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Seance du 2 décembre 1904

SUR
LES FORMULES FONDAMENTALES DE LA TRIGONOME TRIE

Piar E. LEGRANDROY, PROFESSEUR

Une démonstration de ces formules doit réunir, si
possible, la clarté, la généralilé et la simplicité. A ce
triple point de vue, aucune ne surpasse celle que
Chasles a donné dans sa « (Géométrie supérieure»:
mais elle suppose déja connue la notion du rapport
anharmonique, qu’a tort ou & raison on n’a pas cou-
tume d’introduire dans l'enseignement élémentaire.
La démonstration par la méthode des projections, trés
générale aussi, n’est pas aisément accessible aux
jeunes é€léves, pour lesquels elle ne parle pas assez
aux veux. A mon avis, basé sur de multiples expé-
riences, la démonstration la mieux appropriée a l'en-
seignerhent élémentaire est celle qui s’appuie sur le
théoreme de Ptolémée, parce qu’elle est exirémement
simple et se préte sans difficulté a la généralisation.
Le principe en est connu depuis longtemps pour le
calcul de sin{a-}-0); mais, a ma connaissance, sa
généralisation et son application aux autres formules
analogues n’ont jamais été publiées. (Vest cette lacune
que je me propose de combler dans la présente note.

La démonstration repose sur les principes suivants:

1o Dans tout quadrilatére inscrit, le produit des
diagonales équivaut a la somme des produits des
cOlés opposés.

14 ' BULL. 80C. 8C. NAT. T. XXXIII
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20 Dans un cercle du rayon 1, le sinus d’un arc a
pour mesure la demi-corde de 'arc double.

‘ el 1, } S
3o Quelque soit larc x, sin (ac ———) =— — COS &,
\

R ’ 1-:
sin (a’,‘——ﬂ) :——Sinx, <in (.’L‘ —*—"6) =Cosx, COS(“—QJ) = COsX.

I. Caleul de sin(e-}-b). Portons sur une circonfé-
rence de rayon 1 CD=2¢, CE=2b; menons le dia-
metre CF et construisons le quadrilatére. La figure 1

donne

DF =24 =, DE =2a -} 20 — 9=, BF =25 — =,
et par suite
(D=2sina DF:Qsm(a_i>: —9cosa  CF=2

CE=2sinb DE=2sin (¢« b—m)=—2sin (a—b)
EF =92 sin <b—~%>:~—~—ﬂcos b.

|’égalitée CF >< DE=CE > DF 4 DC < EF
devient ainsi
—92.2sin (@ -} b) = 2 sin b (— 2 cos @) - 2sin a (— 2 cos b),
ou, en simplifiant, |
sin (¢ 4 b)==sin ¢ cos b | cosasinb.

On voit aisément que la démonstration est appli-
cable telle quelle a tout cas, pourvu qu’on tienne
compte des signes. Elle n’a été faite jusqu’ici, que je
sache, que pour

Qu < = et 20 <.
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L. Calewl de sin (@ — b). On L_porte de _houveau, sur
une circonférence de rayon 1, CDWQa C.E 2b, mais

cette fois les deux arcs dans le méme sens. On a alors
DF =2 — = DE =20 — 2 EF == —2b; puis dansle
quadrilatére,

C ¥

Fig. 2.

gCD:::QSina, DF =2sin <a-—%):-—‘2003a ED =2 sin (a — b)

b

)CEL_Qcmb EF_stm<§——b)zﬁcosb CF=2:

et la meéme égalité, déja employée, devient
2.2sin (@ — b)=2sin b(— 2 cosa) + 2sina . 2cos b,
ou, en simplifiant,
sin (¢ — by =sin a cos b — cos asin b.

L. Caleul de cos (a -} b).
cos (@ -+ b) =sin (%—» a——b):—-sin ((z—j—b—%) :

11 suffira donc de prendre dans la fig. l
CD =24, CE—2b — =: alors DF =20 — =, EF — 25— 2,
DE=2¢ —!—Qb — m— 2rn; puis
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0D —2sin l)ansin(a—;—‘>:—acosa
CE:QSjn(b——%>—;—;chosb EF =2sin (b — =) = —%sinb
CF =2 ‘
DE:%sin(a—{—b-——%—-ﬂ):———Qsin(a—|~b—-~-—g~)—-_~9cos(a—}—b)

et enfin '

2.2 cos (a—b)=(—2cos b)(— 2 cos )+ 2 sin « (— 2sinb),

ou cos (a -+ b') =—0s @ cos b —sin a sin b.

IV. Calcul de cos (a — b).

cos (it — b) — sin (%—a—j—b):sin (b+g_—a,>. —

Il suffira donc de prendre, dans la figure 2,
Eb:Qb+w,@:2ct; on aalors ﬁ':%, @:w-—-&a,
DE=%2b+4 = —2a=—2b—2a -+ .

&cnzasin.(bJr;—‘):acqsb_, DF —=2sinb, UE:QSiﬂ(b——@—]»%)—Qcos(a—

L

leE—2sina EF—9sin(Z—a)=2eosa OF =2

et 'égalité déja employée trois fois devient

2.2cos(a—b)=2sina2sinb-+42cosb2cosa,
ou cos (@« — b) =cos a cos b+ sin a sin b.
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