Zeitschrift: Bulletin de la Société des Sciences Naturelles de Neuchâtel

Herausgeber: Société des Sciences Naturelles de Neuchâtel

Band: 8 (1867-1870)

Artikel: Toisé des voûtes d'arête des églises gothiques

Autor: Isely

DOI: https://doi.org/10.5169/seals-88053

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

APPENDICES.

TOISÉ

des voûtes d'arête des églises gothiques,

PAR M. ISELY, PROFESSEUR.

(Voir la séance du 28 janvier, page 239.)

A propos de la restauration de la Collégiale de Neuchâtel, un peintre-gypseur, chargé de la peinture des voûtes de cette église, me demanda quelle était la manière la plus exacte d'en calculer l'aire. Ne trouvant rien sur cette matière dans les ouvrages de géométrie, j'ai essayé le petit travail suivant:

I,

Supposons d'abord quatre piliers en carré A B A' B', destinés à supporter les courbes ogivales servant de directrices pour la génération des voûtes qui se pénètrent, représentées dans la perspective cavalière (fig 1). L'ensemble de la voûte se compose ainsi de huit portions de surfaces cylindriques, égales entre elles, dont l'une d'elles est figurée par la partie A O C.

La figure 2 est l'épure de la voûte. A B A' B' est le plan de la figure, et A B C la projection verticale des arcs ogivaux. Soit I le centre de l'arc A E C, et r son rayon C I. (Nous admettons que ces arcs sont des portions de cercle,

comme cela a lieu généralement.) Développons la portion eylindrique A O C sur un plan; nous obtiendrons la figure N O S R, terminée par la courbe O S R, tandis que N A R est l'arc A E C rectifié.

Faisons:
$$\langle C I A = \alpha \rangle$$

 $\langle E I A = \omega \rangle$
 $N F = \text{arc } C E = r (\alpha - \omega) = x$
 $S F = K L = A K = AI - K I = r (1 - \cos \omega) = y$.

Nous aurons:

$$\frac{x}{r} = \alpha - \omega; \omega = \alpha - \frac{x}{r}; \cos \omega = \cos (\alpha - \frac{x}{r})$$
et $y = r \left[1 - \cos \left(\alpha - \frac{x}{r} \right) \right]$

C'est l'équation de la courbe OSR, espèce de sinusoïde, qui tourne sa convexité contre l'axe des x, car sa dérivée du second ordre $\frac{1}{r}$ cos. $(\alpha - \frac{x}{r})$ est positive.

Il ne reste plus qu'à faire la quadrature de la surface N O S R.

L'intégrale
$$\int y dx = r \int \left[dx - \cos \left(\alpha - \frac{x}{r}\right) dx \right]$$

donne: $r[x + r \sin (\alpha - \frac{x}{r})];$

il faut la prendre depuis : $x = o à x = r \alpha$.

Pour
$$x = o$$
, on a: $r [o + r \sin \alpha]$
pour $x = r \alpha$, on a: $r [r \alpha + o]$.

On a ainsi pour la valeur de l'intégrale définie:

$$r^2(\alpha - \sin \alpha)$$
.

Appliquons cette formule à quelques cas particuliers.

I. Supposons que le centre soit en N, et que l'ogive se réduise à un plein-cintre. Nous aurons alors :

$$\alpha = 90^{\circ} = \frac{\Pi}{2}$$

et
$$\mathbf{r}^2 \left(\frac{\mathbf{II}}{2} - \sin \frac{\mathbf{II}}{2} \right) = \mathbf{r}^2 \times 0.5708$$
,

pour l'aire d'une des portions cylindriques A O C de la voûte en arête. Si a représente la distance A B d'un des piliers à l'autre, on peut écrire aussi:

$$\frac{a^2}{4}$$
 × 0,5708 = 0,1427 a².

II. Voûte gothique.

Ici le centre est en B: r = A B = a, $\alpha = 60^{\circ} = \frac{\Pi}{3}$

La formule donne:

$$a^{2}\left(\frac{\Pi}{3} - \sin\frac{\Pi}{3}\right) = a^{2}\left(1,0472 - 0,8660\right) = 0,1812 \ a^{2}$$
 pour la surface A O C.

III. Ogive romane.

C'est le cas des voûtes de la Collégiale de Neuchâtel. Le centre I de la voûte est à une distance $NI = \frac{1}{3}$ $NB = \frac{1}{6}$ A B, de sorte que $r = \frac{2}{3}$ A B ou $\frac{2}{3}$ a. et α est un angle de 75° 31′ 20″.

La formule devient:

$$\frac{4}{9} a^{2} (arc 75^{\circ} 31' 20'' - sin. 75^{\circ} 31' 20'')$$
ou
$$\frac{4}{9} a^{2} (1,318 - 0,968) = 0,156 a^{2}.$$

II.

Pour donner plus de généralité à cette recherche, nous devons l'étendre au cas où les piliers ne sont pas disposés en carré, mais en rectangle.

Dans ce cas si l'on désigne par a la distance des piliers A B et par b celle des piliers A A', la formule de la courbe O S R deviendra, en se servant des mêmes notations que cidessus:

$$y = \frac{br}{a} \left[1 - \cos \left(\alpha - \frac{x}{r} \right) \right]$$

et celle de la surface N O S R sera:

$$\frac{br^2}{a}$$
 ($\alpha - \sin \alpha$).

Cette formule servira pour calculer les portions de voûte aboutissant à la face A B.

Pour calculer les portions de voûtes qui aboutissent à la face A A', il faut employer la formule:

$$\frac{ar^2}{b}(\alpha'-\sin\alpha')$$

Les valeurs r r', $\alpha \alpha'$ sont liées entre elles par les conditions suivantes:

1° r' sin.
$$\alpha' = r \sin \alpha$$
,

résultant de ce que les voûtes des deux faces doivent avoir la même hauteur.

2°
$$r' \cos \alpha' + \frac{1}{2}b = r' \text{ ou } b = 2r' (1 - \cos \alpha')$$

 $r \cos \alpha + \frac{1}{2}a = r \text{ ou } a = 2r (1 - \cos \alpha).$

Il en résulte que:

$$\frac{b}{a} = \frac{r' (1 - \cos \alpha')}{r (1 - \cos \alpha)} = \frac{r' \sin^{2} \frac{1}{2} \alpha'}{r \sin^{2} \frac{1}{2} \alpha}$$
ou
$$\frac{a}{b} = \frac{\sin \alpha \sin^{2} \frac{1}{2} \alpha'}{\sin \alpha' \sin^{2} \frac{1}{2} \alpha} = \frac{\tan \beta \cdot \frac{1}{2} \alpha'}{\tan \beta \cdot \frac{1}{2} \alpha},$$
et ensin tang.
$$\frac{1}{2} \alpha' = \frac{b}{a} \tan \beta \cdot \frac{1}{2} \alpha.$$

III.

En reprenant la formule du premier paragraphe:

$$r^2 (\alpha - \sin \alpha)$$

qui peut s'écrire :
$$r^2$$
 ($\alpha - 2 \sin^4/_2 \alpha \cos^4/_2 \alpha$.

On peut comparer cette valeur exacte à celle qu'obtient le peintre-gypseur. Celui-ci mesure la surface en question en multipliant la longueur de l'arc de l'ogive, égale à N R ou r cos. α par la largeur K L, répondant au milieu de cet arc. Celle-ci vaut : r $(1-\cos^{4}/2\alpha)$ de sorte que son évaluation répond à

$$r^2$$
 ($\alpha - \alpha \cos \frac{1}{2} \alpha$)

et puisque $\alpha > 2$ sin. $^4/_2 \alpha$, il s'ensuit que son évaluation est trop faible, c'est-à-dire qu'il perd. Heureusement pour lui qu'il se sert de la ficelle pour mesurer.

IV.

Si on calcule quelle est l'aire du segment, on trouve facilement: $\frac{1}{2} r^2 (\alpha - \sin \alpha)$, c'est-à-d. qu'elle est la moitié de la portion cylindrique AOC. C'est un résultat assez remarquable.