar -2 —
de de de

d'où

P0 sin M, Q0 4, R0 'I, P'0 2 sin M cos M sin 2 M ;

Q'n=0,R'0 — -(—ocosM) cosM
a

puis

B')r "sin "" (£).'¦ (S)r "• <Q'"+B'»>+"'» <°«+n»>

ou

/—W2asin*M a(4 — cos2M); f—^ sinMcosM + 2sin2M -sin2
\deV \deV() r 2

Pour les troisièmes dérivées, on a:

mais

n„ / dv \2 d2v „,, ~ „
<iœ

0 „ cf?P"= — sin w — -f-cosv— ; Q'2 cos^3? ——|- 8sm2? cos~6<p—'
\de/ de2 de

' 'de
ou

/dr Y2 flPr
Q"=2cos-*? + 8sin2?cos-6?;R"=2ar-3(— — ar-2 —;\ de J de%

d'où

PV- ^sin3M+^sin2McosM;Q"0 2;R"0 2cos2M—(1 — cos2M) 2cos2U

On a ainsi
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— h a sin2 M cos M + - a sin M sin 2 M
de3J0 2

/^V==sinM(2+2cos2M)+2sin2McosM-f2//—4sin3M + -sin2McosMN

=2sin3M + 2sinM--8sin3M + 5sin2McosM.

Par la transformation bien connue

+ m — ÏM m — jM 2iM — 8<M

sinM -—»cbsM=— ,sin2M=- ~~ '
2t

(e étant ici la base des logarithmes népériens) et les
transformations inverses, on obtient aisément

• a »n n. cos M — cos 3 M _.. cos M —cos 3 M
sin2 M cos M ; sin M sin 2 M ;

4 2

3 sin M—-sin 3 M „„ „ sinM-f-sin3Msin3 M ; sin 2 M cos M '¦

;

4 2

d'où, après quelques transformations,

^ ^(COsM-cos3M); — —sin8M —-sinM.
de3 4 ' de3 2 2

On pourrait poursuivre le calcul par la même
méthode. En se bornant aux termes obtenus, on a les

expressions suivantes, bien suffisantes pour la pratique:

r ea- "\e3a^-a\ 1—ecosM + -(1 — cos2M) + — (cosM — cos3M)-f

r\p<i ai
f —M 2esinM+—sin2M + —(18sin3M —sinM)+-

Elles sont d'ailleurs conformes à celles qu'on obtient
par d'autres méthodes plus compliquées.
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