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PROPRIÉTÉS HARMONIQUES

DES MIROIRS ET DES LENTILLES

Pak L. ISELY, PROFESSEUR

(Communication faite dims la sen nee du 9 février 1893)

En parcourant un grand nombre de traités de

physique, notamment ceux de Lamé, de Ganot et de

Jamin, nous avons été surpris de n'y trouver aucune
application de la théorie si élégante des harmoniques
à l'étude mathématique des miroirs et des lentilles.
C'est une lacune à combler. Nous espérons que cette
communication y contribuera quelque peu.

Rappelons, tout d'abord, les principaux résultats
fournis par la méthode des harmoniques.

Soient trois quantités a, b, c, telles que a > b > c.
On dit qu'elles sont en proportion harmonique lorsque
l'excès de la première sur la deuxième est à l'excès
de la deuxième sur la troisième comme la première
est à la troisième. Par exemple, les nombres 6, 3 et

0 v. 6-3 6
1 sont en proportion harmonique, car ^ ^ — i>-

Cette expression est empruntée à l'acoustique. On
sait, en elfet, que les longueurs à donner à la corde
d'un sonomètre pour rendre les trois notes de l'accord

4 2
parfait majeur, ut, mi, sol, sont 1, ^, ^, et ces nombres

jouissent de la propriété ci-dessus indiquée.
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La proportion harmonique -— — — peut se

transformer ; elle donne alors naissance à une relation dont
on reconnaîtra aisément l'importance. Faisant
disparaître les dénominateurs, on trouve:

2ac ab + bc

d'où, en divisant les deux membres par le produit abc,

2 __j_ i_
b c a'

C'est une des formules capitales de l'optique. On
en fait un usage fréquent dans la théorie des miroirs
et des lentilles.

b est la moyenne harmonique entre a et c. Cette

moyenne se calcule à l'aide de l'expression :

2ac
& ——.a + c

On donne, par extension, le nom de points harmoniques

à quatre points A, B, C, D, situés sur la même
droite, et tels que les trois segments comptés à partir
de l'un d'eux et terminés aux trois autres sont en
proportion harmonique.

La géométrie et la physique nous offrent de
nombreux exemples de points harmoniques. Tels sont les
extrémités d'un côté d'un triangle et les points de

rencontre de ce côté avec les bissectrices de l'angle
opposé et de son supplément; — les centres de deux
cercles et leurs centres de similitude directe et
inverse ; — le sommet et le centre de courbure d'un
miroir sphérique, le point lumineux et le foyer, etc.
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Lorsqu'il s'agit de quatre points de cette nature, la
proportion harmonique peut s'écrire autrement. En

y remplaçant les termes par leurs valeurs segmentaires,
elle devient :

AC AD
BC BD'

ou, en tenant compte des signes des segments,

AC AD
BC =~ BD"

On dit alors que les points A et B divisent harmo-
niquemenl la distance CD, ou bien qu'ils sont
conjugues harmoniques par rapport à C et à D.

Béciproquement, ceux-ci sont conjugués harmoniques
relativement à A et à B.

Toute division harmonique se compose ainsi de
deux couples de points conjugués. Il résulte de la

proportion précédente que ces couples se croisent,
de façon que si le point C, par exemple, tombe entre
A et B, son conjugué D se trouve au dehors, et vice
versa. A et B se comportent de la même manière par
rapport à C et à D (lig. 1).

II est utile, pour la suite, d'examiner les diverses
dispositions des points conjugués relativement les uns
aux autres. A cet etïét, les points A et B étant
supposés fixes, voyons comment le point D se mouvra
sur la droite AB, à mesure que son conjugué C se

déplace sur la même ligne.
Supposons, tout d'abord, le point C à l'infini. Le rap-
,AC „ ..AD

port „ se réduira a 1 unite, et par suite ^y. =— 1,
Jj t .D D

c'est-à-dire que D sera le milieu M du segment AB.
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Ainsi le conjugué harmonique du point de l'infini est le

'milieu de la distance des deux autres points conjugués.
A mesure que G se rapprochera de B, le point D

en fera de même ; et, lorsque C et B coïncideront,
BC, et par suite BD, seront nuls tous les deux. 11 y
aura donc en B superposition de trois points
harmoniques.

Le point mobile C passera ensuite à l'intérieur de

AB; son conjugué se trouvera alors à l'extérieur, du
même côté que B par rapport au milieu M; et, lorsque

C coïncidera avec M, le point D s'éloignera à

l'infini.
Le point C se mouvant entre M et A, le conjugué

D reviendra de l'infini, du même côté que A par rapport

à M (une droite, dans la géométrie moderne, n'a
qu'un point à l'infini); et, lorsque C arrivera en A, D

y arrivera en même temps. Il y aura donc de nouveau,
à l'autre extrémité A. du segment AB, trois points
harmoniques superposés.

C se plaçant enfin à gauche de A, D restera entre
A et M, et coïncidera de nouveau avec ce dernier
lorsque C sera à l'infini.

Le point lumineux et le foyer conjugué d'un miroir
sphérique se comportent exactement de la même
manière, par rapport aux centres de courbure et de

figure du miroir.
Lorsque trois points A, B, C sont donnés sur une

droite, il est facile d'en trouver un quatrième D

formant avec eux une division harmonique. On recourt,
à cet elfet, à une propriété du quadrilatère complet,
d'après laquelle chaque diagonale est l'axe d'une
division harmonique dont font partie deux sommets
de la figure et deux points diagonaux. Il suffira donc
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de considérer A et B comme deux sommets et, C

étant pris pour point diagonal, de construire le point
diagonal correspondant, ce qui se fait au moyen de
la règle seulement. On mène par A, par exemple
(fig. 2), deux droites quelconques 1 et 2 que l'on coupe
par une troisième 3, également quelconque, issue de
C. On joint les points d'intersection à B par une
quatrième et une cinquième droites 4 et 5, qui
rencontrent les deux premières en deux nouveaux points.
Joints l'un à l'autre, ces points nous donnent une
sixième droite 6, qui va aboutir au point cherché D,

conjugué harmonique de C. Cette construction, purement

linéaire, est la plus usitée.
Toutes les considérations qui précèdent s'appliquent

directement aux miroirs et aux lentilles.
Supposons, en premier lieu, un miroir sphérique

concave de grande ouverture. On sait alors que les

rayons réfléchis infiniment voisins se coupent en des

points situés sur une courbe appelée caustique. Cette
courbe a un point de rebroussement sur l'axe du
miroir et, dans le cas où le point lumineux est à

l'infini, elle se transforme en une épicycloïde. Petit a

indiqué un moyen assez simple de construire cette
courbe par points. Soit PA un rayon incident (fig. 3)
d'une longueur égale à p; soient, en outre, AB-=4a
Je segment intérieur de ce rayon, et p' la distance
de A au point M de la caustique sur le rayon réfléchi.

On démontre aisément que :

ou
p p'

1

a

i+b 2

p p l a
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2a étant la moitié du segment intérieur du rayon
incident. Il suffira donc de mesurer p et a, et l'on
déduira de la formule précédente la valeur de p', et,
par suite, la position du point M de la caustique. Le
point de rebroussement S se construirait de la même
manière; le ravon incident étant alors dirigé suivant
l'axe du miroir, on a 2« r, le rayon de courbure.
La longueur p' est donc donnée par la formule :

1 1 2
— + ^p p r

Telle est la méthode de Petit, généralement
mentionnée dans les traités d'optique. Il nous semble que
la construction suivante, purement géométrique, est

plus avantageuse.
Comparant la relation qui caractérise les points de

la caustique, et que l'on peut à juste titre considérer
comme son équation, à la formule :

1 12
7J + T~¥'

déduite de la proportion harmonique, on voit que les

quantités p, p' et 2a, ou r, sont en proportion
harmonique, 2a ou r étant la moyenne harmonique
entre p et p'. Désignons donc par O' le milieu de la
corde AB; les points A, O', M', P sont harmoniques,
M' étant l'extrémité du segment AM' AM—]/. A
et O' sont conjugués, ainsi que P et M'. Connaissant
les trois points A, O' et P, on déterminera linéairement

le quatrième harmonique M', qu'on ramènera à

l'aide d'un arc de cercle sur le rayon réfléchi, en M.
M sera un point de la caustique. Les autres points
de cette courbe s'obtiendront de la même facon. En
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particulier, le point de rebroussement S sera le
conjugué de P, [iar rapport aux centres de courbure et
de ligure du miroir.

Considérons, en second lieu, un miroir concave de

petite ouverture, c'est-à-dire dont l'angle au centre
ne dépasse pas 8 ou 9°. La caustique se réduit alors
à un point, et S se nomme le foyer conjugué du point
P. Le foyer est donc, comme dans le cas précédent,
le conjugué harmonique du point éclairant, par
rapport aux centres du miroir, et se construit aussi à

l'aide du quadrilatère complet.
Soient O et N les centres de courbure et de ligure

du miroir (fig. 3), P le point lumineux et S son foyer
conjugué, ou son image. Ces quatre points, étant
harmoniques, pourront prendre l'une ou l'autre des

positions que nous avons indiquées précédemment.
Nous aurons donc les cas suivants:

1° Le point lumineux P est à Fintini, c'est-à-dire
que les rayons incidents sont parallèles à l'axe.
L'image sera le milieu de la distance des centres O

et N; on l'appelle alors foyer principal.

2" Le point lumineux se rapproche du centre de

courbure; l'image s'approche de ce point en même
temps, et lorsque le point lumineux coïncide avec O,
l'image coïncide avec lui. U y a au centre de courbure

trois points harmoniques superposés.

3° P est entre le centre et le foyer principal, l'image
se fait alors de l'autre côté du centre.

1° Le point lumineux est au foyer principal. L'image
est rejetée à l'infini, c'est-à-dire que les rayons réfléchis
sont parallèles à l'axe.
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5° Le point P est entre le foyer principal et le
sommet du miroir; son conjugué se trouve alors de
l'autre côté du sommet, et l'image est virtuelle.

6° Le point lumineux coïncide avec le sommet N,
ou le centre de figure. L'image coïncide aussi avec
ce point.

7° P passe de l'autre côté du sommet; le miroir
devient convexe, et l'image, se faisant entre le sommet
et le foyer principal, est toujours virtuelle.

On peut donc répéter sur les miroirs sphériques
convexes l'étude que nous venons de faire au sujet
des miroirs concaves. Les points de la caustique se

construisent comme précédemment (lig. 4). Ces points
sont virtuels.

Lorsque l'angle au centre du miroir est suffisamment
petit, la caustique se réduit sensiblement à un point.
On peut dire alors que ce point est un foyer virtuel
unique. Sa distance p' au sommet du miroir se calcule
au moyen de l'expression :

p + p/

Les lentilles donnent lieu à des considérations du
même genre.

On sait que, si les surfaces qui limitent une lentille

ne sont pas de petites portions des sphères dont
elles font partie, le lieu des intersections successives
des rayons émergents est une courbe, appelée dia-
caustique, analogue à la caustique par réflexion ou
catacaustique '. De là résulte une cause de confusion

1 Ces courbes, découvertes par Tschimhausen, en 1(1X2. ont été
tout spécialement étudiées par Malus et Sturm.
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des images, à laquelle les physiciens donnent le nom
û'aberration de sphéricité, et dont ils diminuent les
effets en plaçant, devant la lentille, un diaphragme
découpé de manière à intercepter les rayons venant
des bords.

La diacaustique a un point de rebroussement et,
dans le cas particulier où l'ouverture de la lentille ne
dépasse pas 10 à 12 degrés, elle se réduit à ce point,
c'est-à-dire que les rayons émergents vont très
sensiblement concourir en un point, réel ou virtuel, appelé
foyer.

Considérons tout d'abord un faisceau de rayons
parallèles à l'axe principal ; le point où vont concourir
les rayons émergents est le foyer principal. Nous le

désignerons par F. Sa distance à la lentille est la
distance focale principale f. Cette distance se détermine

par l'expression:

H"-1>C+.1}
n étant Vindice de réfraction de la substance de la

lentille, r et r' ses rayons de courbure.
Dans les lentilles ordinaires, qui sont de crown-

3
glass, verre dont l'indice est sensiblement égal à -= '

la formule ci-dessus se réduit à

f 2\r+r')
La distance focale principale peut donc, dans ce

cas, être considérée comme la moyenne harmonique
entre les deux rayons de courbure de la lentille. Cette

remarque permet de trouver une construction géométrique

très simple du foyer principal.
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Dans le cas, plus spécial encore, où les rayons r et
r' sont égaux, la lentille prend une forme régulière
ou symétrique et l'on a:

1 1.
f-~- r

Le foyer principal coïncide donc très approximativement

avec l'un des centres de courbure.
Considérons maintenant un point P, situé sur l'axe

principal, à une distance p du centre optique de la
lentille. Les rayons, issus de ce point, viennent
sensiblement concourir en un point, réel ou virtuel, qui
est le foyer conjugué P' de P, et réciproquement.
Soit p' sa distance au centre de la lentille.

11 existe, comme on le démontre en physique, une
relation entre p, p' et f. Cette relation, qui est
harmonique, est la suivante :

1 1 1.
p

+ p'
-~- f

C'est Yéquation aux foyers conjugués.
11 résulte de là que 2f est moyenne harmonique

entre p et p'. Ainsi le double de la distance focale
principale est égal à la moyenne harmonique des

distances focales conjuguées.
Dans le cas où f— r, la formule précédente deviendrait.

:

L+l ±.
p p' r

C'est ce qui arrive, comme nous l'avons dit plus
haut, dans les lentilles régulières faites de crown.

-ae-
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