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- INFLUENCE

DU RESSORT DE SUSPENSION
SUR LA DUREE

DES OSCILLATIONS DU PENDULE.
B M Sl

(Voir page 504 des séances).

On sait qu'il y a deux espéces de suspension pour le
pendule des horloges astronomiques: la suspension &
couteau, et la suspension & ressort.

Dans cette derniére, latige du pendule est accrochée &
la partie inférieure de deux lames minces d’acier dont les
extrémités supérieures sont fortement serrées entre les
méchoires d’'une pince fixe. Le pendule ne peut osciller
gqu'en faisant fléchir ces lames d'acier qui se courbent
ainsi, tantot d'un co6té, tantot de l'autre. On évite, dans
cette suspension, les frottements qui résultent des oscilla-
tions du pendule, mais la raideur du ressort influe sur
le mouvement.

MM. Laugier et Winnerl ont reconnu qu'on pouvait
profiler de I'action des ressorts de suspension pour faire
disparaitre les trés petites différences qui existent entre
les durées des oscillations d'un pendule, lorsque I'ampli-
tude de ses oscillations varie de O & 5 degrés. Dans un
rapport communiqué & I'Académie des sciences, le 14
juillet 1845, ils ont fait connaitre les résultats de leurs
expériences exécutées avec tout le soin possible.
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Ils ont fait osciller un pendule, long d'a-peu-prés 1 me-
tre, avec des amplitudes de 1¢, 3o, 5o, ('amplitude étant
le double de la demi-oscillation.) Ce pendule a porté suc-
cessivement des lentilles de 4 kilog., 6 kilog. et 8 kilo-
grammes. .

Ils ont trouvé les résultats suivants :

10 En suspendant le pendule avec deux ressorts, écartés
de 2 a 3 pouces, larges clhiacun de 5 millimétres, épais
de **/,00 de millimétre et longs de 1 millimétre, les oscil-
lations de 30 et 50 d'amplitude ont é1é plus rapides que
celles d'un degré, mais la différence devenait d'autant
plus faible que la lentille était plus pesante.

20 En suspendant le méme pendule avec deux ressorts
exactement pareils aux précédents, pris dans le méme
morceau d'acier, mais ayant une longueur de 3 millimé-
tres, les oscillations ont été sensiblement isochrones, dans
les diverses amplitudes.

Disons que ces messieurs ont compté le temps que du-
raient deux mille oscillations du pendule.

Cette étude, entiérement expérimenlale, est accompa-
gnée de quelques réflexions théoriques pour expliquer
linfluence que peut exercer le ressort de suspension.
Voici ce que le rapport dit (voyez Moinet, traité d’horlo-
gerie, 1Ime partie, chap. VIII, page 495).

« Si Von réfléchil & la maniére dont s'exécute le mou-
» vement du pendule, on voit que deux effets dislincts
» concourent 4 son isochronisme: le premier tient 4 la fle-
» xion du ressort qui, & chaque instant, diminue d’aulant
» plus la longueur du pendule qu'il s’écarte davantage de
la verticale ; le second, qui parait étre le plus considé-
rable, est causé par la résistance du ressort; il ajoute
a l'intensité de la pesanteur un terme variable avec
I'amplitude et augmentant sans cesse avec elle. Ce terme
» diminue toujours la durée des oscillations et a d'autant
» plus d'influence que Pamplitude est plus considérable ;

T T w




— 650 —

» on concoit, d'aprés cela, qu'en choisissant convenable-
» ment le ressort de suspension, ce double effet, di & sa
» flexion ef & sa résistance, puisse en chaque point de I'arc
» décrit par le centre de gravité du pendule, étre égal &
» la différence qui ordinairement se manifeste entre les
» durées des oscillations suivant 'amplitude; en d’autres
» termes, on concoit que ce double effet puisse varier de
» maniére 4 rendre le pendule isochrone, si la force du
» ressort est trés faible relativement au poids de la len-
» tille, les oscillations auront une durée moindre dans les
» pelits arcs que dans les grands, comme il arrive ordi-
» nairement ; mais si on augmente la force du ressort,
» il peut se faire que la durée des oscillations diminue
» lorsque l'oscillation augmente dans de certaines limi-
» les, de sorte que l'on aura, pour ainsi dire, dépassé
» Yisochronisme. Nos expériences, disent-ils, ont confirmé
la justesse de ces considérations, car elles ont réalisé
les différents cas qui viennent d'étre énumeérés. »

Ces considérations générales sur la théorie de résis-
tance du ressort, variable suivant sa flexion, mais dont la
loi n'est pas indiquée, ne me semblant pas suffisamment
nettes, j'ai essayé, dans l'analyse suivante, de rechercher
si le calcul ne pourrait pas mieux préciser quel est le
vrai mode d'agir du ressort lorsqu'on I'applique  la sus-
pension d'un pendule.

On peut regarder une lame élastique comme composée
d'une infinité de fibres élémentaires paralléles. Quand
cette lame est courbée, toutes ses fibres subissent le méme
effet. Celles qui sont situées du coté de la convexité s'al-
longenl, tandis que celles qui sont placées du c6té de la
concavité se raccourcissent. Entre les fibres qui se dila-
tenl et celles qui se contractent, il y en a nécessairement
dont la largeur ne varie pas; on les appelle fibres neu-
tres, quand la lame a une section rectangulaire, les fibres
neutres sont situées au milieu de I'épaisseur.

= =
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Toutes les fibres du ressort étant ainsi déformées, réa-
gissent pour reprendre leur longueur primitive et ten-
dent par conséquent a redresser le ressort. — On admet,
comme résultat de I'expérience, que la force avec laquelle
une tige dilatée ou contractée réagit pour revenir 4 sa pre-
, miére longueur, est donnée par la formule suivante :

F=Es— (1)

a condition que la limite d'élasticité ne soit pas dépassée :

[ désigne la longueur primitive

¢ 'allongement ou la contraction

s la section du fil ou de la fibre

E est une constante qui dépend uniquement de la na-
ture du corps. On 'appelle coéfficient d’élasticité. Pour le
bon acier trempé, fondu, trés-fin et recuit, E est a-peu-
prés égal a 30,000.

On peut définir la constante E en disant que c'est I'ef-
fort exprimé en kilogrammes, avec lequel il faudrait tirer
un fil ayant un millimétre carré de section pour l'allon-
ger d'une quantité égale & sa longueur, en supposant
que son élasticité se conserve intacle pendant toule la
durée de cette traction.

Si 'on calcule, au moyen de la formule (1), la somme
des actions de toutes les fibres élémentaires renfermées
dans la lame élastique, on trouve la valeur du couple qui
lend 4 redresser cetle lame en un point quelconque en
faisant tourner la partie libre autour d’'un axe transver-
sal perpendiculaire au milieu de son épaisseur. Ce couple
est exprimé par la formule suivante :

 EX?bad @)
r
dans laquelle b désigne la largeur de la lame
a sa demi épaisseur,
r le rayon de courbure de la fibre neutre
au point considéré.
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La quantité exprimée par cette formule (2) se nomme
le moment . d’élasticité.

Pour abréger nous représenterons 2/3 b a 3 par e.

Supposons maintenant une lame encastrée par une de
ses extrémités (fig. 1) de sorte que l'extrémité O de la fibre
neutre soit fixe et que la tangente i cette fibre en O ne
puisse pas changer de direction; supposons que cette
lame soit sollicitée & T'aulre extrémité par une force P
perpendiculaire & la direction primitive O X; on devra
exprimer que le moment de la force P par rapport au
point p ou la fibre neutre perce le plan mn d'une sec-
tion transversale, est égal au moment d'élasticité de cette
section.

Si x et y sont les cordonnées du point p et h V'abscisse
extréme H, point d’application de la force P, on aura :

= g (3)
{ (dy)ﬁ}%
1 + (=2
d
Or » == dj; | (4)
dz?*
ce qui donne .
dy\ 2|
Ee { b+ (Eg) } . 5
P(h—z) d*y (3)
dux?

1l s'agit done de trouver I'équation de la courbe de la
fibre neutre par 'expression de son rayon de courbure.
© 8i l'on suppose d'abord que le ressort subisse une fle-

" < « , qe , d
aion trés faible, on pourra négliger le carré de (EE—) a
c6té de I'unité, et équation (D) deviendra aprés transfor-
mation :

d*y

‘Be. A=P(h—z) | (6)
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Une premiére intégration donne :

o
A

—

7)

, dy . ' i
_— = { AL e e
Ee. 5 I..\/er 5 <

‘ . : dy Py
La constante est nulle parce que —— = o0 lorsque & = 0;
siz = h, on a:

dy _ 1 2
Ee. m—— ﬂ_ Ph ou

( dy __ P 2 '
(?E")h—'wc & (8)
Cette valeur de (di;’—)h donne Vinclinaison de la tangente

au point extréme de la lame.

En intégrant I'équation (7 ) une seconde fois, on ar-
rive a ;

P oo1,, 1
y.....jE—-{ /zx-—-—g-x“} (9)

pour l'équation de la courbe.

Lorsque # = h, c.-a-d., & I'extrémité du ressort, y = f;
en désignant par f l’ecartement extréme du ressort, ou
ce qu'on appelle la fleche, savoir K H, alors

Ph
fr= 3Ee . (10)
on en tire P = 22° 7 )

c.-a-d., que la force nécessaire pour fléchir un ressort droit
d'une petite quantité, est proportionnelle & la fleche , en
raison tnverse du cube de sa longuem en raison directe
de sa largeur et du cube de son épaisseur.
L'équation (10) donne encore:
P 3f
Ee ~ A%

BUL. DE LA SOC. DES SC. NAT. T. V. 42

- (12)
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ce qui change I'équation (9) en
3 1 S ;
y =L (5 hat—22*)  (13)
c’est 'équation de la courbe renfermant pour données les
coordonnées extrémes h et f du point K.

L'équation (8) devient aussi :

(%)ﬁi%{' &

pour l'inclinaison de la tangente sur l'axe des abscisses,
au point K.
L’équation de cette tangente K I, est:

y—f=<L (2 —4) (15)

quand on fait y = o, pour connaitre le point I ol elle
coupe l'axe des abscisses, on trouve:

zou Ol= = / (16)

h—az ou Hl= 2/, A

c'est-a-dire, que la tangente & lextrémité de la fibre neu-
tre va couper la ligne des x, O, toujours au tiers de
Pabscisse de Uextrémité,; ou, aw tiers de la longueur du
ressort ; car, celui-ci, étant {rés-peu fléchi, on peut, sans
erreur appréciable, prendre sa longueur pour l'abscisse
0 H.

Appliquons maintenant ces propriétés statiques pour
éludier V'action que le ressort peut exercer sur le mou-
vement d'un pendule, dont Uamplitude des oscillations
reste petite, et par conséquent dont le ressort de suspen-
sion est trés-peu fléchi. Soit (fig. 2) O le point d'attache
fixe du ressort et K son extrémité liée & la verge du pen-
dule. Cette verge reste constamment tangente, par sa ligne
moyenne, a 'extrémité de la courbe que prend le ressort
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a chaque instant de sa flexion. La ligne movenne de la
verge va donc toujours couper, par son prolongement, la
verticale (prise pour axe du z), au méme point I, pendant
toute la période de Voscillation; et

(03 TR
IH == 3L

en désignant par ! la longueur du ressort, et rempla-
¢ant partout h ou l'abscisse exiréme par ; parce qu'on
peut, sans erreur appréciable, regarder h comme étant
égal & [.

Le mouvement du pendule s'exécutera donc pendant
toute la durée de 'oscillation autour du point I; et en
désignant I'angle KIH par 6, on le considérera comme
I'angle d’écart du pendule & un instant quelconque ¢,

Le pendule est sollicité par deux forces:

10 Le poids de la lentille et du pendule L = mg (m est
la masse du pendule; g = 9,8088).

La composante normale de cette force sur le pendule est

mg X sin b
et son moment par rapport au point I est:
mgv sin 0 (17)

v désigne la longueur du pendule.

20 La force P avec laquelle il faudrait agir sur l'extré-
mité du ressort en K, suivant la direction KH pour écarter
cette extrémité de la verticale de-la distance f = KH.

Cette forme P a pour valeur, d’aprés 1'équation (11)

P — SZlfe f
Or KH ou f=1H X tange
ou f=2/ /X tang 0 (18)
Donc p— 2ke tang {19)

12
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Son moment relativement au point 1, autour duquel
oscille le pendule, est P x I H ou
Ee '

4
57 tang o (20)

c'est-a-dire que le moment du ressort ou lo valeur de son
action sur le pendule est en raison directe de la tangente
de Uangle d’écart et en raison inverse de sa longueur.

L’équation différentielle du mouvement d'un solide qui
tourne autour d’'un point fixe, est:

d*o somme des moments des forces

= — - (21
dt? moment d’inertie Yot

La somme des moments des forces est ici:

4

mguv sin b + tang 6

Le moment d'inertie est m (v* + »*) en supposant que
v soit la distance du centre de gravit¢ du pendule au
point I et u, le rayon de giration.

On a donc, en introduisant ces quantités dans I'équa-
tion (21) -

Ee

2% mgv sin 6 -+ tang 6
der (22)

m(vw? + u?

«

Si on divise les deux termes du second membre par
ut .
mgv; quon remplace v + — simplement par v en sup-

posant que v soit la longueur du pendule simple qui os-
cille comme le pendule composé, et qu'on fasse

4Ee .
S ST 23)
3lvmyg K 2
On aura:
d?e q

g R {sinﬁ-a—l{tangg} (24)
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On intégre cette équation en la multipliant par 2 d 6,
eton a:
. g

- WT‘29056+2K10g('059}' syl fc)s.}

Si on désigne par « P'angle de la demi-oscillation, on

remarque que lorsque 6 = «, —— ou la vitesse = 6, ot

dt
0= — {——{2 cos « + 2K log cos a}. (26y
et |
do, g, : cos 6|
= =) (2089 — 2 cos a) + ¢ ; e (27)
= - l_Q eC 2 cos «) + 2 K log e (27)
on en tire
dt=—V d6 (28)
g v~ ' cos 6

(2 cosb— 2cosa)+2 k log
| : cos «

On prend ici le signe — parce que ¢ augmente lorsque
o diminue.

Or | | " (29)
cosh Jcos § — cos a 1 10080 — cosay ® l
Log 2ty e R
oS =« |cos 6 + cos « 3 \cos + cosa f
mais
62 H ' a2 S
co8 0 — 1 — + — — pfe. (30}
EREY IR
u? ot :
Co8 2= | = — &' —— —gle. 31
5 * 9 (31)
et
a2 0 2 o

co8 b —cos 2 = —— — —
2 24

-+ etc. (32)
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De sorte que pour ne pas introduire des puissances de
Parc supérieures & la 4me, je néglige dans la série (29)
tous les termes & partir du second et je fais:

cosf [cose—-COSal ,
log cosa = | cos® -+ cos« | (33)
La formule (28) devient alors
dt =— V"5 d 6 (34)

Y,

2K
(E’.cosﬁ-——%cowli E
| oS 8 -+ CoS

Si on remplace (2 cos 8 — 2 cos a), (cos 8 + cos «) par
leurs valeurs tirées des séries (30) et (31), en conservant
les termes jusqu'a la 4me puissance de l'arc inclusivement,
puis qu'on effectue quelques transformations, on trouve
facilement les équations suivantes: -

di—=—V7 do
g :

\/aa_ag v {1___4_12 (a2-+ 92)} {(1+K)+§(ag+02)}
di:—-\/ v do

9 v vV -~

@ —07 7 (y +k)—; éK(aa-k o)
dt=—V 5 dt (37)}
{ gU+K) va @ VT K (& + 0
en faisant pour abréger
1—2K p
12(4_,_1{)“‘*‘1{ (38)
Puis

dt——V 4 ]’mﬂ_+£x(a9+ei)dﬁl

| (39)

g(l—&-K)\\/a?_a% 2 V2 ¢
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L'intégration de ceite derniére donne , (40)
= . 3K Ko 2
==Yy (i+--—a‘*’){alccos -———} Vol Bl
g(1+K) [

Cette intégrale doit étre prise depuis 6 =a 4 6 = — o, et

elle donne pour la durée compléte d’une oscillation du
pendule, dont 'amplitude totale est 2«

T:WV__—?) I 1+ d B a”‘ (41)
s+ K i

Pour vérifier la justesse de cette intégrale, je remar-
que: 1° que lorsque le ressort est supprimé, on a
K=o
et si « == 0 ou est infiniment petit,

——

v

T=xv7y

ce qui est la formule donnée par tous les ouvrages de mé-
canique pour calculer la durée des oscillations infiniment
petites.

2> Lorsque K = o, mais que « au lieu d'étre infiniment
pelit, est simplement petit, on a

- — 1
"V ¥ ( i + :-— )
g 16
Cette formule est celle que Poisson donne dans son ou-
vrage de mécanique, (ler vol., p. 345), pour calculer la
durée des oscillations lorsqu’elles sont petites, mais non
infiniment petltes
Revefions & la formule (41). Elle contient la solution
du probléme de l'isochronisme par le ressort. En eflet,
-~ 3K P :
le facteur -{1 + 4(1 } qui varie avec l'amplitude de

Voscillation, deviendra la constante 1, lorsque

K'=0



— 660 —

: 1 —2K
ou Bk
Cette quantité devient égale & 0, lorsque
— 2K =090 (42)
ou 2 Ko
ou 8 e ouSEe-—Blbmg (43)
3 mg \
St Kr était négatif ou 2K > 1 our—— 31 —> 1, le facteur
K ; ; ;
(1 -+ iT aﬁ) deviendrait (1 — ?-45— m”) et la durée

des oscillations diminuerait avec lewr amplitude.
Lors méme que K' ne serait pas o, la différence entre

la durée des oscillations, suivant l’amplitude serait d’au-
b b
Ee

dlvmg

tant plus diminuée que K' serait plus petil ou que
approcherait plus de l'unité.

Ainsi le résultat de I'analyse précédente est qu'en sup-
posant les oscillations petites et par conséquent le ressort
trés-peu fléchi (*) ce qui permet de supprimer (%i—)ﬁ
a coté de l'unité, dans I'expression du rayon de courbure,
le ressort peut amener Uisochronisme, cest-a-dire faire
disparailre les petites inégalités qui se manifestent dans
la durée des oscillations d'un pendule.

La condition d'isochronisme étant donnée par la rela-
tion (43)

8Ee L
3lovmg
on voit que l'influence utile du ressort pour amener l'iso-
chronisme est :
1o En raison directe de l’élasticité du ressort exprimée

par E.

(*) L’angle gne fait le ressort avec la verticale, n’est peu prés que
les 2/3 de I'angle d’écart.
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% En raison directe de e = 2/3 b ¢, c.-a-d. de la lar-
geur et du cube de I'épaisscur du ressort. -

3° En raison inverse a) de la longueur du ressort

b) de la longueur du pendule

'¢) du poids mg¢g du pendule.
Toutes les quantités contenues dans la relation (43) peu-
vent se déterminer exacltement, sauf E qui varie avec la
nature des aciers. Il varie entre 21,000 et 30,000 ; en
prenant une valeur moyenne 25,000, on pourra choisir
pour données le poids du pendule, sa longueur, la lon-
gueur du ressort ainsi que sa largeur et déterminer son
épaisseur 2 ¢ au moyen de l’équation

8 E. X ?/, ba”:Slvmg

ou toutes les quantités seront connues, sauf a.

En un mot ceite équation peut servir & calculer 1a valeur
d'une des quantités qui y sont contenues, lorsqu'on con-
nait toutes les autres.

Le résultat de I'analyse expliquerait done fort bien les
résultats des expériences de MM. Laugier et Winnerl.

Leur ressort de 1 millimétre rendait la quantité

S8Ee

2R =1y

trop forte et I'isochronisme était dépassé, mais la diffé-
rence diminuait avec le poids de la lentille qui est un
facteur du dénominatenr,

Le ressort de 3 millimétres, en diminuant la quantité
K remplissait sensiblement les conditions de l'isochro-
nisme.

La quantlte K affecte la durée de l’osclllaiion en fai-
sant varier le facteur
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Plus K sera grand, plus aussi ¥ =7 sera diminué et par
g (1+K)

conséquent
T == % 1/ v —
g (1 + K)
sera plus faible pour la méme longueur du pendule.

Ce qui signifie que le ressort augmente la rapidité des
oscillations du pendule, d’autant plus que la quantité K
est plus grande. — Celte conclusion est tellement conforme
avec les expériences de Laugier et Winnerl, que je ne

puis m’empécher de transcrire ici leur tableau pour que
chacun puisse juger soi-méme.

Expériences faites avec le ressort de 1 millimétre.

2000 oscillations ont duré:

Amplitude de|Amplitude de| Amplitude de
10 3o 50

I Lentille du poids de 2 kilog.|| 1977'',00 | 1975',60 1974,37

1 » » » 4 kilog.)| 2010'".55 2009'",84 2008'7,93
HI » » » 6 kilog. 2020'",31 2019'7,80 2019'",34
IV » » » 8kilog.ll 202704 2026'",68 2026'",38

Expériences faites avec le ressort de 3 millimétres.
2000 oscillations onf duré :

T N T T
Amplitude de} Amplitude de|Amplitude de
10 3° 5o

1T Lentille du poids de 4 kilog.|| 2024'',96 2024'7,89 20241,99
I v o » » 6 kilog.|| 2030',28 i 2030'7,33 203077,37
v ] » » 8 kilog.|] 2034",81 1 203481 2034'1,98

On voit clairement dans ce tableau que I'augmentation
de longueur du ressort, et I'augmentation de poids de la
lentille en diminuant

K — 4Ee
3lvmyg

ont fait croitre
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]‘:ﬂv )]
g(l + K)

La suspension & ressort exige donc que 'on fasse le pen-
dule & secondes plus long que pour la suspension & cou-
teau, d'autant plus que I'influence du ressort devient plus
énergique, pour établir I'isochronisme.

Sans avoir besoin du secours de toute I'analyse précé-
dente, on peut trés bien s'expliquer V'influence du ressort
pour amener I'isochronisme, rien qu’a 'examen de la fig. 2.
L’action du ressort s'exerce en K suivant la direction K ;
si on la décompose en deux composantes dont I'une N soit
normale a I K, on trouve qu’'elle vaut :

E
N=P x cos 6 :«T-Q—E-tangexcose
en vertu de (19), ou
2Ee . 8
—7§~Sln.

c.-a-d. que la force avec laquelle le ressort agit normalement
sur le pendule a la méme forme que l'action de la pesan-
teur ou qu'elle est proportionelle au sinus de Uangle d’é-
cart. Mais son bras de levier I K augmente depuis le com-
mencement de l'oscillation & la fin. La valeur de I K est

1H L 2/ | :

cos g OU sans erreur appréciable — - et varie donc de
2/‘ l

2 l E‘l 3

/5 COoSs o

c'est cette augmentation du bras de levier sur lequelle agit
la composante normale du ressort qui produil son effet
utile pour amener Uisochronisme.

La force normale du ressort s'ajoute a l'intensité de la
pesanteur, et-produit ainsi une plus grande rapidité des
oscillations, grandes et petites.
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Ainsi ce n'est pas le raccourcissement du ressort qui,
en diminuant la longueur du pendule, améne I'isochro-
nisme; au contraire, le pendule devient plus long puisque
1 S’ est rigoureusement plus grand que I S; mais c'est
parce que la force croissante du ressort agit sur un bras
de levier de plus en plus long & mesure que I'amplitude
augmente. L’allongement total du pendule en passant ‘de
la position I S & la position I S’ est du reste tellement
faible que cette variation ne peut influer en rien sur la
quantité

Vo
g1 +K)

puisqu'il affecte le numérateur v dont la valeur est 1,000
fois celle du ressort de 1 millimétre ; quelle influence
pourrait produire une variation d'une fraction trés pe-
tite de millimétres sur une longueur de 1 métre placée
sous un radical ?

Les considérations théoriques de MM. Laugier et Win-
nerl, manquent done de justesse et ne pénétrent pas du
tout & la vraie cause de l'influence du ressort. — Leurs
expériences ont été faites avec beaucoup de soin et sont
telles qu'on pouvait en attendre d’artistes de précision s
éminents ; mais l'explication a été congue aprés la con-
naissance des faits et les expériences n'ont pas confirmé
sa justesse ; c'est bien plutdt 'explication qui a été ima-
ginée en vue des résultats de I'expérimentation.

Voyons maintenant si, en reprenant I'équation (9), et
en essayant d'en tirer 'équation de la courbe du ressort,
sans négliger le carré de ( ;z%) a coté de T'unité, nous
arriverons aux mémes résultats. Nous ne serons plus alors

obligés de supposer Pamplitude des oscillations aussi pe-
tite que dans 'analyse précédente.

Si T'on fait pour simplifier



Ee /oy
— (44
5= (44)
on aura
] ., 2 )
f . < gi }552
o= (h—a)——IF (45)
dax? .
ou en faisant
dy diy  dp
de « 17?7 dx?  dax
) : A - d
[~ ) B 25 et (46)
(1 + p?) /2
en intégrant, on trouve
Cdy
: i dz
he— zat)=——L = ——  (47)
VT + gt 1/4+(dye
| dm)
la constante est ici nulle;
on en fire :
, |
. (b — — 22
dy \ 2 /
ou o : (4

2= (hx — 3 o

» sy dy
A lextrémité du ressort, on a z = h, et <, = tang 6,

en désignant toujours par 6 l'angle que la tangente a
Pextrémité du ressort fait avec I'axe des abscisses.

L'équation (47) donne alors:

: ¢ tang 6 ; 2
1 i £ = csin. 8 (49)
- V1 & tang? 6




d’otr
h? Ee
‘= gvme — P (30)

On en conclut que

2 Ee sin. 8 |
P=—— (51)
La valeur p ou 3% (48) conduit & la série suivante:
1 . I .0 (52
dy (hx-—-——gﬂx’) (hx—--a—:c*) 3(/1:1:-——9- x?) (52)
dz ¢ M 3 B N 8¢t e Q15,

Le terme général de celle série est
i 2n—1{
1.3.5.7..(2n—3) (hx — é——xi)

2v—1.1.2.3. .. n—1). c2a—1

Le rapport d’un terme au précédent est
2

— . 2
an—1 ¥ 5%

2n g*
et on voit que ce rapport tend vers
1 R

(h-w-—-~—2—a:*;

c?
Mais (ha — - «?)2varie de 0 4(~ h*)? tandis que ¢
qui contient E* esl grand; on a, du reste, puisque

h? _ ht
— Qsin.a = 4 sin. 2 0
et
1 z i 2
(_bx———é-:cﬂ) 4(hx——§—x2)
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c’est-a-dire que ce rapport varie de o  sin. * 6.—La plus
grande valeur du rapport d'un terme au suivant ne peut
donc pas dépasser sin. 26, qui est toujours trés-pelit, par-
ce que l'angle 6 ne s'éléve jamais qu'a 2 ou 3.

La série (O2) est donc trés-convergente et puisque le
3me terme contient déja la Sme puissance du sinus 6, on
peut se contenter des deux premiers et prendre:

i 1
{hop —— e 02 h o e e 233
gy 1(hax 5 =) hx g & ) )
ar = T T T (83)
Cette équation donne par 'intégration:
- (34)
___3k:c2-——x5+ T0 A% o — 84 A% 2% + 38 h 25 — B &7
¥y="%¢ | 560 ¢3

Sil'on fait  — h et y = f pour connaitre les coordon-
nées de 'extrémité kdu ressort, lorsque 1’écart est 0, on a:

33 A . oy
fr=52 3¢ T 3o - (33)
, h?
Au moyen de la valeur ¢ = 5—— on a
_ 2 sin. 6 8 sin. 3 8

Les termes suivants négligés contiendraient les Hme, 7me
puissances du sinus,

Puisque f ou KH est connu au moyen de 8, on en tire

IH = Bl — ! ou
tang 6 tang 6
2 cos @ 8 sin. 20 cos §
I1H = — 3 h + =5 2 (07)

Mais lorsque le pendule est dans la position 1§, telle
que sa verge K 8" prolongée fait I'angle 6 avec la verticale,
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et coupe, par son prolongement, celle-ci en I, le mo-
ment de V'action du ressort par rapport au point I qui est
le cenire de rotation, devient:

P < IH ou
2 Eekzln' b ~ { 2!5 hcos§ =+ 8/55 hsin, 26 cos 6 } (\58:}

ou

4Eesin. 6 cos 6 | W o .
- {4+ ﬂgsan.ﬁ} (59)

Il s'agit maintenant de trouver la relation de % ou de
I'abscisse extréme, avec la longueur [ du ressort.

Il faut, pour cela, exprimer la longueur de la courbe
en fonction de ses coordonnées. En désignant par s I'axe
de courbe, on sait que

ds=dx V
$ X T dy*

= ”
dx?

En remplagant g-%par sa valeur connue dans I'équation
(48), on trouve :

dS: am

¥ 4 (hx_——;—xﬁ)ﬂ (60)

02
Développons en série, nous aurons :

e — —a)? qwx-%ww(m)
de=ga | d 4 womomabome . o |
2c? 8 ¢t )

Celte série est semblable 4 la (52); en l'intégrant, on
obtient pour les deux premiers termes :
20 2% + 35— 1B hat

==& + 150 5 + ete.  (62)




Y . .

Lorsque # = h, s = 1; donc

E* he
=1l + ¥ (63) (!n lerme suivant serait — Tos o }

ou

e , 4 2 -9
I?—-—]?(#-i- Tg-sm 6) (64)
d’ ot |

l

1 + "/, sin. 20

7 ==

(65)

Si nous substituons cetle valeur de k dans l'expression
du moment du ressort (59), celui-ci ne contiendra plus
que la variable .

On a alors: Moment de 'action du ressort —

4 Eesin. 8 cos 6
31

1+ 12/ sin, 26) (1 + %/, sin. 26)  (66)

ou

ABEesin.fcos b . w !
57 3 1 + [)Il.j,ﬂioﬁ sin. 2 6 ! ’ (67}

en neégligeant les 4mes puissances du sinus, qui introdui-
raient dans les int(’,gratienq les 6mes puissances de l'arc.

Mettons cette expression du moment dans lequatmn
(21), nous trouvons:

(68)
. : 4 }LE . . 64/ 2 3

% mgvsin. § + T § cos B+" o, SI0. 0 €COS
——g IR e e e H.A__..,W._....,..___,.__...-..«-.w-.-ﬂ_-_-w_,.»..m-_-
op ¢ - om 3'9 + u?
et, en faisant encore

LIS (69)

3 Lo my o

nous trouvons:
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(70)

A ——J sin, 6 + K sin, 8 cog 0 + 9/, K sin, 39 cos ﬂ‘

des v |
En intégrant, on a

(m)
d §2 l 37T K A2 [
e m= L (()sﬁ——__ — sin. *0 + — Ksin. 20 cos 26 + (
dr = 7| 103 105 l
d o

A cause que = 0 lorsque 0 = = on obtient aprés

les transformations convenables el par I'intégration
VT 3K
T B i — {1 + ——— &? 1 (7?)
gl +K) . ’
35 +H2 K
2014 ~ K
Pour obtenir l'isochronisme, il fandrait encore que la
constante K" fut nulle, mais puisque
Ko 38+ 12K
2011 +K
il est impossible que K’ devienne o, K ne pouvant, par sa
nature, devenir négatif, atlendu que

ALle

Riomy

— K (73)

R

- I [T I .
Lorsque K = o; K" = —; st K élait o0, on auvrail
v 1
K" e

35 .
Ainsi, lorsque les amplitudes ne sont plus trés-petites
pour permeltre de supprimer dans I'équalion de la courbe

du ressort, le terme (gf;-r‘:)2 A edté de l'unité, et que lon

| 157

tire la valeur de la force du ressort, de la forme rigoureu-
sement mathématique de cette courbe, on arrive & cette
conclusion que Visochronisme est impossible,
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1l n'en résulie pas moins que le ressort exerce son m-
5 l [

fluence pour diminuer le facteur (1 + ) depen—

dant de la grandeur de 'amplitade. En effet, on voit que
la constante K est multipliée an numérateur par 12 et au
dénominateur par 420, d’oli il suit que 'augmentation de
R affecte beaucoup plus le dénominaieur que le numéra-
teur; le multiplicateur de 22 est donc d'autant plus faible
que K est plus grand. De plus pour une longueur donnée

de pendule, on voit que le factent Vf—_””"a:-ﬁ) dimirftuant
aussi avec 'accroissementde R, cela tend encore & rendre
les oscillations mowns inégales en durée.
~ Le résultat de la seconde analyse ne dément donc pas
complétement celui de la premiére. Il indique sans doute
que I'isochronisme absolu est 1mp0-i}hlc mais il mdlquc
aussi que le ressorl peut diminuer Vinégalité qui existe
entre les durées des oscillations de diverses amphludeb ’
et comme la valeur de la force P tirée de 'équation (47)
est rigoureusement juste; que de plus les séries qui onl
donné la valeur de la fléche et de 'abscisse . ne sont en
erreur que depuis les dwes puissances du sinus, on peut
présumer que 'action du ressort sur I'isochronisme doit
s'étendre au dela des amplitudes de 3 ou Ho. ‘

Il est hien probable aussi que, lorsque les amplitudes
ne dépassent pas 50, ou varient entre 0 et 5, I'action du
ressort est trés—approel‘léo de celle qui a été trouvée dans
la 1re analyse, ce qui est prouvé par les expériences de
| Laugxer et Winnerl, dont le pendule a dépassé l'isochro-
nisme avec le ressort de 1 millimétre.

Nous pouvons donc répéler que le ressort a d’autant
plus d'influence pour produire l'isochronisme :

lo qu'il est plm élastique, plus large,. plm deiS Pt
plus court.

20 que le pendule est moins lourd et p]us court.
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Dans les deux analyses précédentes, j'ai toujours fait
abstraction de la traction longitudinale que le ressort
éprouve soit par le pmds de la lentille, soit par la force
centrifuge.

Voyons si cetle traction, variable suivant Pangle d’écart,
peut exercer une influence sur l'isochronisme.

Lorsque le pendule est écarté de la verticale de l'angle
8, la composante du poids de la lentille qui tire le ressort
est myg cos .

La force centrifuge vaut 2 mg (cos 6 — cos 2).

La composante tolale qui tire le ressort est done :

g (B cos 6 — 2cos )

Lorsque le pendnle est vertical, cetle force vaut my
(3 — 2cos 2).

Or le ressort dont la section est s — 2ba éprouve de la
part de cette force u@ allongement 7, tel que si I' désigne
la longueur de ce ressort avant toute traction, on aura:
mg 13 cos. h — 2cos 2l = Es
7 |

,l
d'otls
mgl 3 cos b — 2 cos o
Es

La longuenr totale du ressort apres U'allongement sera
donc : .

bb -4—]71‘]‘1}(_0':’*1—-{‘)('0’4&\}-’

! W L P 0, T R Py . 3

Es
Lorsque le pendule est vertical, on a :

1 ¥ {¥ 8 Q& : “i
po_ g \Es +mg@—2cosa ]

o
;.\‘

Si le ressort éprouvait, pendant toute la durée de l'os-
cillation, la méme traction, celle-ci n’influerait en rien
sur son action. Mais puisque cette traction diminue depuis
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la position verticale jusqu'a l'angle = ou elle vaut mg cos
x, 1l en résulte que le ressort se raccourcit d'une quan-
Lité trés-faible sans doute qui ne peut exercer ancun effet
sur le radical V7%, mais qui introduit une variation
Ty

plus grande dans 'expression du moment du ressort con-
tenant [ au dénominateur. Autrement, le raccourcissement
du ressort augmente sa force.

Comparons la longueur [ du ressort dans la position 9
a celte longueur ! dans la position verticale. On a

g Es wmyg {:3 — 2 ¢os a

[ Es+ mgi3cosh—2 cosa
en effectuant la division et remplacant les lignes trigono-
métriques par les arcs, on a trés-approximativement :

I 3 m
——— I l -+ “_j l.”.!f U:),;
: [ 2 Es
d’ou
- . lH
3m
{1 + 29 g
2Es

Mettons cette valeur au lieu de [ dans V'expression du
moment du ressort (équation 67) aprés y avoir remplace
les lignes trigonomeétriques par les arcs ; puis effectuons
les intégrations des équations différentielles, nous arrive-
rons au méme résultat final, sauf que la constante K’
devient :

B+ 3K f— 2MY
Es
201 + K

Ce qui montre que le numérateur de K'' est diminué
par lUeffet de la diminution de traction du ressort lorsque
le pendule passe de la position verticale & la position «.

: : ) - . , . my
Mais cette diminution est trés-petite & cause que - est
toujours petit par suite de la grandeur de E.
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Ainsi la variation de traction exercée sur le ressort fa-
vorise U'isochronisme, mais d’'une maniére presque insen-
Lig 1056 myg 2 .
sible parce que —— reste une fraction qui change

peu 4 dont il est retranché et que la constante K'' reste a
s dnale o312k
pew pres égale d-a

Les variations de température, en allongeant et en rac-
courcissant le ressort, doivent probablement modifier 1égé-

rement son action, puisque la longueur / est contenue
dans la quantité K.

L
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