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Séance du 23 avril 1903

SUR LES DIAMETRES ])ES GONIQUES

Par E LE GBAND ROY PROF

Le but de la présente note est un essai d’exposition
des propriétés des diamétres des coniques, et particu-
lierement des diamétres conjugués, par des considé-
rations tout a fait élémentaires, ces propriétés étant
d’ailleurs déduites directement de 'équation géné-
rale. Rappelons d’abord les formules connues.

1. Soient Az?+ 2Bzy -+ Cy2+ 2Dz} 2Ey 4 F=0
I’équation d’'une conique, et y—=mz -+ n 'équation
d’'une sécante quelconque. Les points d’intersection
auront pour abscisses les racines de I’équation

Ax?-}- 2 Bz (mz -+ n)-}- C (ma - n)2 -+ 2 Do
o +2E(mz~+n)+F=0

(A+2Bm -+ Cm?) 22+ 2(Bn+ Cmn— D+ Em)
+Cn24-2Ern+F=0

I’abscisse du milieu de la corde est par conséquent

_ Br4Cmnt-D4-Em
A}2Bm—+4Cm?

on aura donc I'équation du diamétre, c’est-a-dire du
lieu des milieux des cordes ayant m pour coefficient
angulaire, en éliminant » entre cette équation et celle
de la corde; on obtient ainsi



-. B(y—-mw)+cm(y*—-mw)+n+Em
| A+2Bm+(}mﬁ |

=

ou, en’ redmsant |
M (A+Bm)$+(B+Cm)y+D+Em 0
| | Ce diamétre a pour coefﬁment angulalre it
N m
m = — ﬁ%
Cette egahte peut s’écrire aussl |
(2) A—{—B(m—l—m’)—]—Cm-m’:% 0

et de ce qu’elle es'f symétrique par rapport i m et w', |
on conclut & 'existence de deux diamétres ayant res-

‘pectivement pour coefficients angulaires m et m' et

dont chacun est le lieu des milieux des cordes paral-
leles a Pautre; c’est ce qu'on nomme, comme on sait,
des dzametres CONJUGUEs. i

2. On sait que les coordonnées du centre s obtlen- 3
,nent en resolvant le systéme (3) | et

Az+By+ D=0
Bz+Cy+E=0 -

qui se forme en annulant séparément les dérivées
partielles par rapport & z et 2 y du premier membre

de I'équation de la conique. Ces équations sont évi-

demment celles de deux diamétres et doivent par
conséquent se déduire de 'équation (1) par un choix

convenable du coefficient m. La premiére s’obtient
immédiatement en faisant m—0: mais il n’en est pas -~ _
~ de méme de la seconde. Pour trouver comment cette -
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derniére dérive de P'équation (1), appelons w l'angle -
des axes, et 8 'angle que le diamétre représenté par
cette équation forme avec I'axe des z; on sait alors
(que ' ]
sin 6
sin (w — 8) '

Par l'introduction de cette valeur, I’équation (1)
devient

[A sin (v —8) |- Bsin 6] x 4-[B sin (« — 8)}- Csin b} y
+ Dsin(w—08) -} Esine=0

On voit alors immeédiatement que cette équation
‘donne la premiére des équations (3) pour=0, et la
seconde pour 6=—uw: autrement dit les équations (3)
sont celles des diamétres correspondant aux cordes
paralléles aux axes. La premiére se déduit de I'équa-
tion (1) pour m =0, la seconde pour m = 2o, valeur
que prend en effet m pour 6 =w.

3. Si I'on transporte I'origine au centre, 'équation
de la conique prend la forme

Ax242Bzy+ Cy2+4-P=0,

et celle des diamétres devient

(A+Bm)m—{—(B+Cm)y=O.

Si 'on veut prendre pour nouveaux axes deux dia-
metres correspondant a des cordes formant avec 'axe
des z les angles 6 et ¢, on sait que les formules de
transformation sont ' e

z=2'sin (v — 0) -}- 9/’ sin (m._e') -
y=2o'sin® + ¢’ sin® '
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Mais, par suite des relations
__ sin6  ,  sin®

» ? m . i, ?
sin (w — 0) sin(w—*0")

ces formules peuvent s’écrire aussi

!

| P rsine
;x:m’sm _I__y%m :

m m’
Ly =2 sin6 -} ¢ sin &

| ,L’é-qu_atibn de la conique devient

! = !" a!
A(a: 81n0_|_ysm0)_l_2B(a:’s1n0 _I_.;:_; %1:1.)

m

(2’ sin 044 sin0)-}-C(2'sin64-¢' sin0)2 - P=0

ou en ordonnant

(A+2Bm—-Cm2)m/22/2sin2642[ A+ B(m*}-m’)~-Cm ' |
mm' 'y emﬂsmﬂ’—[—(A—}—QBm +Gm’9)m9 ’9511190' -
- Pm2m2=0 |

Si les diamétres sont conjugués, le terme ena y

s'annule en vertu de Féquation (2), et I'équation dela

courbe devient

(A + 2 Bm -+ Cm?) m’2 2"2sin?6 - (A 4+ 2Bm’ - Cm"")
m‘~’ Y2 sin?6’ -}- Pm2m'2 =0,

4. Les distances de'l’.orlgl.ne aux points ou les axes

rencontrent la courbe s’obtiennent en faisant succes-

sivement ¥’ =0 et #’— 0O dans I'équation pr ecedente
Si on les appelle X et Y on a ainsi :
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. — Pm?
T (A ¥ 2Bm+Cm¥)sinte

e C__Pm”?
(A+2Bn—+Cm'®) sin20’

5. Les formules précédehtes donnent, par multipli-
cation, |
QYQ-T- P2m2m'?

(A-1 9 Bm -+ Cm?) (A2 B’ - Cm’g) sin®6sin26’’

-d’ol1, pour l'aire du pdrallelogramme construit sur les
demi-diamétres, :

-+ Pm m/ sin (¢ —6)
sin0sin0"/(A +2Bm +Cm?)(A+2Bm’ +Cm’2)

X Ysin (9’-— ﬁ) e

Il faut prouver que cette expression est constante,
c’est-d-dire indépendante de m,m’,0 et 0, '

Le \ se réduit aisément a (m'— m)\/AC—Be: il
suffit pour cela, aprés avoir développé, de soustralre
du resultat le developpement de

[A+B(@m+m)+4 Cmm' =0
‘D’autre part, de

sin @

5 sin 6
m=— t m'—=—
sin (w —0) sin (w-—§")
on tire .
fy b — m Sin w
14 meosw
,
(tyﬂ,’: m’ sin w
: 14+ m eosw

puis
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 Ginb— m $in © P 1+ meso
\ Y1 2meso+ m? v 142 mcosw - m?
| _ oo
)smﬁ_ m’ sin w —— 1—i~'m e
- 1/1+2m cosw—|-m'2 ¥ 14-2m’ coswo - m'2
{
Par suite, |

(m' —m)sinw

sin (¢ —0)—

mm’ sin? o

sin 0 sin O =—

pour Vaire du parallélogramme

; | P
- | smnﬂ/AC B2

expression indépendante de la posmon des dlametres

6. L’addition membre & membre des equatlonq (4)
donne

_ X2+Y2

VA amme T AT It ma Fo®)

La substitution de ces diverses exprebsmns donne

—P[(A+2Bm’ —|—Gm’“’)m93m90’—|—(A—|—2Bm—l—Gm9)m’951n90]

(A+2Bm+-Cm?) (A-+2Bm’ +(m’?)sin26sin26”

~ou, en remplagant sin?8 et sin®6’ par leurs expressions,
~-ainsi que le produit qui figure au dénominateur,

—P[(A+2Bmw + Cm'®) (14 2meos o+ m2)

X2} ye— (m" —m)? (A C— B?)sinZw
| +A+2Bm4-Cm2) (14 2n/ cusw+m’9)]
: (m" — m)y (A C— B Sm2

Il peut paraitre difficile de rendre cette exp'réSSion

indépendante de m et de m’; on y arrive cependant

29 ' BULL. SOC. SC. NAT. T. XXXI

V(1+2mmsw+m2)(l+2m éosw_l_mfa) 3 L5

?
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assez aisément a l'aide de la relation (2). En effet, le
multiplicateur de — P peut s’écrire

2A+2B(m - m)+ C(m2 4+ m'2)+ 2e0s 0 [A (m 4 m')
~+ 4Bmm’ + Cmm’ (m - m')] —+ A (m? 4 m'?)
-+ 2 Bm ! (m 4 m") 4 2 Cm?® m'2

Mais, d’aprés (2),

A+B<m+m'>— Comn's, A-{-Con o' =—B(m—|-m');
B(m+m’)+Cmm = —A,

et I'expression précédente devient
C( —m)P2—2Beso(m —mPE+ A(m' —m)?
=(A —2Bes w4 Cy(m' —m)2.
On a donc finalement |
—PA - 2Busw}C)
(AC—B¥sinteo

p

La somme des carrés des demi-diamétres conjugués
~est done constante.

7. La tangente en un point (z/, %) de la courbe a,
comme on sait, pour équation

Az’ +B(@y +ya)+ Cyy' 4 D@+ 2)-E
y+y)+F=0

qui peut s’écrire aussi
(A2’ By’ +D)a-+-(Ba' 0y’ -+ E)y Do’ By’ - F =0.
Son coefficient angulaire est donc
_A¢+mq{y
Be' + Cy' 4 E
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D’aprés Féquation (1), le coefficient angulaire du
diameétre conjugué au diamétre passant par le pomt :
de contact est donné par lequatlon

(A+Bm)x’+(B+Cm)y +D—1—Em 0,

d’otr I'on tire
- AP+ By +D
Be'+Cy'+E’

valeur égale & la précédente; la tangente est donc
paralléle au conjugué du diamétre passant par le pomt |
de contact. | ",
Les calculs relatifs 4 lhyperbole et 4 la parabole |
seraient & peu prés pareils: nous nous dispensons de
les faire, pour abréger.
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