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Séance du 23 avrU 1903

SUR LES DIAMETRES DES CONIQUES

Par B. LE GRAND ROY, Prof.

Le but de la présente note est un essai d'exposition
des propriétés des diamètres des coniques, et
particulièrement des diamètres conjugués, par des considérations

tout à fait élémentaires, ces propriétés étant
d'ailleurs déduites directement de l'équation générale.

Bappelons d'abord les formules connues.

1. Soient A«2 + 2B^ + C«/2 + 2Da; + 2E2/ + F 0
l'équation d'une conique, et y mx-\-n l'équation
d'une sécante quelconque. Les points d'intersection
auront pour abscisses les racines de l'équation

A*2 -f 2 Bx (mx + n) -f- C (mx + nf + 2 Dx

+ 2E(mtf + n)-f-F 0
ou

(A + 2Bm+CTO2)*2 + 2(B»i+C»m+D-fEm)a,
+ Crc2 + 2En+ F 0

L'abscisse du milieu de la corde est par conséquent

Bn-\-Cmn-\-B-{-EmX~
A + 2Bm-fCm2

on aura donc l'équation du diamètre, c'est-à-dire du
lieu des milieux des cordes ayant m pour coefficient
angulaire, en éliminant n entre cette équation et celle
de la corde; on obtient ainsi
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B(y — mx)-j-Cm(y — mx) -j- D -{- Em
^~~

A + 2Bm + Cm2 '

ou, en réduisant,

(1) (A + Bm)« + (B + Cm)y + D + Em 0

Ce diamètre a pour coefficient angulaire

A-fBm
m. — *——

B-f-Cm

Cette égalité peut s'écrire aussi

(2) A + B(i»-f-»»') + Crom' 0

et de ce qu'elle est symétrique par rapport à m et m',
on conclut à l'existence de deux diamètres ayant
respectivement pour coefficients angulaires m et m' et
dont chacun est le lieu des milieux des cordes parallèles

à l'autre; c'est ce qu'on nomme, comme on sait,
des diamètres conjugués.

2. On sait que les coordonnées du centre s'obtiennent

en résolvant le système (3)

kx + By + B 0
Bx-\-Cy + E 0

qui se forme en annulant séparément les dérivées
partielles par rapport à x et à y du premier membre
de l'équation de la conique. Ces équations sont
évidemment celles de deux diamètres et doivent par
conséquent se déduire de l'équation (1) par un choix
convenable du coefficient m. La première s'obtient
immédiatement en faisant m — O : mais il n'en est pas
de même de la seconde. Pour trouver comment cette
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dernière dérive de l'équation (1), appelons <•> l'angle
des axes, et e l'angle que le diamètre représenté par
cette équation forme avec l'axe des x; on sait alors

que
sine

m--
sin («o — 8)

Par l'introduction de cette valeur, l'équation (1)
devient

[A sin (w — 6) -f- B sin 6] a; -f- [B sin (w — e) -f C sin 6] y
+ D sin (to — 8) -f E sin 6 O

On voit alors immédiatement que cette équation
donne la première des équations (3) pour 0 O, et la
seconde pour 6 to: autrement dit les équations (3)
sont celles des diamètres correspondant aux cordes
parallèles aux axes. La première se déduit de l'équation

(1) pour m 0, la seconde pour m ^°, valeur
que prend en effet m pour 8 u>.

3. Si l'on transporte l'origine au centre, l'équation
de la conique prend la forme

A a2 -f- 2 Bxy + C?/2 + P O,

et celle des diamètres devient

(A+ Bm) x + (B + Cm) y O.

Si l'on veut prendre pour nouveaux axes deux
diamètres correspondant à des cordes formant avec l'axe
des x les angles 6 et 8', on sait que les formules de
transformation sont

| x x' sin (to — 8) -f- y' sin (w — 6')

y x' sin 8 ^\-y' sin 8'
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Mais, par suite des relations

sin 8 sin 6'
m m

sin(io — 8) sin(«> — 8')'

ces formules peuvent s'écrire aussi

x1 sin 8 ?/'sin6'
x-~

m ' m!

v y af sin 6 -f- y' sin 8'

L'équation de la conique devient

i/'sin8'A
/ansino y' sin yy 2ß /a/sin 8

\ m m' J \ m m'

(x1 sin 8 -L- y' sin 8') -j- C (a/ sin 8 -f y' sin 6)2 -f- P O

ou en ordonnant

(A+2Bm+Cm2)m'V2sin28+2[A +B(m+m')+Cmm']
m m" x1 y' sin 8 sin 8' -f- (A -f- 2 B m' -j- Cm'2) m2 y'2 sin2 8'

+ Pm2m'2 0

Si les diamètres sont conjugués, le terme en x[ y'
s'annule en vertu de l'équation (2), et l'équation de la
courbe devient

(A+ 2 Bm + Cm2) m'2 a/2 sin2 8 + (A+ 2 Bm' + Cm'2)
m2 î/'2 sin2 8' -|- Pm2 m'2 O.

4. Les distances de l'origine aux points où les axes
rencontrent la courbe s'obtiennent en faisant
successivement y' — O et a;' 0 dans l'équation précédente.
Si on les appelle X et Y, on a ainsi
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(A + 2Bm-f-Cm2)sin28 '
}

Ys_ — Pm'2

(A-f-2Bm'+ Cm'2)sin28''

5. Les formules précédentes donnent, par multiplication,

P2m2m'2
X2Y2= '

(A+ 2 Bm -f Cm2) (A -f- 2 Bm' -f Cm'2) sin2 8 sin2 8' '

d'où, pour l'aire du parallélogramme construit sur les
demi-diamètres,

XYSin(8'-8)= ±Pmm'sin(8'-e)
sinesineV(A+2Bm+Cm2)(A+2Bm'-|-Cm'2)

Il faut prouver que cette expression est constante,
c'est-à-dire indépendante de m, m', 8 et 8'.

Le y' se réduit aisément à (m'—m)\/AC — B2: il
suffit pour cela, après avoir développé, de soustraire
du résultat le développement de

[A -f B (m + m')+ Cmm'f^ O.

D'autre part, de

sine sine'
m= et m =-sin (w — 8) sin (w—8')

on tire
'. „ m sin to

1 -j- m cos w

| m'sinto
" T. _L-»r1 -f- m' cos

puis
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m sin to 1-1-m cos w
sin e — cos p —

•j/l-^TOeosw-f-m2 j/"l-f-2mcosw-|-m2
I m' sin to „, 1-1- m' cos to
f sine=—- cose'— — ' —

y l-j-2m'costo-|-m'2 -|/l-|-2m'costo-f-m'2

Par suite,
• /nt «\ im'— m) sin w

Sin (6' — 8)= x ' ;

y (1 -f- 2 m cos to -j- m2) (1 -j- 2 m' cos <o -|- m'2)

.„..„, mm'sin2w
sin 6 sin 8'

y (1 -f- 2 m cos to -^j- m2)(l -(- 2 m' cos w -j- m'2)

La substitution de ces diverses expressions donne

pour l'aire du parallélogramme

sin»/AC — B2'

expression indépendante de la position des diamètres.

6. L'addition membre à membre des équations (4)
donne

Tg y2—~p[(A+2Bm'+Gm'2)m2sm28'+(A+2Bm+Cm2)m'2sin2e]_ (A4-2Bm+Cm2)(A4-2ßm'+Cm'2)siii2esiii26'

ou, en remplaçant sin2 9 et sin2 6' par leurs expressions,
ainsi que le produit qui figure au dénominateur,

— P [(A -f 2 Bm' -j- Cm'2) (1 -j- 2 m cos to -f m2)

X2+Y2 (m' — ™)2 (A G — B2) sin2 to

+ (A + 2Bm-^Cm2)(l + 2m'costo + m'2)]

(m' — mf (A C — B2) sin2 to

Il peut paraître difficile de rendre cette expression
indépendante de m et de m'; on y arrive cependant

22 BULL. SOG. SC. NAT. T. XXXI
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assez aisément à l'aide de la relation (2). En effet, le
multiplicateur de — P peut s'écrire

2 A + 2 B (m -f- m') + C (m2 + m'2)+ 2 cos <o [A (m -f m')
-f- 4 Bm m' -f- Cm m' (m -f- m')] -j- A (m2 -j- m'2)

-f- 2 Bm m' (m -f- m') -j- 2 Cm2 m'2

Mais, d'après (2),

A-)-B(m-(-m')=—Cm m'; A-f-Cmm'=— B(m-j-m');
B (m -j- m') -f- Cm m' — A,

et l'expression précédente devient

C (m' — m)2 — 2 B cos to (m' — m)2 -f- A (m' — m)2

(A — 2Bcosto + C)(m' — m)2.
'

On a donc finalement

X2 -(- Y2 v"- "

/ A ft
2Bcos» + C)

(AC —B2) sin2 to

La somme des carrés des demi-diamètres conjugués
est donc constante.

7. La tangente en un point (a/, y') de la courbe a,
comme on sait, pour équation

Axx' + B(xy'-\-yx')~\-Cyy'-\-D{x7rx')-\-E
(y-\~y') + F 0

qui peut s'écrire aussi

(Aa/+B?/'+D)a;+(Ba'+Cy'+E)î/+D3;'+Ey'+F=0.
Son coefficient angulaire est donc

Aa'+Bj/'+D
BaZ + Q/' + E'
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D'après l'équation (1), le coefficient angulaire du
diamètre conjugué au diamètre passant par le point
de contact est donné par l'équation

(A + Bm)a/+(B-|-Cm)2/'+D + Em 0,

d'où l'on tire
Aaf + fy f-D

m —
Baf+Cy'+E

valeur égale à la précédente; la tangente est donc
parallèle au conjugué du diamètre passant par le point
de contact.

Les calculs relatifs à l'hyperbole et à la parabole
seraient à peu près pareils : nous nous dispensons de
les faire, pour abréger.

~ae-
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