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Séance du 28 avril 1905

LIE ET SON ŒUVRE
Par L. ISELY, Professeur

Les mathématiques du XIXme siècle doivent à la
Norvège deux de leurs plus illustres représentants :

Niels Henrik Abel et Sophus Lie. Le premier (1802-
1829), que ses malheurs autant que ses découvertes
ont rendu célèbre, donna à l'algèbre supérieure et à

la théorie des fonctions elliptiques, dont il aperçut la
double périodicité, un essor extraordinaire. Le second
(1842-1899) acquit un renom universel par ses conceptions

géniales sur la géométrie des sphères, les
transformations de contact et leur application aux équations
aux dérivées partielles, la théorie des groupes continus
de transformations et les bases de la géométrie.

Ayant constaté que la détermination de la sphère,
aussi bien que celle de la droite, dépendait de six
coordonnées homogènes liées entre elles par une
équation quadratique également homogène, Sophus
Lie parvint, au moyen de substitutions linéaires, à

passer sans peine de l'un de ces éléments d'espace
à l'autre. Dans l'une des conférences qu'il fit du
28 août au 9 septembre 1893 devant le Congrès des

mathématiciens réunis à Chicago lors de l'Exposition,
M. Félix Klein, le savant professeur de Gœttingue,
s'exprime à ce sujet ainsi qu'il suitl : « Prenant

1 L'œuvre géométrique de Sophus Lie (traduit de l'anglais par
M. L. Laugel). Nouvelles annales de mathématiques, 3me série,
t. XV (janvier 1896).
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l'équation de la sphère sous la forme

z2 + 2/2 + j2 — 2B* — 2Q/ — 2D«-|-E 0,

les coefficients B, C, D, E peuvent être regardés
comme les coordonnées de la sphère, et l'espace
ordinaire se présente alors comme une variété1
(Mannigfaltigkeit) à quatre dimensions. Quant au

rayon B de la sphère, nous avons

B2 B2-j-C2 + D2 —E,

relation qui lie la cinquième grandeur B aux quatre
coordonnées B, C, D, E.

Pour introduire des coordonnées homogènes, posons

a a a a a

alors a, b, c, d, e sont les cinq coordonnées homogènes

de la sphère, et la sixième grandeur r leur est
liée par l'entremise de l'équation quadratique homogène

r2 &2-L-c2 + rf2 —ae. »

Antérieurement à Lie, on admettait communément
que la sphère était déterminée par les cinq quantités
a, b, c, d, e, assujetties à vérifier l'expression homogène

62 + c2 + d2 — ae 0,

obtenue en supposant r — 0 dans l'équation ci-dessus,
ce qui revient à dire que la sphère se réduit à un
point. Le géomètre norvégien généralisa la question
en choisissant les six grandeurs a, b, c, d, e, r pour

1 On dit aussi une multiplicité.
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les coordonnées homogènes de la sphère. D'où deux
conceptions différentes du même objet. Dans la
première, que M. F. Klein désigne sous la dénomination
de géométrie élémentaire des sphères, on n'emploie que
les cinq paramètres a, b, c, d, e. Le groupe qui lui correspond

est celui des transformations ponctuelles dites
conformes, dont la conservation des angles est le
caractère distinctif. La plus connue est l'inversion ou
transformation par rayons vecteurs réciproques, dont
la projection stéréographique n'est qu'un cas particulier.

Le propre de ces méthodes réside dans le
changement des sphères en sphères, le plan étant assimilé
à une sphère de rayon infiniment grand. Cette géométrie

a conduit M. Darboux à des recherches du plus
haut intérêt sur les cyclides1, ces surfaces du
quatrième ordre, ou quartiques, admettant pour ligne
double, ou courbe nodale, le cercle de l'infini. Le
tore, les podaires et les inverses de quadriques, sont
les exemples les plus simples de ce genre de surfaces,
dont la classique cyclide de Dupin est le type le plus
remarquable.

Dans la géométrie supérieure des sphères ou de Lie,
comme l'appelle M. F. Klein, on introduit la sixième
grandeur r, liée aux cinq précédentes par l'équation
homogène déjà mentionnée:

è2 + c2 + rf2 — ae rK

1 Darboux, Sur une classe remarquable de courbes et de
surfaces algébriques, mémoire présenté à l'Académie des sciences en
1869, 1" édit., Ì873 ; 2me édit., 1896. — Leçons sur la théorie générale
des surfaces. 1887-1896.

Voir aussi : Casey, Sur les cyclides et les sphéro-quartiques
(Phil, trans., t. GLXI) ; Moutard, Nouvelles annales de mathématiques,

1864 ; Neuberg, Sur la cyclide de Dupin (Mémoires de la
Société royale des sciences de Liège, 2»le série, t. X, 1884) ; Salmon,
Traité de géométrie analytique à trois dimensions (trad. O.
Chemin), 3lne partie, 1892; etc.
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Le groupe correspondant n'est plus caractérisé par
des transformations ponctuelles. En effet, toute sphère
de rayon nul, c'est-à-dire tout point de l'espace,
devient une sphère dont le rayon est, en général,
différent de zéro. Un point se transforme ainsi en
une sphère de rayon déterminé. De plus, des sphères
primitivement en contact demeurent encore en contact
après la transformation. Nous sommes ainsi conduits
aux fameuses transformations dites de contact, dont la
découverte constitue un des plus beaux titres de

gloire du géomètre scandinave, bien qu'occasionnellement

entrevues avant lui par Legendre, Plücker et
Jacobi1. Comme leur nom l'indique, dans ce genre
de transformations, le contact est une propriété
invariante. Les courbes, ou les surfaces, qui se

touchent, se changent en courbes, ou en surfaces, possédant

la même vertu.
Dans sa géométrie de la droite, Plücker avait introduit

six coordonnées homogènes, liées entre elles par une
équation quadratique également homogène. Lie ne
tarda pas à discerner l'étonnante connexion de sa

propre géométrie des sphères avec la géométrie
plûckérienne de la droite. De simples substitutions
linéaires lui permirent de passer de l'une à l'autre;
dès 1870, il parvint ainsi à « rattacher toute proposition

relative à des droites à une proposition relative
à des sphères et vice versa% ». Il reconnut, en premier
lieu, que deux sphères en contact correspondent à

deux droites qui se coupent, remarque qui l'amena à

1 Lie, Begründung einer Invariantentheorie der
Berührungstransformationen (Math, annalen, t. VIII), Leipzig, 1872.

2 Darboux, Etude sur le développement des méthodes
géométriques, Paris, 1904.
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établir un rapprochement ingénieux entre deux surfaces

en apparence complètement dissemblables : l'hy-
perboloïde à une nappe et la cyclide de Dupin. On
sait, en effet, que toutes les droites (génératrices) qui
rencontrent trois droites fixes quelconques (directrices),
en rencontrent une infinité. C'est en quoi consiste la
génération rectiligne de l'byperboloïde, qui forme,
avec son voisin le paraboloide hyperbolique, la classe
si intéressante des quadriques gauches. De même,
toutes les sphères tangentes à trois sphères fixes en
touchent une infinité. L'enveloppe de ces sphères
n'est autre que la cyclide de Dupin, dont il a déjà
été fait mention plus haut. Le colonel Mannheim a
démontré d'une façon élégante que cette surface
remarquable à tant d'égards est la transformée d'un
tore par rayons vecteurs réciproques1.

Poursuivant le cours de ses investigations, dont le
début avait été si brillant, Lie fut conduit quelques
années plus tard (1872-1873) à la transformation
générale qui porte son nom. Partant de l'idée de
l'élément de contact ou de surface (on appelle ainsi
l'ensemble d'un point et d'un plan passant par ce point),
il parvint à remplacer des lignes se coupant dans

l'espace par des surfaces tangentes entre elles, et à

faire correspondre les lignes de courbure d'une
surface aux lignes asymptotiques de sa transformée,
et réciproquement. D'où le beau théorème, auquel
M. G. Humbert, professeur à l'Ecole polytechnique
de Paris, donne l'énoncé suivant:

« Soient deux surfaces, s et S, transformées l'une

1 Goursat, Cours d'analyse mathématique, t. Ier, p. 592.
Paris, 1902.

Humrert, Cours d'analyse, t. I"', p. 446. Paris, 1903.
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de l'autre par la transformation de Lie ; à un point
m de s correspond un point M de 5 : quand m décrit
une ligne asymptotique de s, M décrit une ligne de
courbure de S. » (Cours d'analyse, t. Ier, p. 447).

11 convient de rappeler ici que, dans un mémoire
publié dans le Bulletin de la Société mathématique de
France (t. XXVII, 1899, p. 146), le regretté Ernest
Duporcq a généralisé la transformation de Lie, en
faisant correspondre aux droites de l'espace, non les
sphères, mais les quadriques circonscrites à une
quadrique fixe. Dans un article remarquable, inséré
dans la livraison du mois de mai 1905 des Nouvelles
annales de mathématiques, M. B. Bricard définit, par
des formules très simples, une transformation qui
jouit de propriétés identiques à celle de Duporcq; et
admet, comme cas particulier, la transformation de
Lie (p. 221-225).

Mais l'une des plus merveilleuses applications des
transformations de contact est celle que l'illustre
géomètre norvégien fit à l'interprétation des équations
aux dérivées partielles et de leurs intégrales. Car, il est
bon qu'on le sache, le but constant poursuivi par Lie
dans ses investigations géométriques a été le perfec-
fectionriement de la théorie des équations différentielles1,

comme le prouvent ses nombreux ouvrages
sur cette matière2. S'occupant, tout d'abord des

1 Coursât, Leçons sur l'intégration des équations aux dérivées
partielles du premier ordre. Paris, 1892.

2 Lie, Zur Theorie partieller Differentialgleichungen erster
Ordnung (Göttinger Nachrichten, 1872) ; Ueber partielle
Differentialgleichungen erster Ordnung, Christiania, 1878 ; Untersuchungen
über Differentialgleichungen, Christiania, 1882 ; Classification und
Integration von gewöhnlichen Differentialgleichungen zwischen
x, y, die eine Gruppe von Transformationen gestatten, Christiania»
1883; Ueber Integralinvarianten und Differentialgleichungen,
Christiania, 1902, etc.
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équations aux dérivées partielles du premier ordre,
il réussit à définir, même dans les cas les plus
spéciaux, les trois sortes de solutions dont elles sont
susceptibles : complète, générale et singulière. Malgré les
admirables travaux de Monge, de Lagrange, de Jacobi
et de Cauchy, ce chapitre important du calcul
infinitésimal péchait par un manque de précision et
d'uniformité. Lie sut, le premier, ramener toutes les

variétés de ces équations, en apparence distinctes les

unes des autres, à un type unique très simple. Les
transformations de contact lui fournirent ensuite un
mode de représentation géométrique de leurs
intégrales, qui ne laisse rien à désirer au double point
de vue de l'élégance et de la clarté.

Bésumons ici, d'après l'excellent aperçu qu'en
donne M. F. Klein, les idées de Sophus Lie sur ce

sujet. On sait que les équations aux dérivées partielles
du premier ordre à deux variables indépendantes
sont de la forme

f(x, y, z, p, q) 0,

p et q étant les dérivées premières de la fonction z

par rapport à x et y respectivement.
Toute équation différentielle de ce genre admet

trois sortes de solutions, savoir :

1° Une solution renfermant deux constantes
arbitraires. C'est l'intégrale complète.

2° Une solution dépendant d'une fonction arbitraire.
C'est l'intégrale générale.

3° Une solution qui ne contient rien d'arbitraire.
C'est l'intégrale singulière.
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Lagrange1 a montré comment, la première de ces
solutions étant connue, on en peut déduire les deux
autres, à l'aide de simples differentiations et éliminations.

C'est la méthode généralement suivie dans les
cours actuels2.

« Dans l'ancienne théorie classique, ainsi s'exprime
M. F. Klein, on fait une distinction suivant la manière
dont p et q se présentent dans l'équation. Ainsi,
lorsque p et q y entrent au premier degré, l'équation
est dite linéaire ; si p et q tous deux étaient absents,
l'on ne regarderait pas l'équation comme étant une
équation différentielle. Au point de vue de la nouvelle
géométrie de Lie, ces distinctions disparaissent
complètement, comme nous'allons le voir.

« Le nombre de tous les éléments de surface, dans
tout l'espace, est évidemment oo5.

« Ecrire notre équation différentielle, c'est mettre
à part, prendre parmi ces éléments une variété à

quatre dimensions M4 de oo4 éléments.
« Or, trouver une solution de l'équation au sens de

Lie, c'est prendre encore dans cette M4, et mettre à

part, une variété M2 jouissant de la propriété
caractéristique; que cette M2 soit point, courbe ou surface,
c'est là chose indifférente.

« Ce que Lagrange nomme trouver une solution
complète consiste à partager l'M4 en oo2 variétés M2.
Ceci, naturellement, peut être pratiqué d'un nombre
infini de manières. Enfin, si dans ces oo2 variétés M2

1 Mémoires de l'Académie des sciences de Berlin, 1774, p. 266,
2 Voir entre autres : Hoüel, Cours de calcul infinitésimal, t. III.

p. 186-189. Paris 1880.

Humbert, Cours d'analyse, t, II, p. 456-460. Paris, 1904.
Coursât, Cours d'analyse mathématique, t. II, p. 552-555.

Paris, 1905.

10 BULL. SOG. SC. NAT. T. XXXIII
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nous prenons un système simplement infini, l'enveloppe

de ce système représente ce que Lagrange
nomme solution 'générale. Ces définitions sont valables
d'une manière toute générale pour toutes les équations
aux dérivées partielles du premier ordre, sous leurs
formes même,les plus particulières1. »

Puis le savant professeur de l'Université de Gœttingue

fait voir par un exemple en quel sens une équation

/ (x, y, z) 0, où p et q manquent, peut être
regardée comme une équation différentielle,. et ce
que signifient alors ses diverses solutions. « Prenons,
dit-il, le cas tout spécial z 0. Tandis que, dans le
système habituel de coordonnées, cette expression
représente tous les points du plan des xy, dans le
système de Lie, elle représente naturellement tous les
éléments (de surface) dont les points font partie du
plan. Bien de plus simple que d'assigner une solution
complète dans ce cas. Nous n'avons qu'à prendre
les oo2 points du plan eux-mêmes, chaque point étant
une M2 relative à l'équation.

« Pour déduire de ceci la solution générale, nous
devons prendre tous les systèmes en nombre simplement

infini de points du plan, autrement dit une
courbe quelconque, et former alors l'enveloppe des

éléments de surface appartenant aux points ; en d'autres

termes encore, nous devons prendre les éléments
qui ont un contact avec la courbe. En dernier lieu,
c'est évidemment le plan lui-même qui représente
une solution singulière.

« Or, l'immense importance et l'intérêt capital de
ce simple exemple tiennent à cette circonstance qu'à

1 Nouvelles annales de mathématiques, 3'"e série, t. XV (janvier
1896) ; p. 17-19.
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l'aide d'une transformation de contact, toute équation
aux dérivées partielles du premier ordre peut être
mise sous cette forme particulière si simple, 2 0.

Ainsi, toute la disposition des solutions que nous
venons d'esquisser à grands traits reste valable et
légitime d'une manière toute générale. »

L'étude des transformations de contact apporta
aussi quelques éclaircissements à la théorie encore si
obscure des équations aux dérivées partielles d'ordre
supérieur au premier. Elle permit à Lie, en
particulier, de généraliser les recherches si originales de

Monge et d'Ampère sur l'intégration des équations
du second ordre à deux variables indépendantes, et

d'indiquer tous les cas où la méthode des caractéristiques

du premier de ces géomètres est pleinement
applicable à ce genre d'expressions.

Les équations aux dérivées partielles du second
ordre attirèrent l'attention de Lie sur les surfaces
minima. On donne ce nom aux surfaces qui ont pour
indicatrice, en chaque point, une hyperbole equilatere,
ou, en d'autres termes, celles dont les rayons de
courbure principaux sont égaux et de signe contraire.
Lagrange (1760-1761) et Meusnier (1785) en ont fondé
la théorie. Mais c'est à Monge que l'on doit la
première intégration de leur équation aux dérivées
partielles. Lie perfectionna la méthode et les formules
du géomètre français et résolut, d'une manière
complète, le problème concernant la détermination de

toutes les surfaces minima algébriques inscrites dans

une développable algébrique, sans que la courbe de

contact soit donnée1. Il fut ainsi, dans ce chapitre

1 Darboux, Etude sur le développement des méthodes
géométriques, p. 25.
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heureux des Bonnet, des Darboux, des Biemann, des
Schwarz et des Weierstrass.

Lie eut moins de succès lorsqu'il tenta d'intégrer
l'équation aux dérivées partielles des surfaces à courbure

constante. On sait que, Bj et B2 étant les rayons
de courbure principaux, l'on donne à l'inverse du
produit RtR2 le nom de courbure totale de la surface

1/1 1
au point considéré, tandis que la somme — I 1

2 \B4 Bo

en est la courbure moyenne. La condition de constance
de l'une ou de l'autre de ces courbures est une équation

différentielle, que Bour prétendait avoir complètement

intégrée. S. Lie, voulant en avoir le cœur net,
essaya, mais en vain, d'appliquer une méthode générale

d'intégration des équations aux dérivées partielles
à l'équation particulière des surfaces à courbure
constante. Cependant, ses efforts, et ceux des géomètres

ses contemporains, ne demeurèrent pas infructueux.

Comme M. Darboux le fait fort judicieusement
remarquer, « s'il est impossible de déterminer en
termes finis toutes ces surfaces, on a pu du moins
en obtenir quelques-unes, caractérisées par des

propriétés spéciales, telles que celle d'avoir leurs lignes
de courbure planes ou sphériques; et l'on a montré,
en employant une méthode qui réussit dans beaucoup
d'autres problèmes, que l'on peut faire dériver de

toute surface à courbure constante une infinité
d'autres surfaces de même nature, par des opérations
nettement définies qui n'exigent que des quadratures1

».

1 Darboux, Etude sur le développement des méthodes
géométriques, p. 26.
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Lie mit un couronnement à son œuvre par sa

magistrale théorie des groupes continus de transformations.

Au début du siècle dernier, Evariste Galois,
dont la mort prématurée fut pour la science un
malheur irréparable1, avait jeté les bases de son admirable

conception des groupes de substitutions, qui devait
exercer une influence considérable sur l'évolution de

la pensée mathématique. Ce que Galois avait fait pour
l'algèbre, Lie le réalisa pour l'analyse et la géométrie.

En y introduisant la notion de groupe, il éclaira
d'un jour tout nouveau trois des chapitres les plus
importants des sciences exactes, pures et appliquées:
la théorie de l'intégration, celle des quantités
complexes et la géométrie non euclidienne. Dans le
premier de ces domaines, il généralisa les recherches
d'Halphen sur les invariants différentiels qu'Ampère
avait déjà considérés dans des cas particuliers. Dans
le second, il aperçut la connexité entre sa théorie des

groupes et les nombres complexes, connexité que
les travaux de MM. Poincaré et Scheffers ont rendue
plus étroite encore. « Le rapprochement entre la
théorie des groupes de Lie et les nombres complexes,
dit M. Emile Picard, fait disparaître le mystère qui
semblait planer sur ceux-ci, et la véritable origine
des symboles est ainsi bien mise en évidence2. » Enfin,
reprenant les idées d'Helmholtz sur l'espace, Lie fut
amené à regarder toute géométrie comme l'étude d'un
groupe qui la caractérise, et à légitimer, tout en la
fortifiant, la conception moderne des hyperespaces.

1 Galois fut tué en duel le 30 mai 1882. Il était né le 25 octobre
18111

2 Picard, Sur le développement de l'analyse, p. 35. Paris,
1905.
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M. Poincaré qui, à l'instar de M. Klein en Allemagne,
s'est fait en France le défenseur des principes non
euclidiens, ne place-t-il pas en tête de son mémoire
sur YAnalysis situsi les lignes suivantes : « La géométrie

à n dimensions a un objet réel, personne n'en
doute aujourd'hui. Les êtres de l'hyperespace sont
susceptibles de définitions précises comme ceux de

l'espace ordinaire, et si nous ne pouvons nous les

représenter, nous pouvons les concevoir et les étudier.
Si donc, par exemple, la mécanique à plus de trois
dimensions doit être condamnée comme dépourvue de
tout objet, il n'en est pas de même de l'hypergéo-
métrie.

« La géométrie, en effet, n'a pas pour unique raison
d'être la description immédiate des corps qui tombent
sous nos sens : elle est avant tout l'étude analytique
d'un groupe. Rien n'empêche, par conséquent, d'aborder

d'autres groupes. »

M. Laisant, par contre, ne se prononce sur cette
matière qu'avec une sage réserve. « Les geometries à

plus de trois dimensions, dit-il,/n'ont guère été qu'un
moyen de donner des formes géométriques à des
faits algébriques... Elles abrègent le langage, peuvent
dispenser de longs calculs, permettre à l'esprit de
moins s'égarer dans les symboles. Mais autant une
pareille étude est digne d'intérêt et d'une utilité réelle
si on la maintient dans ses limites naturelles, autant
elle deviendrait funeste dans le cas où l'on prétendrait
lui accorder la réalité qui appartient à l'espace dans
lequel nous vivons. Cela ne deviendrait plus qu'un
jeu plus ou moins brillant de l'esprit, se mettant au

1 Journal de l'Ecole Polytechnique, 1895, p. 1-125.
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service de rêveries directement contraires au but de
la mathématique1. »

Certains esprits exaltés ne Vont-ils pas, en effet,
jusqu'à affirmer l'existence d'un hyperespace, dont
notre monde tangible et visible ne serait qu'une
variété à trois dimensions, sorte d'Olympe scientifique

où réside la Divinité et où se rendent les âmes

après avoir quitté leur enveloppe périssable De tout
temps, le surnaturel a eu des partisans aveugles mais
convaincus.

Lie a exposé sa doctrine dans une série d'ouvrages,
dont le plus étendu comme le plus important est sa

magistrale Theorie der Transformationsgruppen2, publiée
en collaboration avec le professeur Engel. L'application

qu'il y fait de la notion de groupe à la définition
et au rôle des axiomes en géométrie, dont il a
cherché à réduire le nombre au minimum, a servi
de point de départ aux savantes recherches de M.
Hilbert sur ce sujet3.

L'œuvre de Lie, on le voit, a été considérable. Elle
brille surtout par l'originalité et la diversité. La
postérité l'a consacrée, en plaçant à côté des plus
grands noms de l'Histoire celui du modeste géomètre
Scandinave.

1 Laisant, La Mathématique, p. 104-105. Paris, 1898. — Consulter
aussi sur ce sujet: Jouffret, Traité élémentaire de géométrie à
quatre dimensions. Paris, 1903. — Hermann, La Pangéométrie,
n° 20 de la collection Scientia; etc.

2 3 vol., Leipzig, Teubner ; 1888-1893.
3 Hilbert, Grundlagen der Geometrie, 2»" éd.; Leipzig, 1903;

p. 121-162, — Voir aussi : Poincaré, Les fondements de la Géométrie,

à propos de l'ouvrage de M. Hilbert. Paris, 1902.
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