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ments de poterie, car nous voyons, dans les planches
du volume que je prends la liberté de faire passer
sous vos yeux, des restaurations de vases, ainsi que
des fragments couverts de dessins dont la variété et

l'originalité ne sont pas sans analogie avec les débris
de nos palafittes.

Feu M. Pictet, le paléontologiste distingué,
recommandait toujours de ne pas négliger les fragments de

fossiles, même isolés, lorsque, par leur état de

conservation, ils pourraient aider à la détermination des

caractères spécifiques.
Le Musée du Locle possède un petit commencement

de collection du genre de celle que je voudrais voir
réussir à Neuchàtel, et je rappelle en passant le beau

spécimen figuré dans le Musée neuchâtelois.

M. L. Isely fils lit la note suivante :

LA GÉOMÉTRIE DE LÀ SPHÈRE

ET L'HEXAGRAMME MYSTIQUE

Par M. L. Isely, professeur.

Le XVIIe siècle a droit à notre admiration par la

multiplicité et l'importance de ses découvertes dans
le domaine des mathématiques. Burgi et Neper in-
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ventent les logarithmes, Descartes conçoit la géométrie
analytique, Desargues et Pascal donnent à la théorie
des coniques un développement considérable, Pascal

et Fermât imaginent le calcul des probabilités, Leibnitz

et Newton créent l'analyse infinitésimale. Ce fut,
sans contredit, l'âge d'or des sciences exactes.

L'Essai pour les coniques parut en 1640. Son auteur,
Biaise Pascal, était un tout jeune homme, de seize

ans à peine. Cet écrit de peu d'étendue, sept pages
in-8°, passa pour ainsi dire complètement inaperçu.
Les géomètres de l'époque étaient sous le coup de
l'immortelle conception de Descartes. Les méthodes
synthétiques étaient délaissées pour les procédés
analytiques. La géométrie pure ne comptait plus qu'un
petit nombre d'adeptes et ce nombre subit encore une
notable diminution lors de la découverte du Calcul
différentiel et intégral, quelque quarante ans plus tard.
L'Essai resta enseveli pendant plus d'un siècle. Il ne
revit le jour qu'en 1779.

Cet opuscule commençait par un lemme dont
l'importance n'échappa pas aux géomètres de notre siècle.
Pascal s'en servit pour démontrer plusieurs propriétés
des courbes du 2e degré, et lui donna le nom d'hexa-
gramme mystique. Cette belle proposition s'énonce
généralement comme suit:

« Les points de concours des côtés opposés d'un hexagone

inscrit dans une conique sont toujours en ligne
droite. »

En 1806, Brianchon, dans son Mémoire sur les

surfaces du 2e degré (Journal de l'Ecole polytechnique,
XIIIe cahier), déduisit du théorème précédent cette
proposition non moins remarquable et non moins
utile :
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« Les diagonales qui joignent les sommets opposés
d'un hexagone circonscrit à une conique concourent
au même point. »

Première et ingénieuse application de la théorie
des polaires réciproques, qui depuis a reçu une si
heureuse extension

Plus tard, Steiner, Plucker, Hesse, Bauer, en
Allemagne ; Cayley, Kirkman et Salmon, en Angleterre,
furent conduits, en approfondissant la question, à la
découverte de propriétés qui font de l'hexagramme
mystique une des figures les plus singulières que l'on
connaisse.

Il était facile de prévoir que les coniques sphériques
devaient fournir des considérations analogues à celles

qui se présentent dans l'étude des coniques planes.
Le plan n'est, en effet, qu'une portion de surface sphérique

de rayon infini. La géométrie à deux dimensions

est un cas particulier de celle de la sphère, la
trigonométrie rectiligne est une conséquence toute
naturelle, un corollaire forcé, de la trigonométrie
sphérique. Chose curieuse, cette vérité, qui paraît si simple
aujourd'hui, ne semble pas avoir été connue des
anciens. Ce n'est guère qu'à la fin du siècle dernier que
l'on cherche à résoudre, sur la sphère, des questions
analogues à celles de la géométrie plane. Lexell étudie
les propriétés des cercles décrits sur la sphère et fait
voir que le lieu des sommets des triangles sphériques,
de même base et de même aire, est un arc de petit
cercle, passant par les points diamétralement opposés
aux extrémités de la base constante. Peu après, Fuss
s'occupe d'une façon toute spéciale d'une certaine
ellipse, intersection de la sphère par un cône du 2e

degré, ayant son sommet au centre de la sphère con-
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sidérée. (Nova acta Petrop., tome III.) Cette courbe
est le lieu des sommets des triangles de même base et

dont la somme des deux autres côtés est constante.
Elle se décrit, comme l'ellipse plane, à l'aide d'un fil
dont les extrémités sont attachées à deux points fixes,
les foyers. Fuss arrive de plus à ce résultat remarquable

: si la longueur du fil équivaut à la demi-circonférence

de la sphère, ce mode de construction conduit
invariablement à un grand cercle, quel que soit du
reste l'éloignement des foyers. Quelques années plus
tard, Magnus, de Berlin, découvre (Annales de

Mathématiques, tome XVI, 1825-1826) cette belle propriété
de l'ellipse sphérique : Les arcs de grands cercles, qui
joignent les foyers à un point quelconque de la courbe,
font des angles égaux avec l'arc tangent en ce point.

Lhuilier, professeur de mathématiques à Genève,
avait déjà, quelques années auparavant, publié un
mémoire sur les avtalogies entre les triangles rectangles
rectilignes et sphériques. (Ann. de Math., tome I,
1810-1811, pages 197-201.)

Il y établit entre autres la proposition corrélative
de celle de Pythagore, sur le carré de l'hypoténuse.
Dans tout triangle sphérique rectangle, écrit-il, le

carré du sinus de la demi-hypoténuse est égal à la

somme des produits des carrés des sinus de chaque
demi-côtépar lecosinus au carré de la moitié de l'autre.
On a donc:

¦ 0a ¦ ab ac 9c ab
sin2 g sin2

g
cos2 ^ + sin2

^
cos2 ~,

a désignant l'hypoténuse, b et c les côtés de l'angle
droit du triangle considéré. Lhuilier ajoute, en guise
de scolie, que l'application aux triangles rectilignes
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a lieu en substituant d'une part aux sinus des demi-
côtés ces demi-côtés eux-mêmes et d'autre part l'unité
à leurs cosinus.

C'est dans la même revue que Gergonne énonce
cette propriété du quadrilatère sphérique analogue à

celle du quadrilatère plan : un quadrilatère est cir-
conscriptible à un cercle lorsque la somme de deux
côtés opposés est égale à celle des deux autres (Ann.
de Math., tome V, page 384). Guéneau d'Aumont
démontre la proposition supplémentaire, à savoir que
dans tout quadrilatère sphérique inscrit dans un
cercle, la somme de deux angles opposés est égale à

celle des deux autres (Mêmes Annales, tome XII,
1821-1822).

Puis la théorie des courbes du 2e degré, tracées
sur la surface de la sphère, reprit le dessus. Deux
géomètres de premier ordre, Steiner et Chasles, l'un
dans le Journal de Creile, tome II, l'autre dans son
mémoire sur les coniques sphériques (Mémoires de
l'Académie de Bruxelles, tome VI), et dans divers
écrits dont les derniers parurent dans les Comptes
rendus (mars et juin 1860), firent connaître au monde
savant maintes propriétés fort intéressantes de cette
espèce de lignes sphériques. L'ellipse sphérique de
Fuss devient l'enveloppe des bases des triangles qui ont
même aire et un angle commun. Il existe en outre
deux arcs de grands cercles qui jouent le rôle des

asymptotes de l'hyperbole plane. Chasles leur donne
le nom d'arcs cycliques. A la même époque, Guder-
mann; de Clèves, publie successivement deux ouvrages

intitulés: « Grundriss der analytischen Sphärik »

(Cologne, 1830), et « Lehrbuch der niederen Sphärik »

(Münster, 1835). C'est là le premier essai d'une géo-



- 538 —

métrie quelque peu complète de la sphère. Dans le

premier de ces écrits, Gudermann étudie les propriétés
des courbes sphériques au moyen d'un système

de coordonnées conçu en prenant pour modèle celui
des coordonnées cartésiennes.

Dans le second, il s'appuie sur des considérations
de géométrie élémentaire et de trigonométrie sphérique

pour établir des propositions dont l'importance
n'échappera à personne. Nous ne citerons que les deux
suivantes : « Les côtés opposés d'un hexagone sphérique

inscrit dans un cercle se coupent en trois points
situés sur un arc de grand cercle (page 207). — Les

arcs de grands cercles, qui joignent les sommets opposés
d'un hexagone circonscrit à un cercle, se rencontrent
toujours en un point (pages 230 et 231). On reconnaît

immédiatement dans ces énoncés ceux des
théorèmes de Pascal et de Brianchon.

Le 15 novembre 1847, Borgnet, alors professeur de

mathématiques à Tours, présentait à l'Académie des
Sciences un Essai de géométrie de la sphère. L'Académie

renvoya cet Essai à l'examen d'une commission
choisie parmi ses membres, et qui fut composée de

Cauchy, Poncelet et Liouville. Ce mémoire, écrit avec
beaucoup de clarté, vit le jour l'année suivante (1848)
sous le titre d'Essai de géométrie analytique de la
sphère (antidaté le 12 juin 1847). Mais, à son insu,
Borgnet ne fit que répéter ce que Gudermann avait
dit douze ans auparavant. Il généralisa cependant
d'une manière assez ingénieuse les théorèmes de Pascal

et de Brianchon (Nouvelles Ann. de Math., tome
VII, pages 175 et 176). A peu près à la même époque
paraissaient d'excellents articles sur les figures
sphériques, dus à la plume d'un eminent professeur de
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Versailles, Vannson (voir Note sur la surface du triangle

sphérique et sur l'ellipse sphérique, Nouv. Ann.,
tome VII, pages 14 et 51 ; puis Formules fondamentales

de l'analyse sphérique, tome XVII, pages 65, 99,

140, 163, 209, 243 et 307, tome XVIII, page 5; enfin
Propriétés des coniques sphériques homofocales, tome
XIX, page 197, 1860). Il est entre autres fait mention
de l'hexagramme mystique et de son théorème
inverse à la page 220 du tome XVII.

Enfin, tout dernièrement, M. Salmon, le savant

professeur de l'université de Dublin, a consacré un
chapitre de son Traité de géométrie analytique à trois
dimensions aux coniques sphériques (lre partie, ch. X
de la traduction française par M. Chemin, 1882).
Entre autres propositions, on remarque les suivantes,
qui sont fondamentales: Etant donnés la base et le produit

des cosinus des côtés d'un triangle sphérique,
le lieu du sommet est une conique sphérique dont les

arcs cycliques sont les grands cercles qui ont pour
pôles les extrémités de la base donnée. Deux tangentes
variables coupent les arcs cycliques en quatre points
situés stir un cercle. — Dans un système de deux
coniques homofocalcs, l'excès de la somme des tangentes,
menées par un point de la courbe extérieure à
laconique intérieure, sur l'arc qu'elles embrassent est

constant. Quelques-unes de ces propositions sont déjà
énoncées dans les œuvres de Gudermann, de Borgnet
et de Vannson.

« Ainsi, comme le dit Chasles, la géométrie de la
« sphère est commencée d'une manière régulière et
« dogmatique. On ne contestera point l'utilité théori-
« que de pareilles recherches. Il est bon de contempler
« les vérités géométriques dans leur plus grande éten-
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« due, dans leur plus grande généralité, dans leur plus
« grande approximation, pour ainsi dire, des lois suce

prêmes, dont la recherche doit être l'objet constant
« des efforts des géomètres. Elles ont, dans cet état
« de généralité, des rapports et des analogies qu'on
« ne rencontre point dans leurs corollaires, qui en
« montrent l'enchaînement et servent à s'élever plus
« haut et à découvrir des principes généraux dont les
« traces étaient effacées ou inaperçues dans les pro-
« positions plus circonscrites et plus particulières. La
« géométrie de la sphère, ne fût-elle donc considérée
c que comme mode de généralisation des propriétés
« des figures planes, et indépendamment de son ca-
« ractère et de sa valeur propres et absolus, mérite-
« rait l'attention et l'étude des géomètres. » (Aperçu
historique, page 240.)

Abordons maintenant la question qui doit faire le
sujet de cette communication. L'hexagramme mystique,

nous l'avons vu précédemment, existe sur la
sphère. Quels en sont les caractères distinctifs et quels
sont les développements dont cette figure est susceptible?

Tels sont les points que nous allons chercher
à éclaircir le plus succinctement possible.

L'analyse et la synthèse conduisent l'une et l'autre
rapidement au but.

La géométrie analytique enseigne que, si l'équation
d'un plan est de la forme :

X COS a -f y COS ß + Z COS f p,

la longueur de la perpendiculaire abaissée d'un point
(x', y', z') sur ce plan est :

x' cos <x + y' cos ß + z' cos y — p.
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Si donc nous introduisons les coordonnées d'un

point de la sphère dans le premier membre de l'équation

d'un plan passant par son centre, nous obtiendrons

la longueur de la perpendiculaire que l'on peut
abaisser du point sur le plan, c'est-à-dire la valeur du
sinus de l'arc perpendiculaire abaissé de ce point
sur le grand cercle, intersection de la sphère par le
plan considéré. Cette remarque conduit à quelques
propriétés très intéressantes des coniques sphériques,
propriétés analogues à celles dont jouissent les coniques

planes.
Beprésentons maintenant par le symbole abréviatif

A 0, l'équation d'un plan qui passe par le centre
de la sphère (origine des coordonnées). Nous pourrons
l'envisager comme étant aussi celle du grand cercle,
suivant lequel ce plan coupe la sphère. Soient donc

A=0, B 0, C 0 etD=0,
les équations des côtés d'un quadrilatère sphérique.
Il est évident que la formule

(1)... AC + K. BD=0,
où K est un paramètre arbitraire, exprime qu'une
conique quelconque passe par les sommets de ce
polygone. On voit qu'alors (') le produit des sinus des

arcs perpendiculaires abaissés d'un point d'une conique
sphérique sur deux des côtés opposés d'un quadrilatère
inscrit est dans un rapport constant avec le produit
des sinus des arcs perpendiculaires abaissés du même
point sur les deux autres côtés. (Salmon, G. anal, à
trois dimensions, page 319.)

(1) Théorème de Pappus.
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L'égalité (1) permet de démontrer très simplement
l'hexagramme mystique sur la sphère. Ce théorème,
débarrassé de toutes considérations supplémentaires,
peut s'énoncer de la manière suivante :

« Les points de concours des côtés opposés d'un hexagone

inscrit dans une conique sphérique sont situés
sur une circonférence de grand cercle. i>

Désignons par 1, 2, 3, 4, 5, 6 les sommets de l'hexagone,

selon leur rang (l). Les côtés opposés seront les

arcs (12), (45); (23), (56); (34), (61), où (12), par exemple,

représente la corde sphérique ayant pour extrémités

les points 1 et 2. La diagonale (14) divisera
l'hexagone en deux quadrilatères et la conique
circonscrite aura pour équation, soit :

(12) (34) + K(23)(14) 0,
soit

(45) (61) + K' (56) (14) 0.

Ces équations représentant la même courbe, on
pourra toujours déterminer les paramètres K et K'
de manière qu'on ait l'identité :

(12) (34) + K (23) (14) — (45) (61) — K' (56) (14) 0,

quelles que soient les valeurs assignées aux variables.
Cette identité donne lieu aux deux équations

équivalentes :

(12) (34) — (45) (61) 0,
et

(14) [K (23) — K' (56)] 0.

Les figures représentées par ces deux expressions
sont nécessairement identiques. Voyons ce qu'elles

(1) Le lecteur est prié de faire la figure.
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sont. Le premier membre de la seconde équation se

décomposant en deux facteurs, on a d'une part :

(14) 0
et de l'autre

(23) — l (56) 0,

où l est le signe représentatif du rapport •*=¦• Nous

obtenons de la sorte deux grands cercles dont l'un est
la diagonale (14) elle-même, et l'autre une
circonférence passant par le point de concours des arcs (23)
et (56). La première équation doit donc fournir les
mêmes grands cercles. Or, la ligne qui renferme les
intersections des arcs (21), (61) et (34) (45) n'est pas
autre chose que la diagonale (14); il s'ensuit que l'arc
de cercle qui passe par les points (12), (45) et (34), (61)
doit coïncider avec celui qui contenait l'intersection
des côtés (23) et (50). Les points (12), (45); (23), (56)
et (34), (61) sont donc situés sur la même circonférence
de grand cercle. Ce qu'il fallait démontrer.

Remarque. — Deux grands cercles de la sphère se

rencontrent toujours en deux points diamétralement
opposés. Il en résulte que les côtés opposés de l'hexagone

inscrit donnent naissance à trois couples de

points. Ces six points sont évidemment situés sur la
même circonférence. Nous donnerons à cette dernière
le nom de cercle de Pascal.

La démonstration synthétique se ferait tout aussi
simplement.

Nous avons vu que le produit des sinus des arcs
perpendiculaires abaissés d'un point d'une conique
sphérique sur deux des côtés opposés d'un quadrilatère

inscrit est dans un rapport constant avec le pro-
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duit des sinus des arcs perpendiculaires abaissés du
même point sur les deux autres côtés. De ce
théorème, il est facile de conclure le suivant :

Le faisceau, formé par les arcs de grands cercles

qui joignent quatre points fixes de la conique à un
point quelconque de cette courbe, a un rapport anhar-
monique constant.

On sait en effet que, si du sommet C d'un triangle
sphérique ABC on abaisse une perpendiculaire CD

sur le côté opposé AB, le produit du sinus de ce côté

par celui de l'arc perpendiculaire est égal au produit
des sinus des deux autres côtés par le sinus de l'angle
que ces côtés comprennent.

sin AB. sin CD sin CA. sin CB. sin ACB.

Soient donc AB, BC, CD et DA les côtés du quadrilatère

inscrit qui a pour sommets les points fixes A,
B, C et D de la conique. O étant un point quelconque
de cette courbe, et E, F, G, H les pieds des arcs
perpendiculaires abaissés de ce point sur les côtés du
quadrilatère, nous aurons les quatre égalités
suivantes :

sin AB. sin OE sin OA. sin OB. sin AOB,
sin BC. sin OF sin OB. sin OC. sin BOG,
sin CD. sin OG sin OC. sin OD. sin COD,
sin DA. sin OH sin OA. sin OD. sin AOD.

Divisons maintenant la première de ces égalités par
la deuxième, la troisième par la quatrième. Nous
obtiendrons :

sin AB. sin OE
_

sin OA. sin AOB
sin BC. sin OF "" sin OC. sinBOC :
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sin CD. sin OG sin OC. sin COD
sin DA. sin OH — sinOA. sinAOD

Multiplions ces deux dernières expressions membre
à membre. Il viendra:

sin AOB. sin COD
_

sinOE. sinOG sin AB. sin CD
sinBOC. sinAOD sinOF.sinOH XsinBC. sin DA"

Le second membre de cette équation est constant.
Le premier est le rapport anharmonique des arcs de

grands cercles qui joignent le point O aux quatre points
fixes A, B, C et D.

En conséquence, le faisceau formé par ces arcs
a un rapport anharmonique constant. Ce qu'il fallait
démontrer.

Nous dirons, pour abréger, que ce rapport
anharmonique est celui des points fixes de la conique.

Il résulte de ce qui précède que, dans l'hexagone
inscrit (1 2 3 4 5 6), les faisceaux (1. 2 3 5 6) et (4.
2 3 5 6) ont des rapports anharmoniques égaux. On

peut donc écrire:

(1.2 3 56) (4. 23 5 6)
ou

(1. 2 3 5 6) => (4. 32 6 5)

De ces égalités de rapports on peut conclure, par
analogie aux coniques planes, que les arcs de grands
cercles suivants concourent au même point: l'arc (23),
l'arc (65) et celui qui contient les intersections de (61),
(34) et de (12), (45).

Ce qui démontre l'hexagramme mystique relatif à
la sphère.

BULL SOC SC. NAT. T. XII. IIIe CAH. 35
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La théorie des polaires réciproques (principe de

dualité) qui s'applique aussi aux figures sphériques,
comme il est facile de le faire voir, donne immédiatement

la démonstration du théorème corrélatif de
Brianchon.

Six points, pris sur une conique sphérique, donnent
lieu, lorsqu'on les joint de toutes les manières

possibles, à ———ici-—¦— 60 hexagones inscrits

différents. Chacun de ces polygones, jouissant des

propriétés indiquées précédemment, on est conduit de

la sorte à 60 cercles de Pascal, se rapportant aux
mêmes six points. Ces circonférences ne sont pas
disposées d'une manière arbitraire sur la surface de la
sphère. Elles se coupent trois par trois en vingt points
(nous faisons abstraction des points diamétralement
opposés), que nous appellerons, par analogie à la
théorie des coniques planes, points de Steiner.
Démontrons-le.

La conique considérée, étant circonscrite au
quadrilatère (2 3 5 6), aura une équation de la forme:

(25) (36) + K" (23) (56) 0.

Combinons-la avec chacune des expressions déjà
trouvées pour la même courbe ; nous aurons
successivement :

(12) (34) — (25) (36) + (23) [K (14) — K" (50)] 0
(25) (36) —(45) (61) + (56) [K" (23) —K' (14)] 0

La première de ces identités indique que les points
(12), (36); (34), (25) et (14), (56) sont situés sur la
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circonférence de grand cercle, représentée par l'équation

:

K (14) — K" (56) 0

La seconde fait voir que les points (45), (36); (61),
(25) ; et (23), (14) se trouvent sur l'arc de grand cercle
dont l'équation est :

K" (23) —K' (14) =0
Nous arrivons ainsi à trois grands cercles dont les

équations respectives sont:

K (23) — K' (56) 0
K (14) — K" (56) 0

K"(23)—K' (14) 0

Multiplions ces égalités par les constantes —K",
K', K; puis ajoutons les résultats. Nous tomberons
sur l'identité :

0 0.

Les plans des trois cercles en question passent donc

par un même diamètre de la sphère. Les circonférences

de ces cercles se rencontrent donc aux extrémités

de ce diamètre. Or, ces lignes sont les cercles
de Pascal des hexagones (12 3 4 5 6), (14365 2),
(16 3 2 5 4). L'existence des points de Steiner est donc
confirmée.

La formation d'un tableau renfermant les soixante
hexagones, disposés en vingt groupes correspondant
aux vingt points de Steiner, n'offrirait aucune difficulté.
Nous en laissons le soin au lecteur, tout en le
renvoyant à l'excellent ouvrage de J. Steiner : Die Theorie
der Kegelschnitte, gestützt auf projectivische
Eigenschaften (2me édition, page 133).
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L'analogie entre l'hexagramme mystique dans le

plan et l'hexagramme mystique sur la sphère peut
être poussée plus loin. Les points de Steiner sont, à

leur tour, arrangés d'une manière spéciale. Ils se
trouvent, quatre par quatre, sur quinze circonférences
de grands cercles (nous faisons toujours abstraction
des points diamétralement opposés qui, du reste,
n'influent nullement sur le nombre de ces circonférences).

Nous les appellerons les cercles de Steiner.
La démonstration est tout aussi simple que les
précédentes. Nous ne la ferons pas ici, cette communication

ne pouvant dépasser certaines limites. Nous
nous bornerons de même à énumérer les propriétés
suivantes :

Chaque hexagone de Pascal, pris à part, possède,
outre ses six côtés, neuf diagonales. La théorie des
combinaisons apprend, en effet, que l'on peut joindre
six points, deux à deux, de quinze manières
différentes. Ces neuf diagonales donnent naissance à trois
hexagones dont les cercles de Pascal se coupent dans

un nouveau point, que nous appellerons point de

Kirkman. Prenons un exemple. Soit l'hexagone
(1 2 3 4 5 6) dont les côtés sont, suivant leur rang, (12),
(23), (34), (45), (56) et (61). Les neuf diagonales seront
les arcs de grands cercles (13), (14), (15), (24), (25),
(26), (35), (36) et (46). Les cercles de Pascal des trois
hexagones :

(135264), (351 426) et (5136 42)

se rencontrent, comme il est facile de s'en assurer,
en un certain point (nous sous-entendons toujours le

point diamétralement opposé).
Il existe donc autant de points de Kirkman que de
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cercles de Pascal, c'est-à-dire soixante. 0. Hesse a
fait voir qu'il y avait entre ces soixante points des
relations qui ne sont que les réciproques de celles

qui se rapportent aux cercles de Pascal. Les points
de Kirkman sont situés, trois par trois, sur vingt
circonférences de grands cercles, les cercles de Cayley.
Ces derniers cercles passent, quatre par quatre, par
quinze points, les points de Salmon (même remarque
au sujet des points diamétralement opposés).

Ces considérations montrent que toutes les
particularités qui caractérisent l'hexagramme mystique
plan se retrouvent dans l'hexagramme sphérique. Il
en serait de même du théorème de Brianchon.

Nous avons fait remarquer à diverses reprises qu'à
chaque point de la surface de la sphère correspondait
un point diamétralement opposé. Il semblerait donc,
de prime abord, qu'il y eût une lacune dans l'analogie
entre la sphère et le plan.

Cette lacune n'est qu'apparente. Une sphère à rayon
infini se scinde en deux moitiés planes, dont l'une
reste dans l'espace fini et l'autre s'en va à l'infini. Il
en résulte que dans chaque couple de points
diamétralement opposés, l'un des points est infiniment éloigné,

mais n'en existe pas moins. L'analogie entre la
géométrie sphérique et la géométrie plane ne subit
donc aucune altération.

Nous nous arrêtons là pour aujourd'hui. Les
relations que l'on peut déduire des théorèmes de Pascal
et de Brianchon sont multiples et variées. Nous y
reviendrons peut-être un jour. La géométrie de la sphère
fait de grands progrès; il est de toute nécessité que
nous soyons constamment au courant de ce qui se

passe autour de nous, et s'il est un fait qui nous sur-
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prenne et nous afflige, c'est de voir combien peu nos
manuels de géométrie tiennent compte des découvertes

modernes. La plupart sont conçus dans un esprit
de routine qui n'est plus de mode. Qui n'avance,
recule Il faut un revirement dans notre manière de

comprendre et d'enseigner la géométrie. Nous espérons

que ce revirement se produira bientôt.

M. Billeter donne quelques détails sur la falsification des
vins. Il arrive à la conclusion qu'il est inutile et même
dangereux pour le législateur de vouloir poursuivre le
commerce des vins artificiels, comme tels. On ne peut ni ne doit
prohiber des procédés permettant de fournir des vins, à base
de raisin, qui ne peuvent pas, dans la règle, être caractérisés

par l'analyse comme des vins artificiels, mais qui, d'ailleurs,
sont sains et, par leur prix, accessibles à tout le monde.
L'analyse devra se borner à constater la qualité de ces
boissons, au point de vue de leur influence sur la santé. Quant
à la valeur d'un vin, le palais a été et sera toujours le
meilleur juge.

Séance du 26 mai 1882.

Présidence de M. L. Coulon.

M. L. Favre, vice-président, lit la notice nécrologique
suivante sur M. Desor.
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