Zeitschrift: Bulletin de la Société des Sciences Naturelles de Neuchâtel

Herausgeber: Société des Sciences Naturelles de Neuchâtel

Band: 7 (1864-1867)

Vereinsnachrichten: Rapport du directeur de l'Observatoire cantonal à la commisison

d'inspection pour l'exercice de 1865-1866

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

RAPPORT

DU

DIRECTEUR DE L'OBSERVATOIRE CANTONAL

A LA

COMMISSION D'INSPECTION

POUR L'EXERCICE DE 1865-1866.

MESSIEURS,

Je présente aujourd'hui mon sixième rapport à la commission d'inspection de l'Observatoire avec des sentiments de satisfaction et de reconnaissance : de satisfaction, en voyant notre établissement se développer toujours davantage, ses services scientifiques et pratiques reconnus de plus en plus, et sa réputation s'établir peu à peu ; de reconnaissance, en constatant l'intérêt bienveillant dont les autorités du pays ne cessent de l'entourer. Je suis heureux de pouvoir citer plusieurs mesures, qui en donnent la preuve ; ainsi le Conseil d'Etat a réalisé pour cette année déjà le vœu que j'avais exprimé et que vous avez bien voulu appuyer, d'instituer des prix pour les meilleurs chronomètres présentés à l'Observatoire. La Direction des Travaux publics, en reconnaissant l'insuffisance du logement actuel, n'a pas hésité à proposer de l'agrandir con-

venablement. Et si je puis adresser aujourd'hui mon rapport à des concitoyens, je vous prie, Messieurs, de croire que je vois dans l'honneur de la naturalisation que le Grand-Conseil m'a accordée d'une manière si flatteuse, moins encore une récompense pour des services rendus, pour laquelle j'exprime ici ma profonde reconnaissance, qu'un nouveau stimulant pour moi de vouer à mon pays d'adoption toutes mes forces, et de redoubler mes efforts pour faire porter à notre Observatoire que j'ai aidé à créer, tous les fruits que ses généreux fondateurs en ont espérés. Enfin, parmi les mesures qui intéresssent l'Observatoire et en garantissent le développement, je ne puis omettre de citer la fondation de l'Académie, qui grâce surtout à l'initiative et à la persévérance d'un d'entre vous, Messieurs, a été enfin décrétée et ne tardera pas, j'espère, à être organisée. Cet établissement d'enseignement supérieur ne manquera pas de profiter aussi à notre Observatoire; non seulement parce qu'il me fournira l'occasion d'enseigner l'astronomie dans des cours scientifiques et de former des élèves, mais parce qu'il donnera un nouvel élan à la vie scientifique de Neuchâtel, et que dans un petit pays surtout, tous les intérêts intellectuels se tiennent, et tous les établissements qu'on crée pour les développer, se renforcent et s'appuient mutuellement.

Je vous prie maintenant, Messieurs, de me suivre par les différents chapitres dans lesquels j'ai l'habitude de diviser mon rapport.

I. Bâtiment, instruments et bibliothèque.

J'ai déjà mentionné et vous avez pu voir que l'on a agrandi le bâtiment de l'Observatoire, en ajoutant deux pièces au logement du directeur. Ce logement qui ne con-

tenait que 284 mètres cubes, tout compris, chambres, cuisine, corridors, etc., (tandis que d'après les statistiques, chaque ménage, en Suisse, jouit en moyenne, d'un logement de 400 mètres cubes), a été construit dans des dimensions insuffisantes dès le commencement. La petitesse des chambres, dont la plus grande mesure 4^m,35 sur 3^m45, jointe à l'absence de galetas et de mansardes à cause du toit plat, ne permettait pas l'installation convenable d'un ménage de famille. Les chambrettes de l'étage placées sous un toit d'asphalte et n'avant que 2^m 47 de hauteur sont, dans les chaleurs de l'été, presque inhabitables. Ensuite il était fâcheux qu'il n'y cût pas à l'Observatoire une seule pièce assez grande pour y asseoir plus de six ou sept personnes. C'était d'autant plus gênant que notre Observatoire sert souvent de lieu de réunion à des commissions scientifiques. Ainsi lorsque dernièrement la commission géodésique internationale s'est réunie à Neuchâtel, j'ai regretté de ne pas pouvoir recevoir ces hôtes distingués à l'Observatoire comme je l'aurais désiré, et d'être obligé de tenir nos séances au château, où le Conseil d'Etat a bien voulu nous offrir un salon.

Appréciant ces différentes raisons, le Conseil d'Etat a reconnu la nécessité d'ajouter deux pièces de dimensions convenables au corps de logis actuel. L'impossibilité d'ajouter un étage, pour ne pas masquer la vue à la lunette parallactique, et la situation du bâtiment ne laissaient pas d'autre choix que d'ajouter une petite aile à l'angle N. E., ce que l'on pouvait faire sans compromettre la façade principale du Sud et sans altérer trop le premier plan de construction. Du reste M. l'architecte cantonal a pris soin de conserver jusque dans les détails l'architecture du bâtiment. Dans quelques semaines les deux nouvelles chaments par qui ont ensemble une contenance de 124 mètres cu-

bes, seront terminées et formeront avec les anciennes pièces un logement qui suffira aux besoins légitimes du directeur et lui permettra de recevoir convenablement les réunions scientifiques qui viendront siéger à l'Observatoire. C'est donc non seulement en mon nom, mais aussi dans l'intérêt de l'Observatoire que je remercie le Conseil d'Etat d'avoir accordé cette construction. En même temps la direction des Travaux publics a fait arranger les abords de l'Observatoire, disparaître les hors-d'œuvre qu'on s'était permis d'y construire, et planter, le long de l'avenue, une haie d'acacias qui la bordera convenablement. Dans le jardin on a renouvelé le gazon et planté plusieurs arbres et arbustes qui, lorsque nous aurons notre fontaine coulante, permettra d'entretenir autour de l'Observatoire une verdure suffisante pour diminuer la poussière et la réverbération du sol en été, qui gène surtout dans l'observation de la mire.

Les instruments de l'Observatoire sont, comme vous avez pu vous en convaincre, en bon état d'entretien. Nous avons eu pendant cet hiver, à la lunette méridienne, un de ces accidents qui arrivent à tous les Observatoires, surtout lors des changements brusques d'humidité et de température; le réticule presque tout entier, à l'exception de sept fils, s'est trouvé un jour brisé, sans aucune cause apparente. On a jusqu'à présent vainement essayé de remplacer les fils d'araignée qui sont sujets quelquefois à ces accidents, par des fils d'autres matières. Mais les fils en métal ont le grave inconvénient de changer trop avec la température et par conséquent de casser en hiver, lorsqu'on les a bien tendus, ou de ne plus rester droits en été. Les fils en verre, si même on parvient à les tirer assez fins. n'ent pas assez d'élasticité pour résister au moindre choc. Force est donc de conserver les fils d'araignée, au risque de voir se produire quelquesois des accidents, comme celui dont je vous parle et qui sont toujours désagréables parce qu'ils interrompent le travail et sont difficiles à réparer. Heureusement nous avons près de nous, en M. Kern à Aarau, un artiste habile et obligeant, qui a remplacé notre réticule dans quelques jours par un nouveau système de fils, qui ne laissent rien à désirer, ni pour la finesse ni pour l'exactitude de leur position.

Une autre difficulté avec laquelle on a continuellement à lutter dans les Observatoires, provient de l'emploi des verres colorés, auxquels il faut avoir recours pour l'observation directe du'soleil et dont il faut toujours avoir une collection, non-seulement parce qu'il faut atténuer l'éclat du soleil plus ou moins selon sa hauteur et les conditions atmosphériques, mais parce que, malheureusement, ces verres sont trop sujets à éclater dans l'extrême chaleur qu'ils subissent au foyer des grandes lunettes. L'année dernière j'ai fait l'acquisition d'un nouveau système de verres colorés qui ont une teinte graduée et que l'on peut déplacer devant l'oculaire selon le besoin; en adaptant ainsi plus exactement le degré d'obscurcissement à l'éclat momentané du soleil, on garantit mieux l'œil et on est moins exposé au bris des verres ; jusqu'à présent j'ai lieu d'en être satisfait.

La compensation de la pendule sidérale, dont le jeu n'était pas tout à fait libre à cause d'une légère couche de vernis, dont les tringles du gril étaient couverts dans les traverses, est maintenant presque complétement réglée, puisque sa variation diurne moyenne n'est plus que de — 0°,078; à la prochaine occasion j'y ferai mettre la dernière main. Nos trois autres pendules marchent toujours bien; cette année ce sera au tour de la pendule de l'Association ouvrière d'être nettoyée et changée d'huile.

Notre chronographe a dù être nettoyé et subir quelques légères réparations; depuis lors il fonctionne de nouveau avec sûreté; seulement l'emploi des plumes capillaires et de l'encre est toujours ennuyeux et demande beaucoup de soins. Malheureusement je n'ai pu encore réussir à me procurer un papier noir approprié, sur lequel on pourrait tracer les lignes avec des pointes en diamant.

Mr Henri Perregaux du Locle, avant son départ pour l'Amérique, a bien voulu remettre à l'Observatoire, pour un temps indéfini, un chronomètre thermométrique de sa fabrication, qui retardant au moyen d'une compensation inverse de 22^s pour chaque degré de température, indiquera la température moyenne de notre armoire des chronomètres plus exactement que ne peut le faire un thermométrographe.

Notre bibliothèque s'accroît lentement à mesure des fonds disponibles. Je fais faire par mon aide un catalogue des livres que nous possédons.

II. Transmission de l'heure.

Le service de la transmission de l'heure, qui a une importance pratique si grande, puisqu'il rend déjà dans l'état actuel des services considérables, de l'aveu de tous les intéressés, n'est pas encore arrivé au degré de perfection où je voudrais le voir arriver et dont il serait capable si nous n'étions pas obligés d'emprunter les lignes télégraphiques fédérales et surtout de passer par les bureaux de l'administration. Certes la faute n'en est pas à nous ; car, comme les années passées, cette année encore le nombre des jours où le courant n'est pas parti de l'Observatoire, par la faute, soit de notre pile, soit du relais, soit de la pendule électrique, n'est que de huit. La faute ne peut pas

non plus être attribuée au schéma électrique que j'ai organisé, ainsi que je l'ai déjà fait observer il y a deux ans; car l'été dernier encore le signal est arrivé dans toutes les stations pendant deux mois presque sans interruption. Dans les douze derniers mois le signal de l'Observatoire est parvenu 286 fois à la Chaux-de-Fonds, 240 fois au Locle, 192 fois aux Ponts et 183 fois à Fleurier. Il a donc manqué en moyenne à la Chaux-de-Fonds 1 fois sur 5, au Locle 1 fois sur 3, aux Ponts et à Fleurier 1 fois sur deux, quoique le signal fût parti 357 fois de l'Observatoire. A quoi donc faut-il attribuer ces interruptions fàcheuses, que je suis le premier à regretter? Car lorsque après avoir fait une vingtaine d'observations d'étoiles dans la nuit, après les avoir réduites soigneusement et dépouillées de toute erreur instrumentale, on est parvenu à faire partir le signal des 24 heures exact à quelques centièmes de seconde près, il est extrêmement pénible d'apprendre le soir qu'il n'est pas arrivé à destination, parce que tel employé d'un des bureaux télégraphiques avait oublié de faire la communication, ou tel autre n'avait pas monté la pile, ou parce que la ligne était en mauvais état, etc. Plusieurs horlogers de nos Montagnes, qui se plaignaient d'être privés souvent du signal, ont voulu proposer au gouvernement de construire une ligne spéciale, servant uniquement à la transmission de l'heure. On ne peut pas nier que ce ne fût là un remède radical, car il n'y a pas de doute que dans ce cas l'heure n'arrivât régulièrement dans toutes les stations. Mais ce serait coûteux, car un fil spécial depuis l'Observatoire jusqu'à Fleurier en passant par les Montagnes, si même nous pouvions le tendre sur les poteaux de l'administration, coûterait fr. 6 à 7,000. Et je soutiens encore, malgré toutes les fàcheuses expériences, qu'on peut arriver à une régularité satisfaisante

sans recourir à ce dernier moyen. La preuve en est que notre signal parvient assez regulièrement à la Chaux-de-Fonds où cependant il va sur la ligne fédérale; en 1864 il n'a manqué qu'une fois sur six, et si le nombre des interruptions a été un peu plus considérable cette année-ci, cela vient de ce qu'on a changé la ligne entre la Chauxde-Fonds et Neuchâtel, ce qui n'arrive que tous les 5 ans. Ce ne sont donc que les trois stations Locle, Ponts et Fleurier, dépendant de la pile de relais établie au bureau des télégraphes du Locle, qui ont été mal desservies. Comme je le disais déjà dans mon rapport de l'année dernière, — et c'est aussi l'avis d'autres hommes compétents que j'ai consultés, — la faute principale est dans la négligence avec laquelle la pile du Locle est entretenue, bien que nous ayons mis à la disposition de l'employé chargé de son entretien tous les moyens nécessaires. Or, puisque cet état fâcheux persiste malgré les ordres les plus formels donnés par M. l'inspecteur d'arrondissement, il faut choisir entre ces deux alternatives: ou bien que l'administration fédérale se charge elle-même et sous sa responsabilité de l'entretien de la pile du Locle, contre remboursement des frais de notre part, — et je proposerai cette mesure à la direction des télégraphes—ou bien, si elle s'y refuse, il faut retirer notre pile du bureau des télégraphes du Locle, la placer à l'hôtel de ville, et la confier aux soins de M. Grossmann, qui s'acquitte depuis nombre d'années de l'observation du signal avec un dévouement et une régularité exemplaires. Par une de ces mesures, j'espère arriver enfin à un résultat satisfaisant.

Du reste l'utilité de cette organisation est si bien comprise, même en dehors de notre canton, que la société industrielle et commerciale de Sainte-Croix m'a demandé de pouvoir en profiter. Comme notre courant ne va trouver

la terre qu'à Yverdon, il serait en effet facile de le faire dévier au bureau de Sainte-Croix, où il passe, pour y faire décrocher une pendule et donner ainsi l'heure aux horlogers de Sainte-Croix. Mais comme c'est en dehors de notre canton, qui a fait les frais de cette organisation, c'est à notre gouvernement de voir s'il veut y consentir. Il faudrait en outre le consentement de l'administration des télégraphes. C'est dans ce sens que j'ai répondu à la demande de la société industrielle de Sainte-Croix, en me réservant en outre, dans le cas où les deux gouvernements auraient donné leur consentement d'examiner l'exécution technique de ce nouvel embranchement, pour m'assurer qu'il ne comporterait point de nouvelles sources de dérangement.

III. Observation des chronomètres.

Je suis heureux de pouvoir constater de nouveaux progrès dans cette branche de l'activité de l'Observatoire, aussi bien quant au nombre des pièces présentées à l'observation que surtout quant au résultat très réjouissant que les chronomètres de nos artistes ont donné. Car depuis mon dernier rapport, nous avons reçu 92 montres de précision à l'Observatoire, et si l'on compte depuis le le avril 1865 à la même date de cette année, il y a 84 chronomètres, parmi lesquels 4 de marine, contre 65 de l'année dernière. Et comme 4 de ces chronomètres ont dû être renvoyés à cause de l'irrégularité de leur marche, il reste 80 pièces qui ont reçu des bulletins de marche.

C'est de nouveau la Chaux-de-Fonds qui a envoyé plus de la moitié de tous les chronomètres, à savoir 42; le Locle en a présenté 16, Fleurier 15, Neuchâtel 6, et un est venu de Bienne.

Le nombre des fabricants qui ont profité du contrôle thoughter which is the partie the medical content of the street engage.

scientifique de leurs chronomètres, est de 24, en voici la liste:

and the second of the second o	Nombre de chronom.
1. Haas et Privat de la Chaux-de-l	Fonds
2. Grosclaude et fils, à Fleurier.	
3. Emile Perret, au Locle	9
4. Borel et Courvoisier, à Neuchât	
5. Georges Reymond, à la Cl	
6. Robert-Brandt et C ^e ,	id. 4
7. Ulysse Humbert-Ramus,	id. 4
8. Ducommun-Sandoz et C ^e ,	id. 3
9. Auguste Gerscht,	id. 3
The second secon	id. 3
10. Robert Theurer et fils,	
41. Breting frères, au Locle	2
12. Schwab et Marx, à la Chaux-de	
	·
14. Ulysse Breting, au Locle	
<u></u>	
16. Emile Bronner, à Bienne	
17. Dubois-Calame à la Chaux-de-F	
18. Napoléon Guinand et fils, au Lo	
19. Jacot frères, au Locle	
20. Ulysse Joseph-Jeannot, à la Cha	ux-de-Fonds . 1
21. LU. Lebet, à Fleurier	
22. Paul-Henri Matthey, au Locle.	
23. Girard-Perregaux, à la Chaux-	de-Fonds 4
24. Lequin et Yersin, à Fleurier .	
To the second of	otal 80
A CONTRACT OF THE STATE OF THE	

Le réglage de la plupart de ces chronomètres a atteint un degré de perfection vraiment étonnant et témoigne des progrès considérables que la chronométrie fait chez nous; car la variation moyenne de la marche d'un jour à l'autre n'est pour la moyenne des 80 chronomètres, qu'une fruction de seconde, ce qui constitue pour des montres portatives un degré de perfection qu'il serait difficile de dépasser. Je ne crois pas sortir de la vérité si je réclame une partie du mérite de ce fait réjouissant, pour notre observatoire, qui non seulement fournit à nos artistes, par la transmission de l'heure exacte, le moyen indispensable au réglage précis, mais qui en constatant le résultat obtenu d'une manière authentique a provoqué une heureuse émulation chez nos fabricants. Aussi peut-on constater une progression continuelle dans la perfection du réglage; car voici les chiffres de la variation moyenne dans les différentes années, depuis que je fais la statistique régulière des chronomètres;

Dans l'exercice de	X 1	la	varia	tion moyenne a éte
1862-1863	•	• .	•	1s,61
1863-1864	• §		•	1s,28
1864-1865	•			1s,27
1865-1866		•		$0^{s}.88$

Le même progrès devient visible, lorsqu'on oherche la proportion dans laquelle se trouvent les chronomètres de la 1^{re} classe, c'est-à-dire ceux dont la variation reste au dessous de 1^s. Exprimés en pour cent du nombre total des chronomètres observés, nous trouvons pour cette 1^{re} classe:

en	1862-1863				23	0/0
))	1863-1864	•	V .	•	44	»
))	1864-1865			•** 8	46	***
)	1865-1866			•	84))

Voici comment les chronomètres de cette année se répartissent dans les trois classes:

Classe	e. Variation moyenne. Nom	bre de chronomètres.	Pour cent.	Var. moy. de la classe.
I.	Au-dessous de 1s.	67	84	0s,63
II.	Entre 1s et 2s.	7	9	1s,44
III.	Au-dessus de 2s.	6	7	2s,94
		80	Moy	yenne: 0s,88
			-	

Il y a même 13 de ces chronomètres, dont 3 de marine et 10 de poche, qui ont varié, d'un jour à l'autre de moins d'une demi-seconde. Il ne me semble que juste de citer les noms des fabricants qui ont atteint cette remarquable perfection du réglage. Ce sont:

	Numéro u chronon		diu	rne moy.
Haas et Privat, à la Chde-Fs,	41949	ancre	cylindr.	0,524
Georges Reymond, id.,	1	chronom. de	marine.	0,s25
CH. Grosclaude et fils, Fleurier	, 446	id.	id.	0,526
Dubois-Calame, à la Chde-Fs,	46843	tourb àress.	plat.	0, s28
Girard-Perregaux, id.,	35121	tourb.basc.	Breguet.	0,832
CH. Grosclaude et fils, Fleurier	, 30682	bascule	sphériq.	0,\$35
Haas et Privat, à la Chde-Fs,	43719	tourb. basc.	plat.	0,\$40
id. id.	35349	bascule	cylind.	0,540
id. id.	35353	id.	id.	0,843
Lequin et Yersin, à Fleurier,	30746	ressort	id.	0, s43
CH. Grosclaude et fils, Fleurier	, 447	chronom. de	marine.	0,546
Ulysse Breting, au Locle,	17739	tourbillon	plat.	0,547
Haas et Privat, à la Chde-Fs,	41955	ancre	cylindr.	0,\$49

C'est donc un chronomètre de poche, avec échappement à ancre, qui a donné le plus parfait réglage, dépassant même celui des chronomètres de marine. Cependant, en moyenne, ce n'est pas cet échappement qui l'emporte, c'est plutôt en premier lieu le tourbillon, et ensuite l'échappement à ressort, qui ont donné cette fois les meilleurs résultats. Car voici pour les chronomètres de poche, le tableau comparatif pour les échappements:

chrono mètre	s var. moy. de			en 1863,	8 S S S S	a don a dans	donnée par
5	à tourbillon	0,842	0,866	0,564	2, s30	1,s162	17 chron.
11	à ressort	0,570	1,517	1,837	1,502	1,5007	37 »
15	à ancre	0,889	1, s14	1,539	1,551	1,5252	72 - m
. 1	duplex	0,890	. .			0,s90	1 · »
44	à bascule	1, ^s 01	1,847	1,528	1,80	1,s335	113 - »
Moye	nne générale:	0,s88	1,527	1,s28	1,861	1,s245	240 chron.

Il est certainement remarquable que de nouveau, c'est-à-dire, la troisième fois, l'échappement tourbillon occupe la première place, et l'échappement à bascule, le plus usité chez nous pour les chronomètres de poche, la dernière. L'échappement à ancre se dispute le rang avec celui à ressort; le dernier l'a emporté d'une manière sensible; cependant le réglage des montres à ancre s'est perfectionné cette année encore considérablement. Si l'on prend l'expérience des 4 ans, on voit que c'est bien l'échappement à ressort qui donne la marche la plus régulière, et celui à bascule, dont le réglage est le moins parfait. Sans vouloir tirer de ces comparaisons des conséquences prématurées, elles me semblent déjà de nature à faire réfléchir nos artistes, si la préférence qu'ils donnent à l'échappement à bascule est bien justifiée.

Quant au genre du spiral, il n'existe pas cette fois des différences bien marquées; cependant, comme les deux dernières années, la forme sphérique paraît donner un meilleur réglage que la forme cylindrique; car nous avons eu:

Le réglage de la compensation laisse encore à désirer, car en moyenne, la variation des chronomètres observés a été pour 1° de température 0°,48. C'est certes trop, car si l'on suppose seulement une différence de température de 20°, à laquelle les montres seraient exposées dans le courant de l'année, cela ferait une variation de la marche de 9°,6; et si la montre subit cette différence de température dans le courant du jeur, cela produit déjà, si on la suppose exposée à la température inférieure pendant 8 heures, une variation de 3°,2.

Pour montrer qu'on peut arriver à un réglage plus parfait de la compensation, je donne le tableau suivant, où je classe les montres d'après la perfection de leur compensation:

La variation pour l° est restée entre			Variation moyenne le la classe pour 1°.
0, s0 - 0, s1	chez 9 ch	ronomètres.	0,s06
$0,^{s}1 - 0,^{s}2$	» 13	»	0, s14
$0,^{s2} - 0,^{s3}$	» 13	»	0,524
$0,^{s}3 - 0,^{s}5$	» 13	»	0,843
0,5 - 1,50	» 4	»	0,869
$1,^{s0} - 2,^{s0}$	» 3	»	1,s49
2, s0 - 4, s0	» 3	»	3,528
v grā ^v al	Moye	enne général	le: 0, \$48

Je me permets de nouveau d'attirer l'attention des artistes sur la forme et les dimensions tout à fait insuffisantes des étuves, dont ils se servent ordinairement pour le réglage de la compensation et pour leur rappeler que nous avons à l'Observatoire une étuve dont la température reste constante à 1° près pendant 24 heures. Si l'acquisition d'un tel appareil semble peut-être à bien des horlogers, trop coûteuse et trop embarrassante, parce qu'il demande l'emploi du gaz, pourquoi ne pourrait-on pas se réunir et se servir en commun d'un appareil semblable, qui fonctionnerait continuellement, et où l'on pourrait toujours mettre son chronomètre en réglage, pendant 24 heures contre une finance de quelques centimes!

Le réglage du plat au pendu, au contraire, s'est sensiblement amélioré, car la variation entre les deux positions n'est plus que 6^s,18 en moyenne, tandis que cette moyenne était 41^s,26, l'année dernière, Si l'on divise les chronomètres en classes, aussi sous ce rapport, on trouve que la variation du plat au pendu est restée dans les limites de

```
      0 à 1s pour
      6 chronom. avec une variation moyenne de
      0,551

      1 à 2s » 12 » » » 1,563

      2 à 4s » 11 » » 2,588

      4 à 10s » 16 » » » 6,562

      10 à 20s » 6 » » » 14,592

      au delà de 20s 4 » » 22,548

      Variation moyenne : 6,518
```

De nouveau la plupart des chronomètres (3/5 environ) retardent dans la position verticale; et presque dans la même proportion (2/3) ils sont en majorité surcompensés.

Quant aux chronomètres de marine, nous en avons eu cette année 4 à observer, deux de MM. Ch.-H. Grosclaude et fils, de Fleurier, et deux de M. George Reymond, à la Chaux-de-Fonds; ces derniers n'ont été qu'un mois en observation, et n'ont pas été observées à l'étuve.

Voici les chiffres moyens que leur observation a donnés:

```
Noms des Fabricants.
                              Numéro.
                                        Marche Variation
                                      diurne moy. diurne moy. de tempér.
Grosclaude et fils, à Fleurier.
                                       -4,58
                                 447
                                                 0,846
                                                        +0.513.
                                       -2, 96
                                                 0,s26
George Reymond, à la C.-de-Fs.
                                       +0,892
                                                 0, $25
                                       -4,599
                                                 0,580
```

On voit que parmi ces pièces deux ont donné un résultat remarquable, ne variant que d'un quart de seconde d'un jour à l'autre. C'est de nouveau une preuve que nos artistes savent aussi établir des montres marines d'une grande perfection.

Après tant de faits que j'ai eu le plaisir de pouvoir vous citer, et qui prouvent l'état avancé de la haute horlogerie chez nous, je dois mentionner encore un succès remarquable, qu'un de nos artistes a obtenu dans la solution d'un problème extrêmement difficile, que je lui avais posé. Il s'agissait de construire un chronomètre à enregistrement électrique qui en formant à chaque seconde un courant, per-

mettrait d'employer la méthode chronographique pour les observations astronomiques aussi en dehors des observatoires, en campagne, où l'établissement d'une pendule est toujours d'une grande difficulté. Demander à une machine d'un mouvement mécanique si faible, comme celui d'un chronomètre de marine, une fonction qui revient à toutes les secondes et exige une force assez considérable, était certainement un problème ardu. M. William Dubois du Locle, avec l'aide de M. Hipp de Neuchâtel, a su surmonter toutes les difficultés, et a doté l'astronomie et la géodésie d'un nouvel instrument de précision qui ne manquera pas de rendre des services considérables. Un essai préliminaires que j'ai fait, a montré que la marche du chronomètre, du reste d'une régularité extraordinaire, n'est point changée, à quelques centièmes de seconde près, qu'on fasse marcher le mouvement électrique ou non. Nous avons dernièrement montré cet appareil intéressant à la société des sciences naturelles de Neuchâtel, et il en paraîtra sous peu dans ses bulletins une description détaillée, accompagnée de dessins. Dans mon prochain rapport, j'espère pouvoir vous donner de plus amples détails sur sa marche.

Je crois utile d'annexer à ce rapport, pour donner des modèles de réglage, les copies des bulletins des trois premiers chronomètres, à savoir du chronomètre de poche N° 41949 de MM. Haas et Privat à la Chaux-dc-Fonds, et des deux chronomètres de marine, du N° 1 de M. George Reymond, et du N° 446 de MM. Ch.-H. Grosclaude et fils, à Fleurier. (Voir les tableaux 1, 2 et 3).

Je termine ce chapitre en remerciant le Conseil d'Etat, d'avoir donné suite à ma proposition que votre Commission, messieurs, a bien voulu recommander, et d'avoir institué, dès cette année, cinq prix pour les meilleurs chronomètres qu'on présentera à l'observatoire, à savoir:

Un prix de fr. 150 pour le meilleur chronomètre de marine.

- » » 125 » » de poche.
- » » 100 pour le second »
- » 75 pour la meilleure montre à ancre.
- » 50 pour la seconde » »

J'espère que cet encouragement que l'Etat donnera désormais aux meilleurs produits de notre horlogerie de précision, sera un nouveau stimulant pour nos habiles artistes, et les résultats dont je vous ai rendu compte aujourd'hui, sont une garantie qu'on ne manquera pas de pièces de précision dignes d'être couronnées.

IV. Travaux scientifiques.

Les travaux astronomiques sont toujours continués dans le cadre que j'avais tracé dès le commeucement, et que j'ai pu élargir, depuis que je suis assisté par un a:de dont je me plais à reconnaître le zèle et la conscience qu'il met dans l'accomplissement de ses fonctions. Ce sont toujours les observations méridiennes qui nous occupent de préférence; le soleil, la lune, les planètes, et un grand nombre d'étoiles sont observées chaque fois que le ciel le permet; l'instant de leur passage au méridien est déterminé avec toute l'exactitude que nos excellents instruments permettent, et de cette manière, on obtient à la fois, par les étoiles fondamentales, la détermination précise de l'heure, et pour les autres astres celle de leur ascension droite; en même temps la lecture du cercle au moyen des quatre microscopes donne l'autre coordonnée, la déclinaison des astres observés.

Pour vous donner une idée de la masse d'observations qui se font dans le courant de l'année, et en même temps

pour montrer l'excellence du climat de Neuchâtel sous le rapport astronomique, je vous dirai que pendant l'année dernière, du 1er avril 1865 au 31 mars 1866, on a eu 183 nuits claires, dans lesquelles nous avons fait 2482 observations d'étoiles, de planètes, etc., ce qui fait donc 50 % de nuits d'observations et 13 à 14 observations en moyenne par nuit. Ces résultats auraient été encore plus favorables, si nous n'avions pas été privés pendant 24 jours de la pendule sidérale, qui depuis le 19 juin au 13 juillet a été entre les mains de M. W. Dubois, pour être nettoyée et corrigée. En outre, le soleil a été observé à midi 198 fois, et comme l'observation méridienne du soleil concourt à la détermination de l'heure, lorsqu'il n'y a point d'étoiles observées, on voit déjà qu'il n'y a pas un grand nombre de jours où nous ne puissions déterminer l'heure par observation directe du ciel. Je trouve pendant l'année dernière 97 jours où il n'a pas été fait d'observation méridienne, et où par conséquent, il nous a fallu nous en rapporter à nos quatre pendules pour calculer l'heure, donner le signal et comparer les chronomètres. Mais, on comprend qu'avec quatre excellentes pendules, dont on établit à chaque jour d'observation directe, l'état, la correction et la marche, et dont la variation est en moyenne de 0^s, 12, on peut obtenir l'heure avec une incertitude au-dessous de 0s,1, même pour ces jours sans observation directe, dont il y a en moyenne 1 sur 4.

Comme il peut être intéressant de connaître la distribution dans l'année des jours et des nuits clairs, je réunis dans le tableau suivant ces différentes données.

	Mois.	Nomb. de nuits d'observation.	Nombre des étoiles observées.	Nomb. des observ. du soleil à midi.	Nomb. de jours sans déterminat. de l'heure.
1865.	Avril.	27	312	23	2
	Mai.	15	157	16	3
- 1	Juin.	15	193	16	4.
	Juillet.	12	148	22	5
	Août.	13	138	19	10
	Septembre	. 27	470	27	0
	Octobre.	13	156	20	8
	Novembre.	11	125	13	14
	Décembre.	11	139	7	15
1866.	Janvier.	15	314	10	13
	Février.	12	167	12	12
i i	Mars.	12	163	13	11
	Année:	183	2482	198	97

On voit que la saison la plus favorable aux observations est l'automne, et surtout le mois de septembre, où il n'y a pas eu un seul jour sans observations; et que le mois de décembre avec ses brouillards est le plus défavorable; alors les observations manquent une fois sur deux. En général je puis dire qu'il existe à ma connaissance peu d'observatoires dans nos latitudes qui soient plus favorisés sous le rapport de la fréquence des jours et nuits clairs. Pour cette raison et en vue de notre excellent instrument méridien, je n'ai pas hésité à offrir l'année dernière, dans la réunion de la société a tronomique à Leipzig, men concours pour une grande entreprise qu'on y a proposée, et qui consiste à fixer par des observations méridiennes, la position exacte de toutes les étoiles de notre ciel, jusqu'à la neuvième grandeur. De même, nous participons déjà à l'observation au méridien d'un catalogue d'étoiles fondamentales, qui sur la proposition de M. Argelandes, se poursuit dans plusieurs observatoires. Enfin j'ai promis de prendre sur moi la détermination de la déclinaison des étoiles les plus rapprochées de l'équateur parmi celles du catalogue qu'on a formé pour faciliter les observations de latitude exigées dans de nombreux points par la grande entreprise géodésique internationale, dont j'ai déjà parlé dans mon dernier rapport, et à laquelle je prends une part active. Membre de la Commission permanente à laquelle est confiée la direction scientifique de l'association, je me suis rendu au mois de septembre de l'année dernière à Leipzig, où elle s'assemblait en même temps avec la société astronomique. Cette année-ci, au commencement du mois d'avril, j'ai eu le plaisir de recevoir mes collègues ici. Dans quatre séances que la Commission a tenues à Neuchâtel, elle a pu se convaincre de la marche active des travaux dans la plupart des pays qui y prennent part; en discutant et en coordonnant les résultats obtenus, en provoquant de nouveaux travaux, là où il y a des lacunes ou des défauts dans le réseau des triangles qui doit couvrir l'Europe le long des quatre méridiens et des neuf parallèles, qu'on se propose de mesurer, en établissant des principes théoriques, et en recommandant des règles générales pour les observations et les calculs, la commission a avancé considérablement la grande œuvre, destinée à étudier à fond la figure de la terre dans notre continent et à établir les dimensions du globe terrestre sur une base bien plus étendue que toutes les entreprises semblables qu'on a tentées jusqu'à présent n'ont pu fournir. Aussi nous avons la satisfaction de voir notre entreprise appréciée et soutenue toujours davantage par les gouvernements et les hommes de sciences; vingt-un pays déjà s'y sont associés, de sorte que le projet qui dans l'origine n'avait en vue que la partie centrale de l'Europe, s'étend toujours davantage, et finira par embrasser le continent tout entier, depuis l'océan jusqu'à l'Oural et depuis le cap nord jusqu'au détroit

de Gibraltar, qu'on essayera de traverser par la chaîne des triangles. Car précisément dans sa réunion à Neuchâtel, la Commission a eu le plaisir de recevoir un savant officier espagnol, envoyé par son gouvernement pour nous offrir le concours de l'Espagne.

Menée à bonne fin, cette entreprise sera une des gloires scientifiques de notre siècle, et je suis heureux que notre petit observatoire ait pu prendre une part active à son exécution, grâce à l'esprit libéral et éclairé de nos autorités, qui lui en ont fourni les moyens scientifiques, et qui ne me refusent jamais le congé nécessaire pour vaquer à ces travaux. A cette occasion, je dois remercier encore tout spécialement le Conseil d'Etat, de m'avoir prêté libéralement son concours, pour recevoir dignement les hôtes distingués qui ont honoré notre ville de leur présence. — Cette tâche agréable m'a été facilitée aussipar la présence de mes collègues de la Commission géodésique suisse, qui ayant tenu quelques jours auparavant, leur réunion annuelle à l'observatoire, ont assisté à quelques séances de la Commission internationale.

Les travaux géodésiques en Suisse avancent d'une manière très satisfaisante, grâce à la générosité avec laquelle les autorités fédérales ne cessent de lui accorder les moyens nécessaires et grâce au dévouement dont tous les membres de la commission font preuve. Les travaux trigonométriques ont été poursuivis vigoureusement l'année dernière, de sorte qu'il ne reste plus qu'une douzaine de stations de notre réseau à faire, qui seront terminées dans la campagne de cet été. Le calcul des triangles qui m'a été confié, est commencé et sera terminé l'année prochaine. Nous avons décidé de faire des observations astronomiques de latitude, de longitude et d'azimuth, en dehors des observations, dans plusieurs points, pour lesquels nous avons

chosi d'abord le Righi et le Gabris; le chronomètre à enregistrement électrique, dont je vous ai parlé, rendra pour
cela de grands services. L'intensité de la pesanteur a été
déterminée par M. Plantamour à Genève au moyen du
beau pendule à reversion qui est maintenant à notre observatoire pour y servir au même but. Enfin le nivellement de précision dont je vous ai parlé dans mon dernier
rapport a été exécuté déjà l'été dernier, pour une grande partie de la Suisse occidentale, et M. Plantamour et moi qui le dirigions, nous en avons terminé le calcul, dans le courant
de cet hiver, avec l'aide de nos adjoints.

Vu la masse de travail considérable, exigée par tous ces calculs, la commission géodésique m'a autorisé à allouer à nos aides une rétribution convenable, et à employer au besoin un calculateur spécial. — Les résultats des opérations de nivellement, qui jouissent d'une précision extraordinaire, ne tarderont pas à être publiés, et auront pour la Suisse aussi une grande valeur pratique, en la couvrant d'un réseau hypométrique étendu, qui fournira une base solide à tous les travaux de nivellement. Notre canton en profitera d'une manière spéciale, parce qu'à cause du nivellement du Chasseral, qui a été jusqu'à présent, la base des hauteurs suisses, le réseau est chez nous plus serré que partout ailleurs. Sur les grandes lignes de nivellement, de Neuchâtel par Chaumont à Chasseral, de Chasseral par le Pâquier et le Val-de-Ruz à Neuchâtel, du Pâquier par St-Imier, la Chaux-de-Fonds et le Locle jusqu'à Morteau. et de la Chaux-de-Fonds par l'ancienne route à Neuchâtel. nous avons déterminé la hauteur de 135 points, dont l'altitude sera connue désormais à quelques centimètres près.

J'ai rendu compte à notre société des sciences naturelles de ces différents travaux et des recherches intéressantes qui s'y rattachent. Entre autres, j'ai pu comparer par la hauteur du Chaumont le résultat trouvé, par le nivellement direct, avec celui qu'avait donné la méthode trigonométrique à M. d'Osterwald, et celui qu'on obtient par les observations barométriques, comparaison qui a fourni des indications précieuses sur la valeur relative de ces méthodes. D'autres études sur la diminution de la température entre notre observatoire et la station de Chaumont ont donné des résultats intéressants sur cette partie de la physique du globe et ont servi à éclaircir quelques points du phénomène curieux de l'interversion de la température, dont nous sommes témoins dans chaque hiver et qui est étroitement lié avec l'apparition des brouillards qui à cette époque couvrent notre pays.

Depuis le commencement de cette année, et grâce à la libéralité de M. Desor, le nombre des stations météorologiques de notre canton s'est accru d'une station aux Ponts, où les observations sont consciencieusement faites par M. Chapuis, pharmacien, elles sont calculées comme celles des des autres stations, à notre observatoire.

Je termine ce rapport, en exprimant l'espoir que notre observatoire, en continuant à rendre des services à la science et à l'industrie nationale, méritera toujours l'intérêt bienveillant et éclairé, que le pays et ses autorités lui témoignent.

Neuchâtel, le 11 mai 1866.

Le Directeur de l'Observatoire cantonal,
Dr Ad. Hirsch.

La Commission d'inspection remercie M. le Directeur de l'Observatoire du rapport ci dessus, qu'elle a entendu avec le plus vif intérêt. Elle constate avec satisfaction le développement que l'horlogerie de précision prend dans notre canton, comme le prouvent le nombre toujours plus grand des chronomètres soumis au contrôle, et l'amélioration sensible de leur marche.

Elle constate également avec plaisir que si les services rendus par l'observatoire à notre industrie nationale sont de plus enplus appréciés, sa réputation s'étend aussi dans le mondescientifique.

Si le canton de Neuchâtel a eu l'honneur de participer utilement à la grande entreprise géodosique qui marquera dans notre siècle, il le doit à son observatoire, à la perfection de ses instruments, à l'excellence de leur installation et surtout à la science et au mérite sérieux de son directeur.

Les succès de cet établissement sont de bon augure pour la fondation et la consolidation de l'académie que le Grand-Conseil vient de voter et qui forme le couronnement de l'édifice, érigé par la république au progrès intellectuel du peuple neuchâtelois.

Neuchâtel, 11 mai 1866.

Les membres de la Commission:

F.-A. MONNIER.

George Guillaume.

E. Desor.

S. MAIRET.

Ch.E. JACOT.

Tableau Nº 1.

Bulletin de marche du chronomètre échappement à ancre, spiral cylindrique avec raquette, N° 41949, de MM. Haas et Privat, à la Chaux-de-Fonds, déposé le 1er février 1866, retiré le 5 mars 1866.

Marche diurne.	Variation	Températ. moyenne centigrade.	REMARQUES.
$\begin{array}{c} -3^{s}, 9, 0, 4, 9, 4, 6, 6, 5, 0, 9, 5, 7, 8, 9, 4, 4, 9, 4, 6, 6, 5, 0, 9, 5, 7, 8, 9, 1, 1, 9, 0, 4, 3, 5, 7, 0, 1, 7, 5, 3, 5, 6, 7, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$	$-0^{s}, 1$ $-0^{s}, 1$ $-0^{s}, 4$ $+0^{s}, 5$ $+0^{s}, 5$ $+0^{s}, 6$ $+0^{s}, 1$ $+0^{s}, 6$ $+0^{s}, 1$ $+0^{s}, 1$ $+0^{s}, 1$ $+0^{s}, 2$ $+0^{s}, 3$ $+0^{s}, 4$ $+0^{s}, 2$ $+0^{s}, 3$ $+0^{s}, 4$ $+0^{s}, 2$ $-0^{s}, 3$ $+0^{s}, 4$ $+0^{s}, 2$ $-0^{s}, 3$ $+0^{s}, 4$ $+0^{s}, 2$ $-0^{s}, 3$ $+0^{s}, 4$ $+0^{s}, 3$ $+0^{s}, 4$ $+0^{s}, 3$ $+0^{s}, 4$ $+0^{s}, 3$ $+0^{s}, 4$ $+0^{s}, 4$ $+0^{s}, 3$ $+0^{s}, 4$ $+0^{$	7°,6 8,12 7,6 8,2 7,6 8,3 7,6 7,7 7,8 8,3 8,3 8,3 7,7 7,7 8,3 7,7 7,8 8,7 7,7 8,9 7,9 8,1 7,9 7,9 8,1 7,9 7,9 8,1 7,9 7,9 8,1 7,9 7,9 7,9 7,9 7,9 7,9 7,9 7,9 7,9 7,9	Position horizontale.
	diurne. -3*,9 4,4 3,4 6,6 3,5 9,5 7,7 2,8 9,1 1,7 2,9 0,4 3,5 0,5 0,5 0,5 0,5 0,5	diurne. -3s,9 4,0 4,4 3,9 4,0 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	diurne. Variation moyenne centigrade. -3s,9 4,0 4,4 3,9 3,4 +0,5 +0,5 -0,2 0,0 7,6 7,8 8,3 3,6 1,7 2,9 +0,1 +0,4 +0,4 +0,9 2,5 +0,4 +0,9 2,1 -1,0 +0,2 +1,1 -1,0 +0,2 +1,1 -1,0 +0,2 +1,1 -1,0 +0,2 +1,1 -1,0 +0,2 +1,1 -1,0 -1,0

Bulletin de marche du chronomètre de marine N° 1, de M. George Reymond, à la Chaux-de-Fonds, déposé le 22 octobre 1865, retiré le 22 novembre 1865.

DATE.	Marche diurne.	Variation.	Température moyenne centigrade.			
Octobre 22 — 23 23 — 24 24 — 25 25 — 26 26 — 27 27 — 28 28 — 29 29 — 30 30 — 31 Novembre 0 — 1 3 — 4 4 — 5 5 — 6 6 — 7 7 — 8 8 — 9 9 — 10 11 — 12 12 — 13 13 — 14 14 — 15 15 — 16 16 — 17 17 — 18 18 — 19 19 — 20 20 — 21 21 — 22	+ 0 ^s ,8 0,9 1,1 1,2 0,7 0,7 0,8 0,7 1,7 0,9 1,7 0,9 1,7 0,9 1,9 0,5 1,9 0,5 1,9 0,7 1,9 0,7 1,9 0,7 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9	$\begin{array}{c} + 0^{s}, 1 \\ + 0^{s}, 2 \\ + 0^{s}, 1 \\ - 0^{s}, 1 \\ - 0^{s}, 1 \\ - 0^{s}, 1 \\ - 0^{s}, 2 \\ - 0^{s}, 1 \\ - 0^{s}, 2 \\ - 0^{s}, 1 $	12°,9 12°,9 13°,5 13°,5 13°,5 14°,5 14°,5 14°,5 14°,5 14°,5 14°,5 14°,5 14°,5 14°,5 14°,5 14°,5 14°,5 14°,5 14°,5 16°,5			

Tableau Nº 3.

Bulletin de marche du chronomètre de marine Nº 446, de MM. Cb.-H. Grosclaude et Cº, à Fleurier, déposé le 27 septembre 1865, retiré le 27 novembre 1865.

DATE.	Marche diurne.	Varia- tion.	Tempé- rature moyenne (celsius).	Remarques.	DATE.	Marche diurne.	Varia- tion.	Tempé- rature moyenne (Celsius).
1865 Septemb. 27—28 28—29	$-2^{s},2$	+0s,2 -0,3	17 ^s ,7 17,8 17,4	S.	1865 Octobre. 28—29 29—30	$-2^{s},8$ $3,8$ $2,9$	0s,0	11s,6 11,5
29—30 Octobre.	2,3	-0,1	17,4		30—31 Novemb.	2,9	-1,0 +0,9	11,9
0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 24-25 25-26 27-28	2 2 3 3 3 4 4 4 4 4 5 4 3 3 2 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	+0,1 -0,3 -0,3 -0,5 -0,1 +0,1 +0,1 +0,2 +0,1 +0,2 +0,3 +0,4 +0,2 +0,4 +0,4 +0,4 +0,4 +0,4 +0,4 +0,4 +0,4 +0,5 +0,4	17,3 17,5 17,9 16,0 15,1 14,5 14,5 14,5 14,5 14,5 14,5 14,5		0— 1 1— 2 2— 3 3— 4 4— 5 5— 6 6— 7 7— 8 8— 9 9—10 10—11 11—12 12—13 13—14 14—15 15—16 16—17 17—18 18—19 19—20 20—21 21—22 22—23 23—24 24—25 26—27	2,7,8,9,6,5,4,4,1,9,0,0,7,6,0,4,8,0,2,1,8,9,0,7,9,9,6,4,1,2,2,2,3,3,3,2,2,3,2,2,3,4,4,1,9,0,0,7,6,0,4,8,0,2,1,8,9,0,7,9,9,6,4,1,9,0,0,7,6,0,4,8,0,2,1,8,9,0,7,9,9,6,4,1,2,2,2,3,3,3,2,2,3,2,2,3,4,4,1,9,0,0,7,6,0,4,8,0,2,1,8,9,0,7,9,9,6,4,1,2,2,2,3,3,3,2,2,3,2,2,3,4,4,1,2,2,2,3,3,3,2,2,3,2,2,3,4,4,1,2,2,2,3,3,3,2,2,3,2,2,3,4,4,1,2,2,2,3,3,3,2,2,3,2,2,3,4,4,1,2,2,2,3,4,4,1,2,2,2,3,3,3,2,2,3,3,2,2,2,3,4,4,1,2,2,2,3,3,3,2,2,3,3,2,2,2,3,4,4,1,2,2,2,3,4,4,1,2,2,2,3,4,4,1,2,2,2,3,4,4,4,1,2,2,2,3,4,4,4,1,2,2,2,3,4,4,4,1,2,2,2,3,3,3,2,2,2,3,2,2,2,2,2,2,2,2,2	+0,2 $-0,1$ $+0,3$ $+0,1$ $+0,0$	11,5 11,4 10,6 10,9 9,7 5,3 10,9 9,7 10,9 9,8 6,1 7,9 8,6 8,8 8,5 9,7 11,5 11,5
Marche	moyen		4 heur		• •		— 2s,9	
Variatio Variatio	•		un jour tempéra		re	• •	0,9 $+0,9$	18

1865. Mars.

Chaumont: E. Sire.

Posit.	Longitude: 0 ^h 18 ^m Latitude: 47 ^o 0' Altitude: 488 ^m						Longitude: 0 ^h 18 ^m Latitude: 47° 1' Altitude: 1152 ^m															
Jour	Ter Moyenne	npérat Nin.	ure. Max.	Baron Moyenne	mètre Min.	à 0° Max.		nidité Oscill.	Clarté moyenne	Vent domi- nant.	Caractère du temps. Hydromé- téores.	161	npérat Min.	ure.	Baro Moyenne	mètre 1 ^h	à 0° 9 ^h	Hum Moy.	idité Oscill.	Clarté moyenne	Vent domi nant.	Caractère du temps. Hydro- météores.
1	3.6	2.9	5.3	713.33	-1.12	1.85	90	2	10.0	SO 1	7.5 pl, cv	-0.9	-1.8	0.2	657.1	-0.1	0.9	99	4	10.0	0	2.9 ng, cv
2	2.6	1.2	7.0	715.94	-1.31	0.89	93	4	10.0	SO 2	5.2 pl, cv	-1.1		-0.4	659.5	0.5	-0.6	99	2	10.o	so :	2.9 ng, br,cv
3	1.1	-0.5	3.7	723.71	-8.87	2.68	83	21	10.0	SO 1	13.7ng,cv	-4.5	-5.8	-4.4	666.0	0.2	2.2	98	5	9.3	NO :	2 1.5 ng,gv, ev
4	0.8	-2.4	4.7	725.18	-4.29	2.17	79	40	6.0	E	0.7 ng, sr.cl	-4.5	-7.3	-1.4	667.3	1.2	-2.7	91	19	5.3	NE	4.0 ng, nu
5	1.2	-4.2	4.7	713.52	-3.15	7.37	80	34	9.3	SO 2	cv	-2.7	-8.2	-0.1	656.8	-0.5	-2.3	86	25	7.7	so .	4 vt
6	3.8	0.0	7.9	706.63	-2.14	4.25	75	25	8.7	SO 1	cv, ap. cl°	-1.0	-3.9	2.0	650.9	-0.8	-0.9	88	23	8.3		1 0.3 ng, br, cv
7	2.2	0.9	4.0	707.26	-2.27	1.43	86	30	10.0	so	2.6 ng, br,cv	-3.2	-4.0	-2.6	651.2	-0.1	1.4	97	10	9.7	NO	1 2.6 ng, cv
8	1.2	-0.4	2.8	705.35	-1.43	2.63	87	28	10.0	N 1	1.2 ng, cv	-4.8	-5.7	-4.1	649.1	-0.7	2.1	100	0	9.3		1 1.6ng, br, gr
9	0.7	-0.6	5.4	711.39	-3.41	1.84	86	30	9.8	NE	cv	-5.1	-6.2	-3.2	654.7	-0.2	1.5	96	10	7.3		1 1.ang, ev
10	0.3	-4.6	4.5	714.59	-1.48	0.44	72	48	10.0	E 1	cv	-4.7	-8.4	-2.9	657.6	0.4	0.1	79	30	2. 12		1 0.2 ng, cv
11	0.0	-0.6	1.2	707.60	-0.99	5.44	95	13	10.0	SE 1	3.3 ng, cv	-4.4	-6.3	-2.9	651.1	-1.0	1.2	97	5		F 8	2 1.9ng,br,gv,e
12	1.3	-5.1	5.8	712.46	-3.97	2.56	58	12	5.0	NE 1	cl, sr. cv	-4.0	-6.1	-2.0	655.9	-0.3	2.1	86	14	5.0	NE :	2 0.1 ng, m.c
13	1.5	-0.2	3.0	713.19	-2.18	1.93	68	16	10.0	N 1	cv	-4.5	-5.3	-3.4	656.5	0.1	-1.3	92	15	10.0	N	br, sr. g
14	2.1	-0.6	6.0	709.43	-0.59	1.53	78	24	8.3	E 1	cv, ap. cl°	-3.5	-5.4	-1.4	653.1	-0.6	1.0	88	28	8.0		gv, br
15	3.3	-1.5	8.5	714.13	-3.17	1.36	64	6	7.0	S 1	cv, ap. cl	-2.7	-5.8	0.8	657.6	0.1	1.5	89	29			nu, ap. c
16	0.3	-0.6	2.5	715.58	-0.47	0.43	61	19	7.7	0 1	cv, sr. cl	-6.0	-7.8	-3.4	658.3	-0.1	0.1	91	24	8.3		2 cv
17	0.3	-4.9	6.7	715.79	-0.74	0.95	59	15	3,3	E 1	cl	-5.4	-8.5	-2.4	658.5	-0.5	0.8	81	18	4.0	NE	0.2 ng, nu
18	1.6	-3.5	7.0	716.95	-1.67	0.93	58	18	6.7	E	cv, sr. cl	-3.5	-6.9	-0.2	659.8	0.6	-0.6	74	17	5.3	var.	cv, sr. cl ²
19	1.9	-3.1	5.9	711.16	-3.03	4.12	61	29	7.0	100	cl, sr. cv	-3.0	-5.8	-0.3	654.6	0.1	-2.1	78	12	3.7		nu
20	-5.1	-5.2	-3.3	709.63	-2.56	3.56		13	10.0	E 3	0.4 ng, cv	-10.з	-11.4	-10.5	651.9	-0.6	2.5	99	2	10.0		5.2 ng, cv
21	-3,2	-8.6	4.0	713.92	-2.04	1.14	88	9	4.0		1.4 ng, m.ev	-3.8	-12.0	1.2	656.0	0.7	-0.4	88	28		E	3.9 ng, cl
22	0.2	-4.8	5.3	709.08	-0.60	2.88		17	10.0	E	cv	-1.5		1.8	652.6	-0.1	0.2	74	24	10.00	N	cv
23	-2.5	-6.4	0.4	709.98	-0.48	0.54	63	48	10.0	E 1	cv	-8.8	-11.0	-7.0	652.5	-0.1	0.3	90	9		N :	1.0 ng, br
24	-2.3	-7.3	3.3	711.50	-1.90	1.47	91	20	9.3		0.6 ng, cv	-7.0	-10.6	-4.0	654.0	-0.2	1.4	86	31	8.7	var.	
25	-0.6	-4.3	2.7	715.42	-2.45	1.07	72	15	8.3		1.4 ng, cv	-6.5	-8.2	-4.5	657.9	0.2	1.1	91	22		NO S	1.9 ng
26	1.7	-4.2	3.9	709.53	-2.49	6.27	8.07	49	10.0	SO 4	c v	-3.9		-2.7	653.0	-0.1	-2.0	91	20		80	tp
27	0.5	-1.2	2.7	711.66	-4.44	2.55	St.	40	9.3		2.5 ng, cv	-5.5		-3.5	654.9	-0.2	1.7	93	20	9.8	100	2.0 ng
28	-3.0	-4.2	-0.4	715.94	-1.73	0.87	64	29	7.0	N 4	cv		-10.2	-7.3	658.0	0.2	0.7	99	4			0.2 ng, cv
29	-3.7	-9.3	1.2	716.86	-0.61	0.26		59	2.0	NE 1	m. cv		-13.7	-8.9	658.6	0.1	0.4	78	40	2.3.3	100 0	0.1 ng, cl
30	-2.6	-9.4	1.9	718.43	-1.95	1.86	69	40	9.7	E	cν	-8.7	-12.2	-6.8	660.2	-0.5	2.0	100	_ 0	7.0		0.4 ng, cv
31	-1.5	-9.7	2.1	721.04	-0.75	0.94	87	16	10.0	var. 1	3.0 ng, cv	-5.7	-7.9	-3.2	663.1	-0.2	0.9	100	-0	9.8	0	2.ong,br,cv
Moy.	0.25	-3.30	3.82	713.43	-2.20	2.20	74.9	24.5	8,3		43.5	-4.88	-7.64	-2.82	656.40	-0.08	0.43	90.2	15.8	7.7		40.7

Calme: 20. N: 8. NE: 17. E: 18. SE: 4. S: 2. SO: 32. O: 5. NO: 6. — 1. Pluie intermitt. dans la mat. et le soir. — 2. id. toute la journée. — 3. Neige à 7^h mat.; 7^h 30^m soir halo-lunaire; 9^h lune visible. — 4. • dans la mat.; neige 10^h à 10^h 30^m; dans l'après-midi Alpes bern. visibles. — 5. Dans l'après-midi quelques gouttes de pluie; Alpes bern. très-claires toute la journée. — 7. Brou. en bas de Chaumont le matin et le soir. — 8. Neige dans la nuit. — 12. Vent très-fort à 9^h 40^m du matin. — 17. Alpes visibles dans l'après-midi. — 21. Halosolaire à 12^h. — 25. Temps très-variable dans l'après-midi. — 31. 1.5^{em} de neige.

Calme: 20. N: 36. NE: 15. E: 18. SE: 0. S: 0. SO: 38. O: 4. NO: 24. — 3. La neige couvre le plateau suisse. — 4. Alpes claires dans l'après-midi. — 5. id. le matin., 1^h soir le ciel par degrés s'obscurcit; le vent augmente de force et soulève la neige avec violence. — 6. Le givre tombe; Alpes visibles; couronne-lunaire peu marquée à 10^h soir. — 9. Quelques giboulées de neige de 1 à 5^h du soir; halo-lunaire. — 12. Calme vers 4 à 6^h soir. — 22. Brûme sur le plateau. — 26. Vent violent dans la nuit. — 31. 70-90^{cm} de neige en rase campagne.

Posit.	Lo	ongit	ide:	0 ^h 18 ^m	La	titude	: 47	o 0'	Alt	itude:	448 ^m	1	ongit	ude:	Օ ^հ 18 ^տ	Lat	itude	: 47 º	1'	Altit	ude:	1152 ^m
Jour	Ten Movenne	npérat Min.	ure.	Baron Movenne	mètre Min.	à 0°	are all the	idité Oscill.	Clarté moyenne	Vent domi- nant.	Caractère du temps. Hydromé-		npérat 7 ^h	ure. 1 ^h	Baro Moyenne	mètre 1 ^h	à 0°		idité 0scill.	Clarté moyenne	Vent domi- nant.	Caractèr du temps Hydro-
1	1.5	-1.3	5.7	721.85	-1.06	0.66	76	31	5.0	var. 1	téores.	-3.8	-5.6	0.6	664.2	0.1	-0.1	90	29	6.0	0	météores m. br. sr. c
2	2.5	-2.6	6.9	719.26	-1.64	1.95	68	10		E Val. 1	m. cv	0.5	-3.1	5.1	662.4	0.1	-0.7	88	14	9.3	so	ш. от, ы. с
3	5.8	-1.7	7.7	717.23	-1.07	2.36	67	42	anconsist.	E		1.9	-0.8	5.1	661.1	-0.6	1.3	78	15		S	
4	9.6	4,9	16.1	723.00	-3.54	3.67	55	43	7.3	E	sr. cl	5.9	4.2	8.4	667.4	-0.2	2.2	59	16	4.7	NE	m.cv,sr.
5	10.1	1.9	17.9	728.90	-2.23	0.49	62	43	7.0	NE	m. cl.	7.3	6.2	10.0	672.9	0.0	0.5	64	18	5.3	NO	m. cl
6	12.1	4.7	19.7	727.76	-1.31	1.31	62	35	4.3	S	iii. 01.	8.8	6.8	11.2	672.3	0.2	-0.8	65	28	2.3	NE	m. nu
7	12.4	4.7	19.1	724.05	-1.76	2.52	63	43	0.7	NE 2		8.8	7.6	10.8	668.8	0.0	-0.9	64	10	0.7	E 1	
8	11.5	3.8	19.6	722.39	-1.18	0.65	66	32	0.0	SE		9.3	7.3	11.6	667.3	-0.1	0.2	68	9	0.7	var.	
9	12.6	4.9	21.з	724.66	-1.75	1.08	64	40	2.3	E 1		10.5	8.7	12.3	669.7	-0.1	0.8	66	8	3.0	so	sr. nu
10	14.4	8.4	21.7	725.69	-0.93	1.06	63	39	6.7	E 1	m. cv.	11.7	9.6	14.2	670.s	0.0	-0.3	62	10	5.7	N	m. cv
11	14.3	7.8	22.3	723.41	-1.41	1.91	64	38	1.0	S		11.8	10.5	14.0	668.8	0.1	-0.9	57	19	3.0	E	m. nu
12	13.5	7.3	20.8	721.68	-1.42	0.96	66	47	5.3		ro, sr. cv	10.7	8.3	14.0	666.9	0.1	-0.2	70	24	2.3	so	1
13	14.3	7.0	21.8	721.79	-1.03	0.75	60	36	4.3	so	ro, sr. cvº	9.7	6.4	13.1	667.1	0.1	-0.1	71	28	3.3		m. br,sr.ı
14	10.9	7.8	14.7	721.50	-0.85	0.60	81	11			0.2 ap, pl	8.8	9.4	10.2	666.3	-0.1	0.1	83	22	9.3	var.	
15	12.3	6.8	17.3	722.65	-1.09	0.74	90	17		so	1.3 pl	9.4	7.7	12.6	667.5	-0.1	0.8	87	25	10.0	so	pl
16	15.7	6.9	22.3	722,84	-1.08	0.92	68	41	4.0	- 10	1.7pl,ro,m.cv	11.8	8.4	15.0	668.з	0.4	-0.5	73	26	0.3	E 2	
17	15.7	7.8	24.0	719.40	-1.94	3.04	73	36	4.0	var.	ap. cv	14.1	11.0	17.4	665.4	0.4	-1.4	58	23	3.c	E 1	
18	17.1	10.2	24.5	717.23	-1.15	0.85	56	45	8.0	SE 1	70.00	14.6	12.1	18.7	663.6	-0.3	0.4	53	13		so	
19	17.9	9.4	24.9	719.96	-2.36	1.60	57	34	5.3	var. 2	sr. cv	15.з	13.5	19.0	666.1	-0.1	1.1	57	20	4.3	SO 1	sr. cv
20	15.1	12.6	20.1	722.14	-0.99	0.56	75	35	7.7		9.spl,sr.cl	9.8	8.4	10.9	667.5	0.2	-0.4	91	9	7.0	N 1	6.9pl,sr.
21	17.8	10.0	23.7	719.88	-1.18	1.60	63	42	4.0		ro, m. br	14.1	12.2	17.0	665.9	0.0	-0.2	71	16	2.7	NE	nt. pl. v
22	17.5	8.9	23.8	720.84	-1.04	_	43	14	0.3	S 2		14.0	11.6	17.3	666.6	0.1	0.6	57	14	1.0	var. 1	10. pr. (
23	17.2	8.4	23.7	723.00	-1.07	0.67	57	39		SO 1		13.4	11.з	16.8	668.5	-0.1	0.8	62	16	2.0	var. 1	
24	16.5	8.4	24.9	723.26	-1.16	0.90	55	46	0.0	S	ro	14.4	12,2	16.9	668.9	0.0	-0.2	46	16	1.0	SE	
25.	18.5	7.6	25.7	721.94	-1.24	1.11	50	47	2.7	S 1	ro	15.5	14.0	18.6	668.0	0.1	-0.5	45	6	2.0	var.	
26	18.6	12.2	24.8	722.35	-1.33	1.02	49	35	4.3	S 2	ro, m.cv, sr.cl	14.3	12.8	17.1	668.2	-0.1	0.4	45	18	5.0	NO 1	m. pl
27	17.6	8.0	25.7	721.76	-2.13	1.77	50	42	2.7	var. 1	ro, m. cv	14.6	12.6	17.5	667.8	0.1	-1.2	42	8	1.0	var.	PA
28	17.5	8.2	25.6	717.57	-1.92	2,29	50	40	4.0	E 1	ro	14.3	12.5	18.0	664.0	0.1	-1.s	44	10	1.7	var. 1	ap. nu
29	17.0	10.9	27.2	714.48	-1.76	1.89	51	29	6.3	SE 2	sr. cl	13.2	12.2	17.5	660.6	0.2	-1.3	56	26	4.3	var. 1	sr. cl
30	11.6	10.2	18.2	713.89	-1.25	2.56	59	19	7.0	NE 1	m.cv,sr.cl	8.3	8.5	8.9	659.4	-0.5	1.7	76	15	7.3	NE 1	sr. cl
Moy.	13.64	6.80	20.39	721.55	-1.46		62.2	35.o	4.6		12.5	10.43	8.55	13,88	666.74	0.00	0.00	64.9	17.6	3.9		14.0

Calme: 40. N: 0. NE: 2. E: 4. SE: 14. S: 5. SO: 15. O: 0. NO: 1. — 1. Alpes bern. visibles. — 3. id. — 4. id. — 5. Clair depuis 11^hdu soir; grand hâlo-lunaire à minuit. — 7. Alpes très-claires; on voit très-clairement le Rigi. — 8. Couronne lunaire très-peu colorée. — 9. Des nuages passent toute la soirée depuis 7^h jusqu'à minuit; à 12¹/₂^h tout couvert. — 11. Couronne lunaire. — 13. Alpes bern. à peine visibles; éclairs lointains à l'Est à 8¹/₂^h. — 18. Rigi visible à 4¹/₂^h soir. 19. Alpes très-claires. — 21. 7¹/₂^h-9^h mat. brou. au sol allant de l'Est. 22. Montblanc visible. — 24. Alpes bern. visibles. — 25. A 7^h 40^m du soir écl. loint. au SE et S. — 30. Qq. gouttes de pl. à 11^h du mat.

Calme: 57. N: 4. NE: 9. E: 10. SE: 2. S: 2. SO: 7. O: 0. NO: 4. — 1. 70-90^{cm} de neige. — 3. Chant du pinson. — 7. Alpes d'une clarté remarquable du mat. au soir. — 9. Le vent tourne au N après-midi. — 17. Alpes claires. — 18. Les prés commencent à devenir verts. — 20. Violents coups de vent et pluie dans la nuit. — 22. Les derniers restes de neige disparaissent. — 25. Eclairs au S et SE 8-9^h soir.

Posit.	Lo	ngitu	de: 0) ^h 18 ^m	Lat	itude	: 47°	0'	Alti	tude	: 488 ^m	L	ongitı	ıde: (0 ^h 18 ^m	Lat	itude	: 47º	1′	Alti	tude	1152 ^m
	Ten	ipérat	ure.	Baro	mètre	à 0°	Hun	nidité	Clarté moyenne	Vent domi-	au temps.	Ten	npérat	ure.	Baro	mètre	à 0°	Hun	nidité	Clarté moyenne	Vent	
Jour	Moyenne	Min.	Max.	Moyenne	Min.	Max.	Moy.	Oscill.	Cls	nant.	Hydro- météores.	Moyenne	7 ^h	1 ^h	Moyenne	1 ^h	9 ^h	Moy.	Oscill.	Cli	nant	
1	14.4*	5.8	21.6	718.80	-2.03	2.43	42	35	4.7	E :	ro, sr. cv	9.8	8.2	12.8	664.0	-0.5	1.8	53	19	3.3	N	ap. nu
2	14.9	8.6	22.2	723.43	-2.20	0.48	52	40	0.7	E :	2	11.4	9.2	14.5	668.6	0.2	0.3	47	12	ı	SE	1
3	15.8	6.0	24.8	722.62	-1.66	1.36	59	38	5.7	20 %	2 ro, ap.nuº	12.9	11.5	16.5	668.1	-0.3	-0.3	60	24	8.0	S	1
4	17.2	8.6	26.3	721.19	-1.71	1.53	60	35	6.7		ap. cv ^o	14.5	12.0	18.6	667.0	-0.2	-0.6	61	33	4.3	so	ap. nu
5	18.1	7.5	25.5	719.97	-1.21	0.47	52	45	9.7	var.	ro	15.5	13.4	18.4	666.0	-0.4	0.2	48	21	1.0	so	2
6	17.2	13.9	21.8	721.51	-0.79	0.36	64	41	10.0		ro, sr. pl		13.0	17.6	667.3	0.2	-0.2	65	32		0	ap. pl
7	18.3	13.7	23.8	720.39	-1.48	1.11	72	26	9.7		2 0.2, sr. o	14.5	10.6	17.3	666.7	-0.2	-0.5	74	32	8.7	100	1 2.1 m. br
8	18.9	15.4	23.6	717.62	-2.87	2.85		31	8.3	ı	6.1 m. pl	14.7	11.8	17.2	664.0	0.1	-2.1	83	23	6.0	T .	2 6.6nt.pl,m.br
9	17.2	12.9	20.5	712.02	-1.00	3.27	16	10			B ro, ap. o	13.9	14.8	16.8	659.4	-0.2	-1.0	79	5			2 ap. o. gr
10	16.1	10.2	22.4	710.59	-1.35	1.56	67	39	7.3		3.0 sr. cv	10.9	10.2	14.9	656.8	-0.4	0.3	76	34	-		2 2.9
11	9.6	7.8	12.0	716.01	-3.98	4.25	85	22	10.0		4.0 m.pl	5.4	7.3	4.1	661.0	-0.3	3.1	90	6	9.3 5.3		1 6.6m.br,pl
12	14.3	4.2	20.1	720.37	-1.57	1.24	62	32		NE S	~~, ~.	9.0	5.9	12.2	665.4	0.1	-0.2	79	28 11	7.0	SO E	0.6 m. br
13	15.5 17.2	10.5	21.7	720.25	-1.22	0.36 2.12	10.000	32 33		SO :		10.5	8.0	13.3 16.6	665.7 664.0	-0.1 0.5	0.3	77 72	18		SO	1 1.8
14 15	14.5	7.8 8.4	23.5 21.0	718.12 716.20	-2.10 -2.30	0.83	66 85	21	7.8 10.0	SO :	10, 0	13.8	11.6 12.0	12,3	662.3	-0.3	-1.7 -0.4	80	28	100		2 2.s o, pl
16	10.7	8.6	16.6	718.47	-2.79	2.94		21	S 19	so s	2.3 pl, sr.o 2 23.0 m. pl		7.2	5.3	663.0	-0.3	1.6	97	6			27.6 pl, pv
17	14.7	5.8	21.9	721.11	-2.19	1.30		47	7.0	NE S		11.0	8.6	13.9	666.1	0.2	-0.4	64	14	3.0		0.8 m.br.cl
18	15.2	11.8	19.3	718.89	-0.66	1.31	64	24	9.3	NO :	0.0	10.9	10.5	13.3	664.6	0.0	0.6	78	18			2.7 m. pl
19	13.2	12.6	18.7	723.28	-3.21	0.80		15		so	ap. pl	8.3	8.1	8.4	668.1	0.2	0.9	90	10			2 0.3 sr. ec
20	14.6	10.0	19.6	722.20	-1.09	1.31		27		NE :		9.8	7.2	11.4	667.5	0.1	0.1	92	16	- 4		0.sm.br.cv
21	16.1	11.0	20.5	721.99	-1.19	0.40		.30			sr. ec	13.3	10.6	15.6	667.8	-0.2	0.1	80	8	6.3	E	1
22	17.3	9.9	24.1	722.37	-1.12	0.74		29	9.8		ro	14.1	13.6	17.4	668.1	-0.1	0.0	72	12	7.3	SE	ap. pl
23	18.6	9.8	25.6	722.05	-1.56	0.99		40	6.7	E :	0.5ro,ap.o	14.9	13.6	18.6	668.0	-0.1	-0.1	65	23	4.0	var.	
24	13.3	11.2	18.8	723.29	-0.71	0.84	83	21	10.0		5.opl,ap.o	9.3	8.3	12.0	668.2	0.1	-0.4	94	13	10.o	so	9.0 br, pl
25	14.0	9.4	19.2	722.38	-0.48	0.39	58	24	4.7		3 18.0 ap. cl		6.3	10.5	667.3	0.3	0.3	72	28	4.0	NO	2 17.3, sr. cl
26	16.5	6.5	21.8	720.32	-1.15	1.88	62	29	1.3	1	ro, sr. vt	11.4	8.7	14.0	665.9	-0.1	0.1	74	9	1.3	E	m. br
27	17.7	8.2	25.7	719.58	-0.90	0.61	66	26	0.0	in a contract of	ro	14.9	12.5	17.3	665.7	-0.3	0.6	61	21	0.7	E	
28	19.7	10.0	28.0	721.78	-1.80	0.38	60	38	3.7	\mathbf{s}	ro, sr. v	17.4	15.5	19.8	668.2	0.1	0.8	58	19	2.3	so	1
29	19.9	10.o	27.1	722.01	-1.24	0.73	65	35	9.3	N	ro	17.6	17.7	20.4	668.6	0.2	-0.5	63	24	3.7	so	ap.o.pl, sr.el
30	21.5	12.2	28.0	720.17	-1.19	1.55	65	33	6.7	so s	ro	18.6	16.9	21.1	667.7	0.0	-0.7	56	7	3.0	so	2 1.5
31	19.3	15.4	27.6	717.73	-1.89	1.45	71	19	8,8	E 2	m. plº	16.7	17.5	18.0	664.5	0.2	-1.2	72	24	6.0	so	0.6 ap. pl
Moy.	16.18	9.80	22.36	719.89	-1.63	1.35	67.7	29.6	7.2		65.2	12.38	11.04	14.84	665.65	-0.05	0.02	72.0	18.6	5.6		84.3
					I	. 1				l	l.	l l								l	ŀ	ľ

Calme: 37. N: 0. NE: 19. E: 14. SE: 6. S: 3. SO: 16. O: 6. NO: 2. — 1. 2. Alpes visibles; soir Joran (NO). — 4. Halo-lun. — 4-6. Nuages très-legers. — 7. A 8^h soir orage sur le Chasseral; dans la nuit orage à 1'O. — 9. Tonn. au NO de 12 à 2^h; orage à 2^h à 8000' de distance vers le SE avec un peu de grêle. — 10. Tonn. à 1'O ap.-m. — 14. Orage à midi. — 15. Orage à 5^h ap.-m. — 16. Orage au NO à 3^h ap.-m. — 17. Alpes claires. — 21. A 9^h soir éclairs lointains à 1'E, à minuit à 1'O. 22. Ap.-m. orage au SE. — 23. A 8^h sr. orage au NO et N; 9^h éclairs lointains à 1'E. — 24. Orage à 3^h 10^m; coup de tonn. et forte pluie. — 26. Joran fort 6-11^h sr. — 29. A 2^h mat. écl. au NO; à 3¹/₄^h ap.-m. orage avec tonn. au N.

Calme: 42. N: 5. NE: 0. E: 15. SE: 2. S: 3. SO: 24. O: 3. NO: 10. — 2. Pleine floraison du frêne. — 5. Alpes claires. — 8. Eclairs et pluie dans la nuit; 5-7^h brouill.; halo- et couronne-lun. très-peu marqués de 8 à 9^h soir. — 9. Après 2^h ap.-m. orage avec peu de grêle; vent NO 3, plus tard SO 4. — 14. Tonnerre au N de 11 à 12^h. — 15. Orages et pluie intermitt. du matin au soir. — 19. Eclairs à l'O à 8^h sr. — 23. Eclairs au N, à l'O et au SO de 8 à 9^h soir. — 24. Pluie dans la nuit; brouill. après 7^h; orage et pluie 3 à 5^h; soir pluie. — 26. Alpes très-claires le matin. — 28. Lune voilée. 29. Halo-lunaire très-petite. — 31. Giboulées de 2 à 4^h soir.

Posit.	L	ongit	ude:	0 ^h 18 ^m	Lati	itude:	470	o' .	Altit	ude:	188 ^m	L	ongit	ude:	O ^h 18 ^m	Lati	itude:	470	l' A	ltitu	ıde :	1152 ^m
Jour	Tem Moyenne	npérat Min.		Baro Moyenne	mètre Min.	à 0º Max.		idité Oscill.	Clarté moyenne	Vent domi- nant.	Caractère du temps. Hydro-	Ter Movenne	npérat 7 ^b	ure.	Baro	mètre 1 ^h	à 0°	Hun Mov.	ridité Oscill.	Clarté	Ven dom nan	i- du temps.
1	20.1	15.0	28,6	715.31	-1.00	2,22		28	10.0	SE 2	ineteores.	16.5	14.2	19.1	662.2	0.4	-0.3	72	17	7.3	NE	<u> </u>
2	16.7	14.0	20.0	719.12	-3.87	3.21	77	23	10.0		5.om.vt,pl		13.7	12.8	665.0	-0.5	1.9	86	22	8.3	2	2 2.3 ap.br.pl
3	17.4	12.2	23.0	723.28	-1.09	0.38	68	29	9.0	SO 2	, ·	11.4	9.9	13.7	668.7	0.2	0.3	76	14	7.7	NO	2 0.6
4	16.3	13.2	18.9	723.47	-1.35	0.87	75	16		10 miles	0.sm.plo.to	Committee of the commit	12.0	11.5	668.8	-0.4	0.5	85	16	8.3	N	2 11.6m.pl.gr
5	18.4	12.1	23.2	724.42	-0.64	0.40		31	4.7	NE 3		12.2	11.2	14.7	670.o		0.0	72	20	4.3		2 1.8 sr. cl ⁰
6	17.7	13.4	23.1	724.46	-0.45	0.18	55	21	1.3	NE 3		12.0	10.0	14.8	669.8		0.5	71	29	2.0	E	2
7	19.0	13.4	24.1	724.34	-0.64	0.78		23	4.3	NE 3		13.5	11.6	16.4	670.o		0.4	71	16	2.7	NE	2
8	19.7	13.4	24.0	726.19	-1.29	• 0.82	57	29	3.0	Е з		13.6	11.9	16.6	671.s	0.0	0.6	75	23	3.7	E	2 sr. cl
9	19.7	12.1	25.5	726.38	-0.84	0.88	44	22	0.7	NE 3		13.s	10.7	16.8	672.0	0.4	-0.2	62	16	1.0	E	2
10	21.9	9.2	29.8	722.64	-2.48	2.90	48	41	1.7	var. 1		17.7	15.6	21.0	668.9	0.4	-1.5	58	9	2.0	N	1
11	19.6	14.7	23.7	719.74	-0.78	2.29	ter many	21	5.3	SO 2	m. cv	12.9	14.2	15.2	665.7	-0.2	0.6	72	21	5.0	NO	2
12	14.3	7.4	19.1	723.61	-1.58	1.67	53	10	7.3	2.5	sr. vt. cv	7.0	6.9	9.7	668.з	-0.2	1.1	69	22	4.0	NE	2 m. br ⁰
13	13.4	5.1	19.4	725.62	-0.34	0.47	48	10	1.7	NE 3	S	7.5	4.3	10.5	670.o	0.5	0.2	63	22	1.3	NE	2 m. br ⁰
14	18.3	7.0	26.3	724.00	-1.11	1.55	50	29	1.7	E 1		13.0	9,8	17.1	669.4	0.0	-0.2	58	18	1.7	NE	
15	17.4	11.1	23.1	723.68	-0.57	0.45	52	22	2.0	NE 3		11.4	10.4	14.5	669.0	0.1	0.2	71	22	1.7	N	1 sr. ec
16	15.9	10.7	21.0	722.96	-0.43	0.65	48	16	3.7	var. 3	sr. cl. ec	9.8	7.6	13.4	668.0	0.1	0.2	69	17	2.3	NE	2 sr. cl. ec
17	17.2	10.5	22.4	722.31	-1.54	1.23	52	34	4.0	SE 3	8 - 1 - 1	11.4	8.2	15.1	667.6	0.4	-0.s	68	30	90.00	NE	
18	15.6	8.6	20.8	719.91	-0.56	~1.00	56 .	27	1.3	NE 2		9.9	11.5	11.2	665.3	-0.3	0.5	67	13	2.3	NE	-1
19	15.7	8.6	20.9	721.94	-1.15	1.75	41	25	0.0	NE 3		9.9	6.4	13.5	667.2	-0.1	1.5	56	24	0.7	NE	
20	20.3	10.7	25.8	723.79	-1.18	0.67	42	17	0.0	NE 2		14.8	11.2	18.8	669.6	0.2	0.1	52	14	1.0		2
21	21.4	12.0	26.7	723.91	-0.73	0.42	34	29	0.0	NE 3		15.7	12.9	19.з	670.0	0.1	0.2	45	24	1.3	E	2
22	21.8	11.4	28.8	722.76	-1.41	0.94	42	30	0.7	E 1		17.1,	15.5	20.8	669.0	0.1	-0.3	43	19		NE	1
23	20.1	15.4	25.2	721.85	-0.84	0.71	42	28	0.7	E 2		15.3	13.2	18.5	667.9	-0.1	-0.1	49	13	1.3	E	2 sr. ec
24	20.6	11.3	28.1	720.81	-1.07	0.75	42	32	7.3	NE 1	m.cl,ap.to.pl ^o	16.4	15.9	19.7	667.0	0.0	-0.2	47	7	5.3	NO	1 ap. plo. vt
25	17.3	15.0	23.4	721.37	-0.76	1.07	46	18	7.0	var. 2	sr. cl	10.6	11.1	11.4	666.7	0.2	0.1	67	21	95 0 0	NO	2
26	19.3	9.2	26.8	721.74	-0.68	0.97	46	33	6.3	NO 2	sr. vt	14.0	11.5	18.4	667.5	0.0	0.0	51	21			3
27	19.1	15.1	25.6	721.93	-1.27	0.74	47	14	0.7	NE 3	sr. vt	12.3	10.2	15.6	667.6	0.2	-0.5	58	25		100000000000000000000000000000000000000	2
28	19.7	10.1	28.8	718.69	-1.96	2.91	42	39	0.0	E 1	0 0 0 m 2	15.3	11.2	19.8	664.9	0.2	-1.1	46	22	0.7	E	1
29	19.5	10.2	30.8	712.33	-4.20	4.40	62	57	8.0	var. 1	ap.o. gr,sr.pl	16.2	16.з	21.5	659.4	-0.2	-2.3	63	52	100	so	1 ap.o, sr.cv.pl
30	12.3	9.9	16.4	708.78	-2.81	3,39	75	8	10.o	SO 3	32.1 m. pl	7.1	5.3	8.4	654.9	0.2	1.9	91	6	9.3	so	4 33.0 m. pl
Moy.	18.19	11.40	24.11	721.71	-1.29	1.36	53.o	25.4	4.1		39.1	12.72	11.15	15.66	667.41	0.06	0.11	64.4	19.8	3.6		53.8

Calme: 16. N: 0. NE: 76. E: 9. SE: 14. S: 4. S0: 13. 0: 7. NO: 10. — 3. Soir vent NO3. — 12. Dans la soirée le ciel se couvre avec le commencement d'un Joran très-fort; nuages légers immobiles. 16. Matin SE 3; après-midi NE 3; éclairs lointains depuis 11^h du soir jusqu'après minuit. — 17. A 1^h cirri, halo solaire. — 21. Couvert depuis 11^h matin; 4^h 2 coups de tonnerre au NO; après 4^h quelques gouttes de pluie. — 29. Dans l'après-midi orage avec grêle, venant de l'O; premier coup de tonnerre à 3^h.

Alpes claires: 6. 10. 13. 14. 18. 19. 20. 21. 22. 23. 24. 26. 28. 29.

Calme: 12. N: 8. NE: 53. E: 22. SE: 1. S: 1. SO: 13. O: 5. NO: 24. — 4: 11-12^h matin forte pluie avec un peu de grêle sans tonnerre. — 11. Atmosphère trés-hâlée comme enfumée; vue très-courte. — 15. 10^h soir éclairs au SE. — 16. id. — 23. Eclairs au S et au SE 8-9^h soir.

Alpes claires: 6. 9. 10. 13. 19. 20. 28.

1865. Juillet.

		-) ^h 18 ^m						ude:			B		0 ^h 18 ^m					- A .		
our		pérat Min.		Baror Moyenne	nètre à Min.	Max.	Hum Moy.	idité Oscill.	Clarté noyenne	Vent domi- nant.	Caractère du temps. Hydromé- téores.	Ten Moyenne	npérati 7 ^h	are. 1 ^h	Baron Movenne	nètre : 1 ^h	9 ^h	Humi Moy, 0	dité scill.	Clarté moyenne	Vent domi- nant.	Caractère du temps Hydro- météores.
1	12.9	7.9	14.2	714.28	-2.66	4.14	78			so a		7.7	6.8	8.6	659.6	-1.4	3.2	89	14		so 4	sr. br. pl
2	13.7	7.8	20.1	722.71	-4.34	1.14	66	10		SO 2		9.1	7.1	10.2	667.7	0.2	1.3	74	20			9.2, sr. cl
3	18.8	6.2	24,9	722.13	-1.34	1.63	47	18	1.0	NE 2		13.6	11.1	16.1	667.9	0.1	-0.5	60	11	1.0	E 1	
4	20.4	8.2	27.6	721.82	-0.88	1.81	55	33	0.3	E 1		16.8	14.8	19.4	668.0	-0.2	0.8	57	9	1.3	so :	
5	22.3	10.9	29.7	723.51	-0.61	0.66	55	40	0.3	NE 1		18.8	17.2	21.4	670.0	0.1	0.1	54	8	0.7	NE	
6	22.8	10.5	31.0	720.75	-1.93	1.89	59	35	1.0	so		20.0	18.2	22.4	667.7	0.0	-1.0	57	22	1.3	SE :	sr. ec
7	25.2	15.6	31.2	720.00	-0.94	1.29	55	36	4.0	so :	sr. cv	21.0	19.6	24.1	667.4	-0.3	0.9	49	7	3.7	so :	ı l
8	24.7	13.7	31.0	721.14	-1.05	0.93	56	40	3.7		sr. cv	20.4	19.2	23.8	668.2	-0.3	0.5	58	27	3.3	0	sr. cv
9	19.3	16.4	26.4	721.07	-2.24	1.00	82	19	7.7		2.9m.cl.pl	15.5	17.8	14.8	667.4	0.5	-1.4	86	12			1 4.6 m.o, sr.]
10	15.8	14.5	19.0	719.33	-1.73	2.03	69	26	8.3	0	2 26.2 pl	11.1	10.9	13.1	665.2	0.0	1.4	84	23	7.3	leg a	3 18.4 nt. j
11	18.з	8.5	23.6	718.45	-1.55	2.65	65	28	7.7	so :	sr. cv	13.8	11.2	17.6	664.4	0.1	-0.9	67	21	5.7		2 ap. nu
12	14.8	10.7	20.0		-4.70	2.39		26	7.0		3.3nt.pl,v	8.7	7.1	11.2	666.6	0.1	1.9	77	24		F	3 2.6
13	17.0	7.9	23.0			0.90		33	0.0	E :	1	11.9	9.2	14.2	668.8	0.1	-0.3	60	22		E	1
14	19.9	8.0	28.6			0.92	10 march 10 m	28	1.3	S	ap. vp	16.3	14.0	19.9	668.3	0.0	0.0	64	28	y Land	so	2
15	22.9	12.6	32.1			0.95		46	3.0	E	m. cv	21.1	17.7	25.0	668.8	-0.3	0.2	53	17	2.0	E	1
16	26.1	13.7	33.0			1.13		44	1314	1 . 1	2 sr. vt	22.6	21.0	24.8	669.2	0.4	-0.3	51	21 18	0.7 1.0	E SSO	1
17	25.2	13.8	33.0	1.00	4 2 - 1 - 1	2.01		45	1.0	1	1	22.7	21.1	26.4	667.1	0.4	-1.7	51 78	11	5.7	NE	0.6 nt. j
18	23.9	17.9	30.0			0.95	12,100	38	6.0		2 0.2 nt. tn	17.1	15.3	19.5	666.1	0.0	-0.5	69	19	4.0		
19	24.3	12.9	32.1			3.88?	10	40	4.3		1 sr. o. cv	20.9	18.7	25.4	663.3 663.2	-0.1	-0.7 -0.3	62	2	2.0	NE	1 sr. o. 1
20	24.4	14.5	31.4		100	1.88		34	3.7	E	1 8.0 sr.cv,e	18 19 19	19.0	23.1	662.3	0.2	0.3	77	35	7.7	N 2 3 3	2 ap.pl,sr.
21	19.4	18.7	21.9		1,20	2.30		38	9.3	ao	ap. pl	15.2	18.8	14.4	665.0		0.9	70	19	4.3	so	2 4p.pi,si. 2 5.9
22	18.0	13.0	24.0					16 31	5.7			12.3 14.8	9.8	16.0 18.5	666.9	2 2	1.0	71	27	5.7	0	1 ap. cv.
23	19.3 17.8	9.0		4 4 4		0.58		8	6.3 8.0		1 ap.cv. pl ^o 2 sr. cl ^o	12.7	12.3	13.4	668.7		0.7	93	6	7.3		2 7.1 ap. j
24		3, 30	10	100	100	- 1	100	34	7.0	1	ap. cv. pl		12.8	16.6	10 10 00	X	0.3	82	19	7.0	N	1 0.6 ap.
25			10 M 10					31	10.0		2 3.6 sr. p		12.8	13.7	668.6		0.1	98	4	10.0		2 3.7m.bm,s
26 27		1		0 0 15		1 2 2		48	8.7		1 12.9 ap. p		15.5	17.5			-0.з		11	7.3	N	2 10.9pl,s:
28					M 20 1 100		100	22	5.8	0 19	10.sm.tn.p		16.0	16.3	5 6 80		0.8	2	2	7.3	N	1 14.2 pl,
28		1	e pai a		0.00			26	4.7		2 m. ro. nu		13.1	19.2		0.0	0.0	84	21	5.3	N	1 0.2 sr.
30							200	38	0.7		vp, sr. v		15.2	19.3		0.1	-0.4	63	15	1.0	NO	
31								36	5.8	2 10 11	sr. cv. t		15.5	20.00		0.3	-1.7	66	39	3.7	caln	ne sr. vt.
Mov	20.3	5 12.	18 26	53 720.3	8 -1.59	1.4	9 64.	8 31.	3 4.8	3	90.6	15.9	14.5	9 18.8	666.8	-0.0	0.1	4 70.5	17.	4.4		90.2

Calme: 47. N: 7. NE: 19. E: 3. SE: 2. S: 2. SO: 22. O: 6. NO: 5. — 3. Après-midi hâle épais. — 7. Hâle très-épais. — 11. Montblanc très-clair. — 12. Joran très-fort le soir. — 13. Alpes très-claires. 14. Montblanc très-clair le matin; hâle épais l'après-midi. — 19. Soir 7^h tonnerre; 7¹/₂^h pluie. — 21. 1^h vent NE4; pluie 2^h 20^m à 4^h. — 24. Soir clair au N, couvert au S. — 28. A midi tonnerre à l'O; 1^h vent NO3. — 30. Hâle épais; 8^h soir joran très-fort. — 31. Joran très-fort 6¹/₂^h soir.

Calme: 39. N: 7. NE: 5. E: 9. SE: 2. S: 0. SO: 32. O: 6. NO: 22. — 2. Hautes alpes tres-hâlées. — 4. id. — 6. Eclairs au SSE 9-10^h soir. — 11. Halo solaire très-grand de 10³/₄^h à midi. — 13. Alpes très-claires. — 14. id. — 19. Legers nuages rouges à l'E 4^h matin; orage au N à 6^h, à l'O à 7^h; tonnerre au S et à l'E à 9^h; un peu de grêle à 10^h. — 20. Eclairs au NO le soir. — 21. Pluie 2-3^h soir; alpes très-claires et paraissant trèsrapprochées 4-6^h; brouillard mouvant 8-9^h. — 31. Vent NO fort 6-7¹/₂^h soir; tonnerre au NO; quelques gouttes de pluie.

Posit.	Lo	ngitu	de: 0	^հ 18 ^տ	Latit	ude:	47° ()' A	ltitu	ıde: 4	88 ^m	L	ongitı	ıde:	0 ^h 18 ^m	Lat	itude	: 47º	ì 1 ′	Altii	tude :	1152 ^m
Jour		pérati Min.	ire. Mas.		mètre	. 4		idité	Clarté moyenne	Vent domi- nant.	Caractère du temps. Hydro-		npérat 7 ^h			mètre			nidité	Clarté moyenne	Vent domi	Tr. 1
				Moyenne	Mia.	Max.	Moy.		1		météores.	Moyenne		1 ^h	Moyenne		9 _p	Moy.	1	i	nant.	téores.
1 2	18.1	15.4 11.5	26.8	716.00	-2.28	2.28		16	8.3	SO 2	8.1 pl	12.6	13.3	14.0	662.3	0.з	1.4	74	20	8.3		2 15.2 m. pl
3	14.8	11.6		717.84 716.92	-0.65	1.07	72	16	10.0	E	01	11.0	10.8	13.4	663.3	-0.1	-0.3	89	16	9.0	SE	ap. pl
4	10.9	8.6	14.9	719.96	-0.95 -1.78	1.44 2.16	61	16	9.7	0 2	distribution of the	9.3	9.1	12.5	662.5	0.0	0.6	80	25	8.3	0	2
5	13.6	9.7	19.3	722.66	-0.67			14 26	9.7	_	3.8 sr. pl	5.6	3.8	7.3	664.5	0.0	1.4	90	11	9.0	1	11.3 pl, gr
6	15.5	5.2	22.0	721.63	-0.99	0.58 1.32		38	4.3	var. 1		7.9	5.4	11.4	667.5	0.1	0.7	77	26	5.3	0 :	
7	16.3	10.7	21.6	720.37	-1.31	0.76			5.0		ro, m. cl	9.8	8.2	12.3	666.8	0.0	-0.3	69	12	4.3	E	m. cl
8	16.4	12.0	22.0	718.84	-0.86	0.68		23 37	9.3 6.3	E	5.5 m. pl	11.3	9.6 9.3	13.5 13.2	665.8	0.2	-0.5	70 92	15 10		NO	
9	17.2	7.3	23.6	717.22	-1.87	2.07	V	34	0.3	0 2		13.0	9.8	16.3	664.5 663.2	0.4	0.5	92 74	28			7.7 m.br.pl
10	18.3	8.6	24.4	717.25	-0.55	0.52		38	7.0	var. E	ro	15.1	14.1	18.2	663.5	0.0	0.4	80	29	20000000		ap. nu
11	17.9	11.8	22.7	716.95	-0.89	1.72		17	10.0	E	ro, sr. cl ro, m. br	15.1	15.1	17.5	663.6	-0.3	0.4	85	16		so s	O.sap.pl,sr.cl
12	20.3	16.2	26.6	719.36	-0.73	0.93		33	3.7	so		16.2	14.3	19.2	665.9	0.1	-0.1	88	13			O om al au al
13	19.2	15.2	24.1	720.00	-1.07	0.66		32	9.7	0	1.6 m. pl	13.7	12.5	16.7	666.2	0.6	-0.1	79	28	5.0 8.s	var. NO	2.2 m.pl,sr.cl
14	16.0	13.3	20.1	719.57	-0.90	1.07		18	10.0	E	15.2 m. pl	10.7	10.4	11.4	664.9	-1.5	1.5	97	6		100	ap. pl 16.om.pl
15	17.1	10.4	23.з	719.49	-1.39	1.24		31	9.3	var.	10.2 m. pr	12.6	11.1	14.6	665.4	0.2	-0.8	79	9	6.0	O NO	10.0m. pi
16	16.2	13.3	19.5	718.07	-0.73	1.63		12	10.0	var.	0.2 pl	11.8	11.8	12.7	663.8	-0.2	0.8	90	5	NE TO THE	SO :	2.5
17	15.9	12.8	20.1	721.01	-1.35	0.54	63	50	5.0	0 2		10.3	8.6	13.1	665.3	-0.7	0.6	79	42		200.0	2.3 2 13.sm.pl,sr.cl
18	16.4	11.6	18.7	719.75	-1.13	1.49	70	33	10.0	0 3		11.6	9.9	13.4	665.5	0.1	-1.0	86	19		NO S	
19	17.3	12.9	22.5	718.38	-1.26	0.40	68	33	4.7	var.	26.0 m. pl	10.5	8.2	12.6	664.3	0.1	0.5	80	31		N N	27.2 nt. pl
20	16.8	9.4	23,2	717.84	-1.21	0.87	80	6	7.3	E	ro, ap. pl	13.4	11.2	15.6	663.9	0.0	-0.1	82	6	80 0	0	1.1 m. pl
21	20.4	13.7	25.5	716.48	-1.02	1.00		33	4.0	so	10, ар. рг	15.5	13.7	19.2	662.9	0.4	-0.1	78	12	5.0	0 :	
22	17.3	14.3	21.з	714.20	-1.06	1.26	90	16	10.0		9.s nt. pl	13.8	11.9	16.1	660.8	-0.2	-0.3	92	24		so	10.0 pl
23	18.0	16.1	22.1	713.34	-1.88	3.15	86	9	7.0		8.5m.pl,sr.c	14.2	14.1	15.6	660.1	-1.5	2.3	91	18			15.obr,pl,o
24	18.1	13.0	22.7	717.80	-1.66	1.15	66	8	8.0	var.	1.3 nt. pl	12.5	10.2	15.2	663.9	0.1	0.9	78	20		NO 1	
25	16.0	12.4	21.9	719.54	-1.71	2.58	0.0	24	5.0	NE	ro,sr.pl.o	12.5	11.9	14.4	665.4	-0.2	1.5	86	17	7.7	N	1.0 pl, br
26	16.3	12.7	21.0	724.89	-2.67	1.59		9	6.7	E	4.6 sr. cl	14.3	13.5	15.7	670.5	0.2	0.9	92	5	7.7	N	8.3 pl, br
27	19.3	14.1	26.0	725.33	-1.34	0.91	86	23	3.3	7.0	0.8 ro,m.br	19.5	15.8	24.7	671.з	0.5	-0.1	75	13		so	2.0 sr. cl
28	20.7	14.5	28.4	721.54	-2.46	2.45	82	36	3.3	s	ro, m. br	21.6	18.9	24.9	668.6	-0.6	-1.7	62	28	-	SO 1	
29	17.7	15.1	24.8	719.77	-1.46	1.26	87	12	6.3		ro,w.cl,sr.pl	15.6	18.3	18.з	666.1	0.5	-0.1	73	34		0 2	ap. pl
30	16.2	10.9	21.2	721.50	-0.69	1.58		21	10.o	S	10.o	10.9	11.5	12.9	667.2	-0.1	0.8	89	6	9.0	var. 1	pv
31	14.2	11.5	19.5	723.49	-0.42	0.72	66	22	6.7	NE 2	4.9 nt. pl	9.1	7.6	11.0	668.5	-0.2	0.7	79	8	4.3		20.0, ap.cv
Moy.	16.92	12.12	22.31	719.26	-1.26	1.33	74.4	23.8	7.1		122.з	12,66	11.42	15.06	665.10	-0.01	0.32	81.7	17.8	8.0		162.4
		- 1		ı				1		ı		- 1			۱ . ا		- 1					1

Calme: 34. N: 4. NE: 11. E: 4. SE: 0. S: 1. SO: 17. O: 24. NO: 3. — 8. Joran très fort depuis 6^h sr.; il commence par la direct. du NE, plus tard il était du N. — 10. On voit des hirond. de mer (des gueux) sur le lac. — 13. A 7^h mat. NO3. — 16. A 1^h ap.-m. O2. — 20. A 7^h soir Joran (NO3); 7^h 5^m coup de tonn. très fort au SE; écl. au S à 8^h 45^m; à 11^h clair. — 21. Midi SO2. — 24. A 7^h matin O3. — 25. Plusieurs coups de tonn. au NO à 11^h 20^m du mat.; midi NE2; orage dans l'ap.-m. à 4^h 30^m; il passe à 9000' de distance; le soir à 10^h éclairs au NO. — 27. Le brouillard se lève à midi. — 28. id. à 11^h mat.; dans l'ap.-m. hâle épais. — 29. A 11^h mat. le temps commence à se couvrir; soir éclairs au S.

Calme: 32. N: 12. NE: 4. E: 4. SE: 0. S: 0. SO: 27. O: 9. NO: 37. — 1. Le froment commence à jaunir. — 4. Il tonne de 9 à 10^h soir; grains de grêle. — 7. Prem. colchiq. d'automne. — 10. Midi SO2. — 13. Alpes très-claires vers 5^h sr.; écl. au SO. — 20. Ecl. au SE de 8 à 9^h soir. — 22. Orage 3- 4^h matin. — 23. Eclairs de 10 à 12^h matin; orage à $2 \cdot 3^h$ après-midi. — 25. A 7^h matin E 1; dir. d. nuages SO; orage $8 \cdot 10^h$ et 4^h ap.-m. — 26. Brou. sur le lac le mat. — 28. id. — 29. Le vent tourne au NNO vers 4^h sr.; à $7^1/2^h$ N3; pl. $5^1/2 \cdot 9^h$ sr. — 30. Brou. sur le lac au NE; N2 le sr. — 31. Moisson de l'orge et du froment; maturité des premières noisettes.

Posit.	Lo	ngitu	.de: 0) ^h 18 ^m	Lati	tude :	47°	o <u>'</u> .	Altit	ude:	488 ^m	Lo	ongitu	ıde: (0 ^հ 18 ^{ու}	Lat	itude	: 47º	1'	Altit	ude:	1152 ^m
Jour		pérati Min.		Baro:	mètre Min.	à 0° Max.	Hum Moy.	idité Oscill	Clarté moyenne	Vent domi- nant.	Caractère du temps. Hydro-	Ter Movenne	npérat 7 ^h	ure.	Baron	nètre 1 ^h	à 0°		nidité Oscill.	Clarté moyenne	Vent domi- nant.	Caractère du temps. Hydromé
1	15.2	6.4	20.0	724.58	-0.56	10000000	76	31	9.3	l	météores.	10.з	8.6	12.1	669.6	-0.2	0.5	81	25		NO 4	téores.
2	18.3	13.5	23.0	725.62	-0.56	0.37	63	10	3.7	var. var. 1	m. cv	12.2	9.7	15.2	671.2	0.0	0.5	82	21	5.7 4.3	NO 1 NO 1	sr. pl 1.6 sr. cl
3	18.0	10.з	24.4	725.24	-0.97	0.96	78	22	0.0	var.	ro	15.2	12.1	18.3	671.1	-0.1	-0.1	78	4	0.3	NE I	1.6 51. 01
4	18.9	11.0	25.9	724.51	-0.47	0.42	74	31	0.7	NE	ro	17.0	14.7	19.8	670.6	-0.1	0.5	73	20	0.3	NE	
5	19.7	10.6	26.з	725.50	-0.75	0.44	76	23	6.0	E	ro, sr. ec	17.8	16.3	20.1	671.s	0.0	0.2	65	22	3.0	E	sr. ec
6	20.6	12.5		724.49	-1.10	1.04	68	29	3.7	S	ro, sr.ec.plo	17.4	15.2	20.з	670.7	-0.1	-0.8	71	23	3.7	E	sr. cv. ec
7	20.0	11.5	25.7	723.39	-1.09	0.72	66	42	4.0	S	ro,sr.ec.to	17.2	14.9	20.3	669.7	0.0	-0.2	72	6	3.0	SE	sr. nu. ec
8	19.8	11.7	26.2	723.79	-0.90	1.05	68	38	1.3	var.	ro, sr. ec	16.9	16.6	20.2	669.9	-0.4	0.5	66	28	3.3	S	m.nu, sr.to.ec
9	19.6	12.2	28.1	725.66	-0.82	0.55	76	36	1.0	var. 1	ro	17.3	14.3	20.9	671.8	-0.2	0.6	75	23	2.0	so	sr. pl. to
10	20.7	12.4	27.0	726.99	-0.78	0.45	71	35	2.0	E	ro	18.8	16.3	22.2	673.3	0.1	0.3	71	12	1.3	N	0.3
11	22.4	13.8	28.5	727.65	-1).80	0.49	63	29	0.0	E	ro, sr. vt	17.5	16.0	20.9	673.9	-0.2	0.3	- 75	30	1.0	N 2	
12	18.4	14.0	24.0	727.18	-0.67	0.25	68	22	4.7		ro,ap.ev,sr.el	13.5	14.6	15.2	672.5	0.2	-0.з	79	3	4.0	NE 1	
13	16.2	10.з	20.9	725.65	-0.71	1.15	54	32	0.0	E 3		11.4	7.9	14.7	670.8	0.0	0.1	68	28	0.0	NE 2	
14	16.з	7.7	23.1	726.03	-1).93	0.39	59	40	0.0	Е	ro	14.2	10.9	17.2	671.4	0.1	0.2	56	37	0.0	NE	
15	18.8	8.4	25.2	725.08	-0.74	0.72	60	50	0.0	E	ro	15.5	13.4	18.6	671.0	0.2	-0.2	58	15	0.0	NE 1	
16	18.2	9.9	24.8	724.00		0.92	57	40	0.0	E	ro	15.0	13.3	17.5	669.9	-0.1	0.3	58	12	0.0	NE 1	
17	17.6	7.8	25.0	724.53		0.73	66	36	1.3	SE	ro	15.6	13.7	19.3	670.з	-0.2	0.8	59	13	2.0	N	4 5.2
18	18.5	9.1	24.9	726.23	-0.97	0.23	60	49	0.0	E 1	ro	15.1	13.4	17.4	672.1	0.0	0.4	55	8	0.0	Е	
19	18.3	12.7	22.7	726.19	-0.58	0.70	57	31	0.0	E 3	sr. vt	12.9	10.2	15.8	671.8	0.1	-0.з	72	32	0.3	NE 2	
20	16.7	8.1	24.6	724.82	-1.76	1.33	72	31	0.0	Е	ro, ap. h2	14.7	11.8	18.7	670.5	0.2	±0.6	78	27	0.3	SO 1	
21	18.1	10.1	25.5	721.90	-0.98	1.16	72	49.	0.в	s	ro, ap. h ²	16.4	14.2	19.5	668.3	-0.з	0.0	61	13	0.7	so	
22	18.8	10.4	26.0	722.99	-1.00	1.08	67	34	0.0	E	ro, ap. h2	16.3	14.6	18.9	669.2	-0.2	0.7	59	13	0.7	E 1	
23	16.4	9.5	23.5	725.39	-1.32	0,65	62	43	4.7	E	ro,m.ev,sr.ec	14.0	12.7	17.7	670.9	0.1	0.6	48	12	3.3	NE 1	sr. ec
24	17.2	8.2	23.1	727.24	-0.30	0.44	64	33	0.0	E	sr. vt	14.0	11.5	16.8	672.5	0.1	0.2	56	21	0.7	NE 1	sr. ec
25	16.4	7.7	23.0	727.33	-0.64	0.78	56	49	0.0	E	ro, sr. ec	12.7	10.5	15.5	672.6	0.1	0.1	53	5	1.0	NE 1	
26	16.4	7.2	22.2	726.63	-2.11	1.82	56	54	0.0	E		13.1	10.4	17.0	671.s	0.4	-1.3	56	29	0.0	NE 1	
27	14.4	7.6	22.1	724.74	-0.84	0.57	63	37	2.7	E	m. nu	12.9	10.2	16.7	670.1	0.0	0.3	67	28	1.7	SO 1	
28	15.з	7.1	23.7	724.25	-1.05	0.96	68	39	0.3	SE		13.3	11.4	15.6	669.8	-0.1	-0.2	54	12	1.0	E 1	
29	15.0	7.6	22.5	722.75	-0.92	1.07	63	45	0.з	E	ro	13.1	12.2	15.5	668.2	0.1	-0.7	51	10	0.7	E 1	
30	14.2	6.5	21.0	720.01	-0.97	1.97	69	35	1.3	E	ap. nu	11.9	9.1	15.4	665.8	0.1	-0.6	58	8	1.3	Е	
Moy.	17.81	9.86	24.32	725.01	-0.89	0.81	65.7	35.8	1.4		0.0	14.78	12.69	17.78	670.78	-0.01	0.08	65.1	18.0	1.2		1.9

Calme: 41. N: 0. NE: 16. E: 20. SE: 6. S: 1. SO: 1. O: 0. NO: 0. — 5. Soir éclairs lointains au S. — 6. id. SO. — 7. id. O; 10^h soir vent très-fort; coup de tonnerre au S à $10^3/4^h$ soir. — 8. A 7^h soir éclairs lointains au SE. — 11. Joran (N3) depuis $5^1/2^h$ soir. 17. Midi direction des nuages O. — 19. Coups de vent très-forts à 11^h soir. — 20. A $8^1/2^h$ soir des nuages qui passent en montant du SE. 23. A $10^3/4^h$ soir coup d'écl. loint. au S. — 24. Soir Joran trés-fort. 25. A $10^3/4^h$ soir coups d'écl. loint. au S. — 27. A $7^1/2^h$ matin le temps se découvre. — 28. Très calme toute la soirée. — 29. Après-midi alpes bernoises à peine visibles.

Calme: 35. N: 6. NE: 45. E: 5. SE: 0. S: 0. SO: 6. O: 0. NO: 7. — 3. Alpes très-claires tout le jour. — 4. id. — 5. Eclairs au SO et halos lunaires à 7^h soir. — 6. Arc-en-ciel à 7^h soir. — 6. Arc-en-ciel à 7^h soir. — 8. Il tonne au NO vers 4^h après-midi; éclairs au SE à 7^h. — 9. Il tonne au NO à 4^h après-midi; pluie 4-5^h. — 13. Bandeau de hâle au pied des Alpes le matin; Alpes très-claires tout le jour. — 15. id. — 16. id. — 17. id. — 19. Plateau brumeux invisible. — 23. Eclairs au S le soir. — 24. id. au SO. — 25. Alpes bernoises visibles le soir.

1865. Octobre.

Posit.	Lo	ngitu	de: 0	^h 18 ^m	Lati	itude :	470	oʻ .	Altit	ude:	488 ^m	, r	ongit	ude:	0 ^հ 18 ^{ու}	Lat	itude	: 47º	1′ <i>I</i>	lltit	ude: 1	152 ^m
Jour		pérat			mètre		Hum	idité Oscill.	larté yenne	Vent domi-	Caractère du temps. Hydro-	1611	ıpératı		A 100 P	mètre		2 2 2	idité	Clarté moyenne	Vent domi-	Caractère du temps. Hydromé-
	Moyeune	Min.	Max.	Moyenne	Min.	Max.	Moy.	Oscill.	Cls	nant.	météores.	Moyenne	7 ^h	1 ^h	Moyenne	1 ^h	9 ^h	Moy.	Oscill.		nant.	téores.
1	16.0	8.0	22.5	718.46	-0.89	0.84	0.00	36	6.7	var.	sr. cl	12.7	10.8	14.6	664.3	-0.1	-0.4	74	11	5.0	E	sr. cl
2	14.4	8.3	22.0	718.87	-0.99			36	3.0	S	ro	12.2	10.2	15.1	664.5	-0.6	1.3	65	17	100	NE	
3	15.5	7.9	22.0	721.49	-1.40	1.19		50	0.0	E 3		12.6	11.2	14.9	667.2	-0.1	0.4	61	10	1.0	E 2	m. br
4	14.3	9.6	19.1	722.11	-1.19	1.26		46	0.0	E 2		9.5	8.1	13.0	667.2	0.3	-0.9	62	40		E 2	
5	10.1	5.3	15.4	718.83	-1.27	2.09		14	0.0	NE 3		4.4	0.8	8.4	663.3	-0.2	-0.2	69	16	1.0	E 3	
6	8.8	1.9		718.60	-0.88	0.43	72	22	1.0	NE		5,5	1.6	8.9	663.0	-0.2	0.8	81	22	2.0	E	br
7	10.0	2.5	18.0	718.02	-1.98	1.62	79	39	1.7	var. 1	m. br. ro	9.7	5.4	15.0	663.5	0.9	-1.1	67	52	0.0	SE	
8	11.2	4.9	16.1	712.87	-2.24	3.17	87	24	7.3	E	ro, sr. pl	10.5	7.3	13.6	658.8	0.0	-1.4	77	24	7.7	NO	sr. pl
9	12.8	8.6	16.0	708.15	-1.50	2.58		16	10.0	SE	0.5m.br,sr.pl	10.9	9.9	13.0	654.6	-0.6	-0.3	81	10	9.3	var.	1.1 sr. pl
10	13.4	10.9	19.1	709.57	-1.57	0.84		27	8.0	0	2.5	9.2	7.7	11.9	655.6		1.0	82	14	′8.3	so	3.1
11	11.7	8.4	16.з	713.09	-2.68	2.13	85	26	10.0	var.	2.1 pl	7.6	7.1	8.2	658.7	-0.2	1.7	95	6	9.7	SO 1	1.3 ap. pl
12	12.0	9.1	18.4	715.16	-0.70	0.66	69	25	3.3	0 1	3.4 ap.pl,sr.ec	6.8	5.8	10.5	660.6	0.0	-0.1	85	20	4.0	so	3.5 sr. cl
13	10.3	4.8	15.4	711.86	-1.07	2.60	87	20	7.3	E	m. br	8.2	5.3	10.7	657.4	-0.3	0.0	76	36	6.7	SE	0.4 br ⁰
14	10.5	7.3	14.8	715.54	-4.08	2.61	86	3	9.7	var.	4.1 pl	6.1	5.7	7.6	660.7	0.0	2.0	89	7	9.0	NE	4.1 pl
15	8.6	4.8	13.8	718.82	-0.72	0.79	87	12	6.0	var.	1.1	5.8	3.8	8.1	663.5	-0.2	0.5	84	11	6.7	NE	1.5 m. br
16	8.7	3.5	14.9	719.19	-2.15	0.73	80	43	3.7	E	ro, m. br	5.5	3.8	8.2	663.7	0.4	-0.6	79	36	4.7	NE	m. br
17	9.6	2.9	15.1	712.04	-3.28	5.00	82	28	8.3	var.	ro, m. br	6.2	4.0	8.5	657.2	-0.2	-1.7	82	30	6.0	SO 1	m. br
18	9.6	5.5	15.0	702.74	-3.14	6.02	80	34	7.0	E	ro, m. cl	8.4	4.3	10.8	649.2	0.0	-2.5	70	44	6.3	SE 1	m. cl
19	9.4	5.7	12.9	704.28	-4.87	5.98	74	26	10.0	SO 3	2.1 pl	4.0	3.6	6.9	649.8	-0.8	3.5	91	12	9.0	SO 2	3.0 m. pl
20	8.8	6.9	14.0	711.06	-0.80	1.92	84	13	9.3	SO 2	2.6 ap. pl	4.2	2.9	3.5	656.0	-0.8	1.4	96	7	8.3	SO 3	11.7 ap. pl
21	10.4	7.1	16.1	716.07	-3.10	1.03	75	23	3.7	SO 1	13.8 m. cv	6.4	3.3	9.2	661.1	~ 0.4	-0.з	81	23	3.0	SO 1	6.5 m. nu
22	9.8	5.2	17.6	711.50	-1.69	3.50	87	27	7.7	E	m. br, pl	8.1	6.6	13.0	656.8	-().6	0.0	85	33	8.0	SO 1	0.2 sr. pl
23	8.9	6.7	12.0	713.01	-1.14	1.33	87	14	10.0	SO 2	87.0 pl	4.8	3.2	6.1	657.9	-0.4	1.4	95	11	10.o	so	88.s nt. sr.pl
24	10.7	6.8	13.3	716.88	-2.83	1.36	80	24	10.0	SO 3	8.0 pl	5.5	5.4	6.4	661.5	0.5	1.4	95	15	9.7	0 2	10.2 pl
25	11.0	8.0	18.8	715.85	-1.45	3.19	75	38	10.0	0 4	0.2 pl	5.3	6.4	7.8	660.5	-0.7	1.2	91	26	- Since 100	S R	2.2 m. pl
26	10.3	5.2	13.7	717.51	-4.93	2.72	63	31	9.7	0 2	5.7	5.2	1.7	7.1	662.2	0.4	-2.4	75	37	6.0	SO 1	8.3 m. br
27	9.6	5.4	10.6	707.98	-1.51	4.61	88	15	10.0	SO 2	23.4 pl	4.8	6.4	4.6	653.3	0.1	-0.5	98	7	9.3	SO 3	16.6 pl
28	7.2	5.2	10.1	708.57	-3.98	7.72	81	4	9.3	SO 2	11.5 pl	1.6	2.4	2.6	653.3	-1.2	4.7	98	6	N 10 1	52 INC 500	11.1 m.br,ng
29	6.4	1.7	9.6	716.69	-2.03	0.99	77	28	9.7	E,	4.8	1.9	-1.2	3.5	660.6	-0.2	-0.4	84	30	8.3	S	1.3
30	10.9	5.9	15.6	712.93	-2.24	1.73	82	24	10.0	SO 2	0.2 pl	6.3	7.0	8.5	658.1	-1.2	0.9	91	19	9.7	SO 3	1.4 pl
31	8.1	6.5	11.7	714.57	-0.47	0.85	88	7	9.7	s	11.s pl	3.3	2.2	4.2	659.1	-0.з	1.0	93	13	9.0	so	13.7
Moy.	10.61	6.15	15.68	714.26	-2.02	2.35	77.9	25.0	6.9		184.8	6.86	5.25	9.17	659.46	-0.20	0.34	82.2	20.8	6.5		190.o
		I		l I		- 10]	l i											

Calme: 32. N: 1. NE: 18. E: 6. SE: 0. S: 1. SO: 44. O: 8. NO: 0. — 1. NE1 soir. — 3. 11^h soir coup de vent très fort. — 6. 1^h nuages à l'O. — 9. Brouillard $9^1/2^h$ matin. — 11. 1^h SO2; pluie $9-2^h$ après-midi. — 12. Eclairs au SE $8^3/4^h$ soir. — 13. Brouillard jusqu'à midi. — 16. 1^h NE2; brouillard jusq. 10^h . — 17. id. jusq. 11^h . 19. 1^h SO4; pluie $4-8^h$ matin et $2-4^h$ après-midi. — 22. id. $3^1/2^h$ ap.-m.; grosse pluie dans la soirée et pendant toute la nuit. — 23. Quelques ondées; pluie depuis $6^3/4^h$ soir au 24. 8^h matin. — 25. Pluie intermitt. $4-5^h$ et $7^1/2^h$ soir. — 27. 7^h SO3; pluie continue jusqu'à 11^h matin. — 28. 7^h SO3. — 30. Alpes visibles après-midi.

Calme: 30. N: 0. NE: 14. E: 6. SE: 3. S: 1. SO: 73. O: 6. NO: 17. — 4. Soir NE3. — 6. 7^h nuages SO. — 8. Alpes claires 9. Brouillard sur le lac. — 12. Eclairs au SE 8-9^h soir. — 13. Alpes très-claires; brou. sur le lac; nuages SO. — 15. Brouillard sur le lac. — 16. 17. Brou. jusq. 7^h matin. — 17. 1^h SO2. — 18. Alpes très-cl. ap.-m. — 19. 1^h SO4; soir NO4; neige sur les basses Alpes. — 20. id. sur la chaine des Loges; SO4 soir. — 22. 1^h SO3; 4^h ap.-m. NO3; pluie jusq. 9^h. — 23. Pluie 7-9^h sr. — 25. Sr. NO4. 26. Neige sur le Chasseral. — 27.7^h SO4. — 28. id.; neige 9-10^h av.-m., fondant ap.-m. — 31. Plus de neige sur les Loges.

1865. Novembre.

Chaumont: E. Sire.

Posit.	L	ongitı	ude:	0 ^h 18 ^m	La	titude	: 47	o,	Alt	itude:	488 ^m	Lo	ngitu	ıde: C) ^h 18 ^m	Lat	itude	: 47º	1' 1	Altit	ude:	1152 ^m
Jour		pératu Min.		Baro Moyenne	mètre Nin.	à 0° Max.		idité Oscill.	Clarté moyenne	Vent domi-	Caractère du temps. Hydro-	Ten Movenne	npérat 7 ^h	ure.		mètre 1 ^b	à 0°	Hum	idité Oscill.	larté yenne	Vent domi- nant.	Caractère du temps. Hydro-
1	5.9	2.2		717.35	-1.83					nant.	météores.				Moyenne							météores.
2	5.9	3.7	p 3	717.85	-0.67	0.59 0.32	93 89	16 11	10.0	E 1 NE 1	ap. pl 3.4 sr. pl	2.2 1.0	1.7	3.9	661.4 662.0	-0.1	0.4	91	15	9.0	N	sr. br. pl
3	6.1	4.1		715.50	-0.57	2.05	86	1 14 1	10.0	NE I	3.4 sr. pi 1.8 plo	0.5	0.8	1.6 1.3	659.4	0.8	-0.3 -0.2	99 100	2	10.0 10.0		4.2 sr. br 2.5pl,br,ng
4	4.8	3.9	17600-122	717.15	-2.10	1.78	86			N 2	7 . T. (#4)	-1.0	-1.2	-0.8	660.8	-0.4	1.4	100	0	10.0		5.sap.br.gv.gr
5	4.6	3.0	21 10 15 10 1	718.11	-0.49	0.55	83		10.0	E	4.4 m. pt	-0.8	-1.2	-0.2	661.7	0.0	-0.5	99	2	10.0	NE I	0.1 sr. br
6	5.4	2.4	10.00	717.91	-0.71	0.88	75		10.0	NE 2	br	-0.1	-0.9	0.7	661.5	-0.3	0.8	100	0		NE	m. gv, br
7	5.0	2.8		717.98	-1.28	0.63	84	8	8.3	NE	br	0.8	-0.2	2.5	661.7	0.5	-0.8	98	5	2.700	N	gv, ap. br
8	5.3	2.8		712.25	-1.66	4.15	85	6	10.o	NE 3	m. br	1.9	-0.5	2.6	656.5	-1.0	0.0	92	14		1000	m. br gv
9	5.6	1.7	i0.8	714.00	-0.89	0.93	81	26	4.7	0 1	5.5 m.br.pl	0.6	0.6	1.8	658.1	-0.2	0.6	91	15		N	6.1m.ng.br
10	5.2	-1.4	7.6	718.17	-3.26	3.67	76	16	8.7	NE 2		-0.2	-0.8	0.4	662.1	-0.5	3.2	95	9		NE 1	
11	4.7	1.7	9.0	724.50	-2.66	0.99	58	21	0.0	Е з		-0.3	-2.0	1.9	667.5	0.2	0.7	67	9	0.0	NE 2	
12	3.1	-3,4	5.7	726.51	-1.02	0.41	72	37	0.0	NE		-0.5	-1.6	0.9	669.2	-0.1	0.4	83	5	0.0	NE 2	
13	3.6	1.7	6.4	727.82	-0.42	0.52	83	30	3.3	Е 3	m. br	-1.5	-2.8	0.4	669.8	0.1	0.2	94	19	4.0	NE 2	m. br. gv
14	0.5	-4.7	2.9	729.67	-1.83	0.43	93	7	10.o	E	br	2.2	0.3	5.9	671.7	0.0	0.6	60	17	1.3	N	
15	1.3	-1.5	4.9	730.10	-0.73	0.12	94	13	10.0	E	br	3.8	2.0	5.8	672.4	0.0	в.0	37	8	2.0	0	
16	1.1	-1.0	5.1	728.19	-1.28	1.84	95	16	6.7	S	br	3.0	2.3	4.8	670.s	-0.2	-0.7	72	18	4.7	0	sr. cl
17	4.1	-1.3	6.1	724.08	-1.06	2.83	91	15	10.0	S	m.br,sr.pl		3.2	5.3	667.4	-0.1	-0.7	71	19	9.0	so	sr. pl
18	7.5	3.8	10.s	724.07	-1.66	1.75	80	26	9.3	0 2		2.4	2.8	2.7	667.7	-0.2	- 1.5	95	9	7.7		7.4m.br.pl
19	1.8	-1.2	4.8	723.41	-1.67	2.04	99	4	10.0	var.	br	0.8	-0.1	2.7	666.5	-0.1	-1.1	87	13	0.7	E 1	gb
20	3.3	0.5	6.7	719.82	-1.01	1.92	95	12	9.7	Е	br	3.3	1.3	3.9	663.4	0.0	-0.1	84	11	8.3	SO 2	
21	3.3	-0.4	5.0	715.34	-1.49	3.47	97	4	10.0	S	sr. pl	4.0	2.6	5.8	659.7	-0.3	-1.0	82	36	6.7	SO	sr. pl
22	8.6	3.7	11.0	713.85	-0.38	0.99	91	14	10.0	var.	13.5 ap.pl	6.0	4.5	5.3	658.9	-().4	0.8	93	20	9.0		11.0 br, pl
23	11.7	7.8	16.3	714.86	-0.57	0.90	77	30	4.3	SO	1.2 m. cv	9.9	10.9	12.2	660.8	0.3	-0.1	78	26	2.7	80 1	10
24	7.5	2.2	13.8	716.91	-2.18	1.37	87 80	21	7.7 6.7	E	m.br,ap.cl	7.4 8.1	5.8 5.9	9.5	661.4 658.3	0.s	0.6	74	15	3.3	SO 2	gb^{o}
25	7.9	4.4	11.4	713.19 711.11	-2.95	4.56	84	16 16	10.0	var.	ap. cl		9.2	10.5	656.6	-0.1	1.3	62 77	20 47	4.0 9.7	SO 2 SO 3	00000
26	7.6 5.9	4.1	10.1	711.11	-1.55 -1.94	4.33 0.47	93	10	9.3	var. E	0.4m.br,pl	2.4	1.7	3.9	661.3	0.3	0.1	99	2	9.7	80 a	0.2 ap. pl 12.1 br,ap.pl
27 28	5.9 4.3	4.6 2.6	7.5	713.96	-1.94 -1.35	3.01	98	6	9.8 10.0		10.9m.br,pl 2.5m.br,pl	2.1	1.7	3.0	658.0	Û.0	-0.7	99	19	8.0		2.0pl.ng,gr
28	6.7	4.0	7.9	715.90	-2.61	1.86	64	10	10.0		14.7pl,ap.gr ⁰	1.2	0.8	2.3	660.4	0.0	1.2	90	10	8.0	-	m. ng. tp
30	5.0	4.2	7.5	718.62		1.22		8	10.0	E	5.7m.br,pl	_	1.2	3.6	662.3	-0.5	1.0	96	7		so	16.7 m. br
30	3.0	1.0	•	10.02	-0.00	1.22					,.	11 25 2 20		verener					50.0			20
Moy.	5,12	1.90	8.16	719.18	-1.42	1.69	85.3	14.7	8.3		68.8	2.39	1.61	3.74	662.97	-0.09	0.22	85.2	13.1	7.0		68.8

Calme: 47. N: 0. NE: 27. E 16. SE: 0. S: 1. SO: 8. O: 8. NO: 4. — 1. 2. 7.-9. 13. 26. Brouillard en haut Chaumont. — 3. 1^h E3. 4. Pluie 8¹/₂-10^h matin; neige en haut Chaumont. — 6. Brouillard à moitié Chaumont. — 9. Pluie intermitt. jusqu'à 9¹/₂^h soir; le soleil perce à 10^h. — 11. Alpes bernoises très-claires le matin. — 12. id.; 1^h NE4. — 14.-17. 19. 20. 22. Brouillard en bas Chaumont. — 23. Alpes bernoises visibles le matin. — 24. Alpes orientales très-claires après-midi. — 26. Pluie 7-10^h soir. — 29. Grêle 1^h après-midi.

Calme: 32. N: 4. NE: 30. E: 5. SE: 1. S: 0. SO: 39. O: 11. NO: 5. — 1. Nuages du SO matin; pluie 6-9h soir. — 3. Neige 7-10h soir. — 4. Gréle 9h soir. — 6. Plus de neige le soir. — 7. Chasseral et la montagne Boudry restent blancs. — 8. 7h E3. 11. 12. 14.-16. 19.-21. 23. 24. Alpes très-claires tout le jour. — 13. Brouillard jusqu'à 11h matin. — 17. Pluie 9½h soir. — 21. Pluie depuis 7h soir. — 23. Plus de neige sur Chasseral. — 24. Brouillard mouvant sur les lacs et les parties basses du plateau. 25. 27. Halo lunaire à 7h soir. — 28. Alpes claires le matin. — 29. Gris de neige le matin; 9h soir O1.

Posit.	L	ongit	ude:	0 ^հ 18 ^ո	' Lat	itude	: 47	0'	Altit	tude:	488 ^m	I	ongit	ude:	O ^h 18 ^m	' La	titude	: 47	° 1′	Altit	ude:	1152 ^m
Jour		npérat Min.		Baro Moyenne	mètre Min.	à 0° Max.		nidité Oscill.	ar	Vent domi- nant.	Caractère du temps. Hydro- météores.	Tel	mpérat	ure.	Baron Moyenne	nètre 1 ^h	à 0° 9 ^h	Hun Moy.	nidité Oscill.	Clarté	Vent domi- nant.	Caractère du temps. Hydromé- téores.
1	3.3	2.7	6.4	718.73	-1.19	1.15	93	9	10.0	NE 1	8.0 br, pl	0.0	0.2	0.1	662.0	0.1	-0.8	99	2	10.0	NE	8.2 br, ng,pl
2	3.7	1.8	5.4	715.55	-0.74	0.64	95	8	10.o	NE 1	br	0.5	-0.4	1.4	659.2	0.0	-0.5	98	0	9.3	E	br
. 3	2.7	2.2	4.5	713.80	-2.34	1.44	98	4	10.0	N	br	4.2	3.8	5.4	657.6	0.2	-0.9	74	17	5.3	NE 1	
4	2.5	1.з	3.5	710.27	-2.19	1.19	98	6	10.o	var.	br	4.4	3.4	8.4	654.6	-0.7	1.0	69	46	6.0	N	
5	4.1	1.2	7.0	716.27	-3.21	2.51	91	14	7.7	var.	3.7 nt.pl,br	0.4	-1.2	2.2	660.0	-0.5	1.7	95	6	6.7	var.	2.o(2)m.ng
6	3.5	1.4	6.3	723.21	-4.43	1.96	95	8	10.0	var.	br	1.4	0.6	3.2	665.8	-0.6	1.2	83	8	4.0	NE	
7	2.5	1.4	6.6	727.33		2.44	92	15	10.0	E 1		-2.5	-2.1	-1.4	669.1	-0.3	1.9	100	0	10.o	NE 1	br, gv
8	1.6	0.5	3,8	731.18	-1.36	0.61	84	12	10.0	Е	br	-0.6	-2.5	3.2	672.9	-0.2	0.3	88	29	0.3	0	gv
9	0.3	-0.4	1.5	730.98	-0.47	1.57	86	6	10.0	E	br	-4.5	-4.8	-3.1	672.3	-0.4	0.6	97	2	6.7	E	
10	-0.4	-1.1	1.0	732.66	-0.58	0.99	95	6	10.o	var.	br	0.8	0.0	2.8	674.2	0.1	-0.2	79	16	1	N	
11	0.2	-1.5	1.4	729.21	-1.97	2.87	85	28	5.0	NE 3	br, sr. cl	-3.7	-2.4	-3.2	670.8	0.0	-1.1	90	28	3.0	NE 2	br, gv
12	-0.1	-1.3	1.7	726.62	-0.35	0.66	83	29	8.3	NE 3	4 1	-6.1	-6.6	-5.0	668.4	0.0	0.1	100	0	8.7	NE 2	br, gv
13	-2.9	-4.4	-1.0	725.64	-0.65	1.03	76	21	10.0	NE 2	br	-8.6	-9.3	-7.8	666.7	-0.3	0.2	100	0	8.0	E 1	gv
14	-3.8	-6.0	-0.5	725.90	-0.64	0.34		16	5.7	E	m.br,sr.cl	-7.0	-8.7	-4.2	667.1	-0.4	0.5	99	4	4.7	N -	gv
15	-2.9	-8.0	0.7	728.72	-2.10	2.49	88	19	6.7	E	m.br,sr.cl	-5.8	-5.4	-5.1	670.1	-0.5	2.2	97	4	8.0	N 1	0.3 ng
16	-2.7	-4.5	0.1	731.35	-0.91	0.51	69	17	0.7	NE 3		-6.6	-7.2	-4.8	672.2	-0.3	0.8	68	25	0.7	NE 2	
17	0.з	-4.6	2.9	729.01	-0.97	1.33	76	15	7.7	NE 2	br, ap. clº	-2.7	-2.7	-1.7	670.7	-0.5	-0.8	87	20	8.0	NE 2	sr. br. gv
18	1.8	-1.4	2.8	725.75	-1.31	1.00	71	20	9.7	NE 3		-3.9	-3.9	-3.4	667.8	-0.4	-0.6	97	4		NE 3	gv
19	-1.3	-3.6	2.9	725.25	-0.45	. 0.94	85	21	5.3	E	m.cv,sr.cl	-5.5	-6.5	-3.8	667.0	-0.2	0.5	99	4	5.0	SE	m. br. gv
20	-2.7	-6.7	0.3	728.34	-2.15	1.59	96	11	10.0	SE	br	-3,6	-3.6	-0.3	669.5	-0.2	0.8	73	32	0.0	sso	
21	-4.2	-5.2	-2.2	730.09	-1.24	0.96	96	9	10.0	var.	br	1.5	-1.0	1.2	670.6	-0.6	1.3	40	34	0.0	var.	, 10
22	-5.6	-6.6	-3.2	728.51	-0.68	2.32	99	2	8.0	E 1	br,gv,sr.cl	4.9	4.4	6.5	670.з	-0.2	-0.5	19	6	0.0	NE 1	
23	-4.0	-7.9		729.50	-0.75	0.78	99	2	10.o	var.	br, gv	3.7	2.4	8.0	671.1	-0.4	0.7	31	20		NE	
24	-5.1	-6.6		730.68	-0.85	0.75	99	3	10.0	NE	br, gv	5.4	3.3	6.4	672.2	-0.4	0.9	32	5	3.	NE 1	
25	-6.0	-7.9	2 2000	731.15	-1.12	1.41	100	0	6.7	E	br,gv,sr.cl	6.1	5.7	7.9	673.2	0.3	-0.6	24	12	10000000	NE 1	
26	-4.5	-8.4	-0.7	730.34	-0.83	0.88	100	0	10.0	N	br, gv	5.0	4.1	8.0	672.1	-0.3	1.0	30	14		SO 1	
27	-2.8	-5.2	-0.9	729.44	-1.33	1.31	100		10.0	var.	br, gv	1.0	0.2	4.7	671.5	0.0	-0.9	56	19		so	
28	-2.7	-4.5	-1.0	727.55	-1.35	0.98	97		10.0	SE	br, gv	-0.5	-3.2	2.5	669.4	0.2	-0.5	67	47		SO 1	
29	-2.8	-3.6		722.17	-4.77	4.0s			10.0	S	br, gv	-0.6	-3.6	1.7	664.4	0.5	-2.9	84	29		SO 3	
30	-1.1	-4.5		719.26	-3.96	5.55					br, ap. p	-0.4	0.4	0.0	662.5	-0.9	4.5	92	22		7	1.1 ap. ng
31	1.1	-1.0	3.9	724.09	-3.38	2.08	94	17	10.0	var.	2.6 sr. br.	-1.7	-2.6	-l.5	666.7	0.5	-1.6	97	6	7.7	SO 1	br
Moy.	-0.90	-2.98	1.54	725.76	-1.63	1.56	91.1	10.6	8.4	7	14.3	-0.81	-1,59	0.91	667.80	-0.21	0.25	76.3	14.9	3.9	á	11.6

Calme: 50. N: 1. NE: 44. E: 3. SE: 0. S: 1. SO: 0. O: 1. NO: 0. — 1. Brouillar d à moitié Chaumont le matin. — 2. 3. id. en bas Chaumont. — 4. id. au sol. — 5. id. à moitié Chaumont. — 6. id. en haut Chaumont. — 8.-10. id. en bas Chaumont. — 13.-15. id. en haut Chaumont. — 15. Quelques flocons de neige à 7^h matin. — 18. A 11^h du soir très-calme. — 21. Brou. le matin et le soir, à moitié Chaumont l'ap.-m. — 22. id. au sol. le matin et soir; à 100^m l'ap.m. 28. Limite supérieure du brouillard à 200^m audessus de l'observatoire. 30. La pluie commence vers 1^h après-midi.

Calme: 43. N: 6. NE: 52. E: 1. SE: 0. S: 0. SO: 19. O: 0. NO: 3. — 8. Brouillard jusqu'au pied, cachant les basses alpes le matin. — 10. Crépuscule rouge le soir. — 12. 7^h NE4. — 15. Quelques flocons de neige par intervalles. — 19. Le givre tombe en partie dans l'ap.-m.; alpes très-claires le soir. — 20. Chasseral se montre en partie sans neige. — 22. 9^h NE2; humidité rel. 16. 26. 7^h NE2. — 29. Blanche gelée très-forte. — 30. 7^h SO3; halo lunaire 10^h soir.

Ciel rouge le matin: 3. 4. 22. — Alpes claires: 3. 4. 6. 8. 10. 16. 20.-29. — Brou. jusqu'au pied des basses alpes: 6. 10. 20.-29.

1866. Janvier.

Chaumont: E. Sire.

Posit.	L	ongitı	ude:	0 ^h 18 ^m	Lati	itude:	47°	0' <i>I</i>	ltitu	ude: 4	188m	Lo	ongitu	ide: (0 ^h 18 ^m	Lat	itude	: 47°	1' 1	Altitı	ıde:	1152 ^m
Jour	. 1	pérati Min.		Baron Moyenne	mètre Min.	à 0°	Hum Moy.	idité	Narté	Vent domi-	Caractère du temps. Hydro-		npérat 7 ^h	ure. 1 ^h	Baron Movenne	nètre 1 ^h	à 0°	Hum Moy.	idité	Jarté oyenne	Vent domi- nant.	Caractère du temps. Hydromé-
	genne					1		1	100		météores.		-					1				téores.
1 2	2.7	-1.7 -1.9	6.1	718.39	-1.85 -3.88	2.88	5.0	12 29		O 1 E	0.7 pl, br	0.2 -2.5	0.8	0.9	661.9	-1.4	2.1	95	14	10.150.111	SO 4	
3	3.0	-1.4	6.4	726.14 724.69	-0.71	0.48		14	3.0 10.0	var.	3.s nt. pl	1.2	-0.5	3.2	668.5 667.8	0.5	-0.8 0.1	96 85	11 15		E 1 SO 2	(*)
4	-0.2	-3.1		722.82	-0.43	1.63		2	200	1 2 7 2 2 3	m. cl, br		-0.2	3.7	666.0	0.0	-0.5	89	21		E .	
5	-1.6	-3.0		721.40	-0.50	0.96			. 2	S	br	1.5	-1.5	3.4	664.5	-0.1	0.0	76	31	2000	so	sr. cv
6	0.2	-2.0	2.5	721.23	-0.75	0.72	91	25	10.0	S	br	2.8	1.6	4.6	664.5	-0.4	0.7	72	11	8.0	NE	
7	1.9	-0.6	4.7	719.77	-1.45	2.14	94	15	10.0	var.	3.0 m.br. pl	0.0	9.0	0.7	662.9	0.0	-1.3	92	16	10.0	so	2.1ng,sr.ec
8	4.8	1.2	7.0	713.59	-1.87	1.90	85	28	6.7	SO 3	17.2pl,sr.cl	0.0	-1.2	0.8	657.4	-1. 0	-(1.2	95	10	8.0	so 4	7.s ng, pl
9	4.0	0.8	7.1	705.43	-5.19	7.79	78	39	10.0	SO 3	3.1 sr. ng	-1.2	-0.9	0.7	649.7	-2.6	-1.2	93	15	7.7	so :	4.oap.tp,sr.br
10	1.7	-0.8	6.0	707.64	-3.61	3,21	78	12	7.7	SO 2	12.0 sr. cl	-3.6	-4.0	-3.1	651.3	0.3	2.6	99	2	10.0	NO :	8.s tp, ng
11	3.4	-0.1	6.3	703.13	-2.08	5.76	81	19	10.0	SO 1		-0.8	-2.4	0.5	647.5	-1.5	0.9	96	11	10.0	so :	7.0 tp, ng
12	1.5	-2.0	4.6	714.68	-9.79	4.85	66	19	3.7	var.	15.2nt.pl,m.ev	-4.8	-3.8	-3.8	657.9	0.1	3.4	94	. 8	5.8	N	5.8
13	1.4	-3.6	3.4	722.99	-2.46	0.85		8	7.7	S. 2		-4.0	-6.4	-2.5	665.4	0.1	0.6	85	25		so	1 1 1 1
14	4.1	-1.3	7.4	726.16	-2.32	0.88		9	10.o		5.3 pl, br		1.4	3.2	669.8	0.6	-0.2	99	2		SO :	
15 16	3.5 4.4	1.5 2.3	5.7 7.7	726.21	-0.76	1.62		6 21	10.0	S	þr	2.0	0.6	3.4	669.0	-0.4	1.2	95	11	9.0	0	
17	4.5	3.3	7.0	725.90 728.56	-1.95 -4.71	2.29 1.32		18	9.0 10.0	S SO 2	2.3 pl, br 4.5 m. pl, br	100	0.4	0.8	668.8	-0.2 0.8	-1.6 1.5	94	18 38	1	SO NO	0
18	3.1	0.2	8.0	727.24	-2.87	2.60		16	3.8	var.	m. cv	2.5	1.0	5.1	671.1	0.8	-1.6	81 76	5	0.7	var.	5.5
19	2.6	-2.5	8.6	723.30	-0.57	1.57		23	4.0	var.	m.br,sr.cl	_,_	3.3	4.5	666.8	-0.2	0.5	63	44	1.7		
20	2,4	-1.3	5.9	721.90	-1.18	1.42		13	7.7	sso	m. br	1.0	0.0	1.5	665.1	-0.4	0.1	93	15	6.3	so	
21	1.8	-1.6	7.1	724.99		2.36		19	6.7	SSO	sr. cl	1.0	-0.8	2.9	668.1	-0.1	1.4	89	17	3.3	so	
22	0.6	-2.5	3.1	726.79		1.45	97	2	6.7	sso	br, sr. cl	2.2	-2.0	4.5	669.6	0.2	-0.5	79	35	1.0	0	1
23	4.8	2.2	8.0	722.87	-2.49	3.49	80	16	8.3	so	sr. br	0.0	1.8	-0.2	666.0	-0.2	2.0	96	1	9.7	N	2 2.s m, ng
24	3.7	0.1	5.4	730.11	-3.75	2.90	74	23	3.7	E 2	m. cv	-1.5	-1.8	-0.5	672.4	-0.з	1.9	97	6	4.3	NE	0.8 sr. cl
25	3.1	-1.8	6.4	732.68	-0.88	0.79	72	19	1.3	NE 1		0.9	-1.9	3.5	674.9	-0.3	0.2	79	19	2.3	NE	2
26	4.3	1.6	8.7	731.27	-0.25	0.74	80	30	0.0	E		2.7	1.4	4.7	674.0		0.1	79	17	0.0	NE	2
27	1.7	-1.7	3.8	722.99	-1.42	1.38	99	2	10.0	SE		2.6	0.4	5.9	672.6		-0.7	60	22	0.0	SO	
28	-0.3	-2.7	3.6	1.		2.81		7	10.0	SE	br	3.2	1.4	5.1	668.9		-1.4	58	11		so	
29	6.3	-2.2	8.9	1		57555 8,2805	20.00	17	10.0	SO 2		2.4	2.8	2.8	665.2	-	0.9	79	27	9.0		3
30	5.8	3.0	11.2			1		21	4.7	0	m.cv, sr.cl		1.5	3.3	666.4	0.1	-0.1	88	13	5.0	N	
31	1.5	-2.2	3.8	719.83	-1.36	2.21	99	4	10.0	var.	br	2.5	-0.4	4.9	663.6	-0.6	-0.2	84	22	4.7	so	sr. cv
Moy.	2.65	-0.87	5.8	8 722,25	-2.23	2.18	86.7	15.8	7.2		66.6	0.66	-0.42	2.19	665.41	-0.28	0.89	85.7	16.6	5.9		47.8
			1	1					l	1		I.		1	1			l		1	l '	1

Calme: 47. N: 0. NE: 9. E: 7. SE: 3. S: 0. SO: 43. O: 7. NO: 5.

1. 1^h SO 2; brouillard le matin eu bas (600^m), le soir à moitié Chaumont (800^m). — 5. Brouillard à 600^m le soir. — 6. id. à 800^m l'aprèsmidi. — 8. id. à 600^m le matin. — 9. Humid. rel. 1^h 57 (SO4); neige dès 9^h soir. — 12. 7^h NO 3. — 14. Brouill. à 600^m le matin. — 16. Le brouill. se lève vers midi; pluie dès 9^h soir. — 17. 19. 20. Brouill. à 600^m le matin. — 23. Brouill. en haut Chaumont (1000^m) le soir.

28. Le brouill. se lève à 3^h après-midi. Pendant toute la soirée couronne lunaire grande très-peu colorée; à 8¹/4^h halo lunaire. — Alpes claires les 13. 18. 30. (m.); 9.18. 25. (ap.); 8. 12. 13. 19. 21. 22. 24. 26. 30. (sr.)

Calme: 28. N: 3. NE: 20. E: 0. SE: 1. S: 0. SO: 85. O: 8. NO: 24. — 1. Neige 10^h-4^h soir; 9^h NO 1. — 5. Brouill. jusqu'au pied des Alpes. — 9. Barom. à 4^h soir 645.9. — 15. et 16. Brouill. sur le plateau dans l'apr.-m. — 16. 9^h SO3 et neige jusqu'à 10^h. 19. Humid. rel. 7^h 43 (SO 1), 1^h 59 (NO 2). — 22. Brouillard sur les lacs; celui de Morat tout découvert dans l'après-midi. — 28. 7^h SO 3-4; neige iusqu'à 1^h; halo lunaire par intervalles vers 9^h soir. 26. Glace; hâle jusqu'au pied des Alpes. — 27. et 28. Brouillard sur le plateau; Vuilly (750^m) visible. — 28. Neige percée à Chasseral. — Alpes très claires: 5. 15. 18. 22. 25.-28.