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INFLUENCE

DU RESSORT DE SUSPENSION

SUB LA DURÉE

DES OSCILLATIONS DU PENDULE.

&>eu <yt&. cede*

(Voir page SOi des séances).

On sait qu'il y a deux espèces de suspension pour le
pendule des horloges astronomiques : la suspension à

couteau, et la suspension à ressort.
Dans cette dernière, la tige du pendule est accrochée à

la partie inférieure de deux lames minces d'acier dont les
extrémités supérieures sont fortement serrées entre les
mâchoires d'une pince fixe. Le pendule ne peut osciller
qu'en faisant fléchir ces lames d'acier qui se courbent
ainsi, tantôt d'un côté, tantôt de l'autre. On évite, dans
cette suspension, les frottements qui résultent des oscillations

du pendule, mais la raideur du ressort influe sur
le mouvement.

MM. Laugier et Winnerl ont reconnu qu'on pouvait
profiler de l'action des ressorts de suspension pour faire
disparaître les très petites différences qui existent entre
les durées des oscillations d'un pendule, lorsque l'amplitude

de ses oscillations varie de O à 5 degrés. Dans un
rapport communiqué à l'Académie des sciences, le 14

juillet 1845, ils ont fait connaître les résultats de leurs
expériences exécutées avec tout le soin possible.
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Ils ont fait osciller un pendule, long d'à-peu-près 1 mètre,

avec des amplitudes de 1°, 3°, 5°, (l'amplitude étant
le double de la demi-oscillation.) Ce pendule a porté
successivement des lentilles de 4 kilog., 6 kilog. et 8

kilogrammes.

Us ont trouvé les résultats suivants :

1° En suspendant le pendule avec deux ressorts, écartés
de 2 à 3 pouces, larges chacun de 5 millimètres, épais
de s*/100 de millimètre et longs de 1 millimètre, les
oscillations de 3° et 5° d'amplitude ont été plus rapides que
celles d'un degré, mais la différence devenait d'autant
plus faible que la lentille était plus pesante.

2° En suspendant le même pendule avec deux ressorts
exactement pareils aux précédents, pris dans le même

morceau d'acier, mais ayant une longueur de 3 millimètres,

les oscillations ont été sensiblement isochrones, dans
les diverses amplitudes.

Disons que ces messieurs ont compté le temps que
duraient deux mille oscillations du pendule.

Cette étude, entièrement expérimentale, est accompagnée

de quelques réflexions théoriques pour expliquer
l'influence que peut exercer le ressort de suspension.
Voici ce que le rapport dit (voyez Moinet, traité d'horlogerie,

llme partie, chap. VIII, page 495).
« Si l'on réfléchit à la manière dont s'exécute le mou-

» vement du pendule, on voit que deux effets distincts
» concourent à son isochronisme: le premier tient àia fle-
» xion du ressort qui, à chaque instant, diminue d'autant
» plus la longueur du pendule qu'il s'écarte davantage de
» la verticale ; le second, qui paraît être le plus considé-
» rable, est causé par la résistance du ressort ; il ajoute
» à l'intensité de la pesanteur un terme variable avec
» l'amplitude et augmentant sans cesse avec elle. Ce terme
s diminue toujours la durée des oscillations et a d'autant
» plus d'influence que l'amplitude est plus considérable ;



— 650 —

» on conçoit, d'après cela, qu'en choisissant convenable-
» ment le ressort de suspension, ce double effet, dû à sa
» flexion et à sa résistance, puisse en chaque point de Tare
» décrit par le centre de gravité du pendule, être égal à

» la différence qui ordinairement se manifeste entre les

» durées des oscillations suivant l'amplitude; en d'autres
» termes, on conçoit que ce double effet puisse varier de

» manière à rendre le pendule isochrone, si la force du
» ressort est très faible relativement au poids de la lenii

tille, les oscillations auront une durée moindre dans les

» petits arcs que dans les grands, comme il arrive ordi-
» nairement ; mais si on augmente la force du ressort,
» il peut se faire que la durée des oscillations diminue
» lorsque l'oscillation augmente dans de certaines limi-
» les, de sorte que l'on aura, pour ainsi dire, dépassé
» l'isochronisme. Nos expériences, disent-ils, ont confirmé
» la justesse de ces considérations, car elles ont réalisé
» les différents cas qui viennent d'être énumérés. »

Ces considérations générales sur la théorie de résistance

du ressort, variable suivant sa flexion, mais dont la
loi n'est pas indiquée, ne me semblant pas suffisamment
nettes, j'ai essayé, dans l'analyse suivante, de rechercher
si le calcul ne pourrait pas mieux préciser quel est le

vrai mode d'agir du ressort lorsqu'on l'applique à la
suspension d'un pendule.

On peut regarder une lame élastique comme composée
d'une infinité de fibres élémentaires parallèles. Quand
cette lame est courbée, toutes ses fibres subissent le même
effet. Celles qui sont situées du côté de la convexité
s'allongent, tandis que celles qui sont placées du côté de la
concavité se raccourcissent. Entre les fibres qui se dilatent

et celles qui se contractent, il y en a nécessairement
dont la largeur ne varie pas ; on les appelle fibres neutres,

quand la lame a une section rectangulaire, les fibres
neutres sont situées au milieu de l'épaisseur.
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Toutes les fibres du ressort étant ainsi déformées,

réagissent pour reprendre leur longueur primitive et
tendent par conséquent à redresser le ressort. — On admet,
comme résultat de l'expérience, que la force avec laquelle
une tige dilatée ou contractée réagit pour revenir à sa
première longueur, est donnée par la formule suivante:

F Es~ (1)

à condition que la limite d'élasticité ne soit pas dépassée :

l désigne la longueur primitive
i l'allongement ou la contraction
s la section du fil ou de la fibre
E est une constante qui dépend uniquement de la

nature du corps. On l'appelle coefficient d'élasticité. Pour le
bon acier trempé, fondu, très-fin et recuit, E est à-peu-
près égal à 30,000.

On peut définir la constante E en disant que c'est l'effort

exprimé en kilogrammes, avec lequel il faudrait tirer
un fil ayant un millimètre carré de section pour l'allonger

d'une quantité égale à sa longueur, en supposant
que son élasticité se conserve intacte pendant toute la
durée de cette traction.

Si l'on calcule, au moyen de la formule (1), la somme
des actions de toutes les fibres élémentaires renfermées
clans la lame élastique, on trouve la valeur du couple qui
tend à redresser cette lame en un point quelconque en
faisant tourner la partie libre autour d'un axe transversal

perpendiculaire au milieu de son épaisseur. Ce couple
est exprimé par la formule suivante :

E X V. b a*
2

dans laquelle b désigne la largeur de la lame
a sa demi épaisseur,

r le Tayon de courbure de la fibre neutre
au point considéré.
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La quantité exprimée par cette formule (2) se nomme
le moment d'élasticité.

Pour abréger nous représenterons 2/3 b a 3
par e.

Supposons maintenant une lame encastrée par une de

ses extrémités (fig. 1) de sorte que l'extrémité O de la fibre
neutre soit fixe et que la tangente à cette fibre en O ne
puisse pas changer de direction ; supposons que cette
lame soit sollicitée à l'autre extrémité par une force P

perpendiculaire à la direction primitive 0 X ; on devra

exprimer que le moment de la force P par rapport au
point p ou la fibre neutre perce le plan mn d'une section

transversale, est égal au moment d'élasticité de cette
section.

Si x et y sont les cordonnées du point p et h l'abscisse
extrême H, point d'application de la force P, on aura :

^=V(à-x) (3)

1

5/

°"=—2$ W
dx*

I

ce qui donne

Ee {•*(in
P h — x d*y_

dx2

(5)

11 s'agit donc de trouver l'équation de la courbe de la
fibre neutre par l'expression de son rayon de courbure.

Si l'on suppose d'abord que le ressort subisse une

flexion très faible, on pourra négliger le carré de (-^) à

côté de l'unité, et l'équation (5) deviendra après transformation

:

¦Ee.g*P(A-*) (6)
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Une première intégration donne :

Ee.d£=V(hx-±-a?
'

(7)

La constante est nulle parce que -jy =* o lorsque x — o;

si x h, on a :

o
Ee. $L J- Ph2 ou

Cette valeur de (*^~-) donne l'inclinaison de la tangente

au point extrême de la lame.
En intégrant l'équation (7) une seconde fois, on

arrive à ;

pour l'équation de la courbe.
Lorsque x h, c.-à-d., à l'extrémité du ressort, y f;

en désignant par f l'écartement extrême du ressort, ou
ce qu'on appelle la flèche, savoir K H, alors

Ph5

on en tire P —^-— f (11)

c.-à-d., que la force nécessaire pour fléchir un ressort droit
d'une petite quantité, est proportionnelle à la flèche, en-

raison inverse du cube de sa longueur, en raison directe
de sa largeur et du cube de son épaisseur.

L'équation (10) donne encore:
' -L — i£ ,(i$)Ee A5 y '

BEL. DE I.A SOC. DES SC. NAT. T. V. H
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ce qui change l'équation (9) en

c'est l'équation de la courbe renfermant pour données les

coordonnées extrêmes h et f du point K.

L'équation (8) devient aussi :

\ dx I h "2h
x '

pour l'inclinaison de la tangente sur l'axe des abscisses,

au point K.
L'équation de cette tangente K I, est :

y-f^Th^-h) (15)

quand on fait y — o, pour connaître le point I où elle

coupe l'axe des abscisses, on trouve :

x ou 01 r= i- h (16)

h — x ou HI 2/3 h

c'est-à-dire, que la tangente à l'extrémité de la fibre neutre

va couper la ligne des a", OH, toujours au tiers de

l'abscisse de l'extrémité; ou, au tiers de la longueur du
ressort; car, celui-ci, étant très-peu fléchi, on peut, sans

erreur appréciable, prendre sa longueur pour l'abscisse
OH.

Appliquons maintenant ces propriétés statiques pour
étudier l'action que le ressort peut exercer sur le
mouvement d'un pendule, dont l'amplitude des oscillations
reste petite, et par conséquent dont le ressort de suspension

est très-peu fléchi. Soit (fig. 2) 0 le point d'attache
fixe du ressort et K son extrémité liée à la verge du
pendule. Celte verge reste constamment tangente, par sa ligne
moyenne, à l'extrémité de la courbe que prend le ressort
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à chaque instant de sa flexion. La ligne moyenne de la

vergeva donc toujours couper, par son prolongement, la
verticale (prise pour axe du x), au même point I, pendant
toute la période de l'oscillation; et

01 v, /
IH v, /

en désignant par l la longueur du ressort, et remplaçant

partout h ou l'abscisse extrême par l; parce qu'on
peut, sans erreur appréciable, regarder h comme étant
égal à l.

Le mouvement du pendule s'exécutera donc pendant
toute la durée de l'oscillation autour du point I; et en
désignant l'angle Kl H par 6, on le considérera comme
l'angle d'écart du pendule à un instant quelconque t.

Le pendule est sollicité par deux forces :

4° Le poids de la lentille et du pendule L mg (m est
la masse du pendule; g 9,8088).

La composante normale de cette force sur le pendule est

mg x sin e

et son moment par rapport au point I est;

mgv sin o (17)

v désigne la longueur du pendule.
2° La force P avec laquelle il faudrait agir sur l'extrémité

du ressort en K, suivant la direction KH pour écarter
cette extrémité de la verticale de la distance f KH.

Celte forme P a pour valeur, d'après l'équation (11)

p —-
3Ee r
/' '

Or KH ou/= IH x tätig e

ou f= 2/3 / X tang 6 (18)

Donc P=i^-tange (19)
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Son moment, relativement au point 1, autour duquel
oscille le pendule, est P x IH ou

-jj- tang o (20)

c'est-à-dire que le moment du ressort ou la valeur de son
action sur le pendule est en raison directe de la tangente
de l'angle d'écart et en raison inverse de sa longueur.

L'équation différentielle du mouvement d'un solide qui
tourne autour d'un point fixe, est :

^20 somme des moments des forces ,-,.
di'2 moment d'inertie

La somme des moments des forces est ici:
4Ee imgv sin fi + ¦ ¦ ¦¦ tang e

Le moment d'inertie est m (v* -t- ws) en supposant que
v soit la distance du centre de gravité du pendule au
point I et m, le rayon de giration.

On a donc, en introduisant ces quantités dans l'équation

(21)

mgv sin 6 -t- tane 6
A E e

tang e

dt2 m (?;ä + i«5 >

Si on divise les deux termes du second membre par

mgv; qu'on remplace v h simplement par v en

supposant que v soit la longueur du pendule simple qui
oscille comme le pendule composé, et qu'on fasse

,tEC K (23)
3 l vmg '

On aura :

ITT — ~ { sin e + K tang e J (24)
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On intègre cette équation en la multipliant par 2 d 6,

et on a :

dO* g_ _ j 2 cos « + 2 K log cos fi + c (25)

Si on désigne par a l'angle de la demi-oscillation, on
dQ

remarque que lorsque ô a, — ou la vitesse e, d'où

c —i 2 cos « -t- 2 K log cos a | (26)

et

~±. ±1 (2 coso - 2 cos «)• + 2 K log — j (27;dt* V \ l & COSa I
k ;

on en tire

dt — —-VT"" rfe -28)

^ ^ eos 6
:2cos6 — 2 cos a l-t- 2 k log

cos a

On prend ici le signe — parce que t augmente lorsque
0 diminue.

Or (29)

cos 0 I cos 6 — cos a i /COS 6 — cos a\ :i I

Log =2 I — + — + etc. \° COS a (COS 6 + COS a 3 xCOS 6 -+- COS a' j

mais

fi2 0»

cos e=i__ +__etc. (30)

cos «^ f — T +~ — etc. (31)

et

cos o — cos * —r — h etc. (32Ì
2 24
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De sorte que pour ne pas introduire des puissances de

l'arc supérieures à la 4me, je néglige dans la série (29)
tous les termes à partir du second et je fais:

cos 0 l cos 8 — cos a \
log 2 r 33

° cosa | cos 6 -t- cos a J

La formule (28) devient alors

dt=—\<-r d* (34)

g v r 2K i
(2 cos 6 — 2 cos a ; 1 -+-

COS 6 4- COS a J

Si on remplace (2 cos 6 — 2 cos a), (cos 6 ¦+¦ cos a) par
leurs valeurs tirées des séries (30) et (31), en conservant
les termes jusqu'à la 4me puissance de l'arc inclusivement,
puis qu'on effectue quelques transformations, on trouve
facilement les équations suivantes :

dt — — V~ do

9 V*-vV (i-^(a2+e2)) {(*+*)+*(«2+<>2))

9 Vj ^v~~, ~ i—2KV : ~~
« —8 (|+k) __(««.+ «¦)

dt — V v dt (37).

en faisant pour abréger

Î_2K :K' (38)
12 (1 h- K)

Puis

rfe K' (a2 + 62 c? 6,

(39)
dt —V v ,___ .„ ___ x

^(1+K)|^a2 —e2 2 \/ a2 — e2 j



t=V~—v I/. 3K », 6
j K'O v'^ilJ f 1 -* —a2)'arccos =— h—-

4 /1 a I 4
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L'intégration de celte dernière donne (40)

a2)]

2(l+k)jv 4 7|

Cette intégrale doit être prise depuis e aàfi — a, et
elle donne pour la durée complète d'une oscillation du

pendule, dont l'amplitude totale est 2 a

T *V-T-I ÏK^Ï (41)
g (J -t- K)l 4 I

v '

Pour vérifier la justesse de cette intégrale, je remarque:

1° que lorsque le ressort est supprimé, on a

K o

et si a o ou est infiniment petit, "

V

ce qui est la formule donnée par tous les ouvrages de

mécanique pour calculer la durée des oscillations infiniment
petites.

2° Lorsque K o, mais que * au lieu d'être infiniment
petit, est simplement petit, on a

T=*VT <i+~
g

V 16 '
Cette formule est celle que Poisson donne dans son

ouvrage de mécanique, (Ier vol., p. 345), pour calculer la
durée des oscillations lorsqu'elles sont petites, mais non
infiniment petites.

Revenons à la formule (41). Elle contient la solution
du problème de l'isochronisme par le ressort. En effet,

I 3 K' a2 1

le facteur i 1 + —j— \ qui varie avec l'amplitude de

l'oscillation, deviendra la constante 1, lorsque

K'=0
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\ — 2 K

12(1+K)
°

Cette quantité devient égale à 0, lorsque
1 — 2 K 0 (42)

OU 2K=:1
or.

ou -r-r-—= l,ou8Ee 3/»mo (43)
3 lv mg * K J

Si K' était négatif ou 2 K > 4 ou-r-j > 1, le facteur0 3 lv gm '

(l h—-r- a2 deviendrait 4 — -j~ a2 et la dwree

des oscillations diminuerait avec leur amplitude.
Lors même que K' ne serait pas o, la différence entre

la durée des oscillations, suivant l'amplitude, serait d'autant

plus diminuée que K' serait plus petit ou que slv
¦

approcherait plus de l'unité.
Ainsi le résultat de l'analyse précédente est qu'en

supposant les oscillations petites et par conséquent le ressort

très-peu fléchi (4) ce qui permet de supprimer yj^-J
à côté de l'unité, dans l'expression du rayon de courbure,
le ressort peut amener l'isochronisme, c'est-à-dire faire
disparaître les petites inégalités qui se manifestent dans
la durée des oscillations d'un pendule.

La condition d'isochronisme étant donnée par la relation

(43)
8Ee _3 lv mg

on voit que l'influence utile du ressort pour amener l'iso-
chronisme est :

1° En raison directe de l'élasticité du ressort exprimée
par E.

(<) L'angle que fait le ressort avec la verticale, n'est à peu jirès que
les 2/3 de l'angle d'écart.
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2» En raison directe de c 2/3 b a5, c.-à-d. de la

largeur et du cube de l'épaisseur du ressort.
3° En raison inverse a) de la longueur du ressort

b) de la longueur du pendule
c) du poids mg du pendule.

Toutes les quantités contenues dans la relation (43) peuvent

se déterminer exactement, sauf E qui varie avec la
nature des aciers. Il varie entre 21,000 et 30,000 ; en

prenant une valeur moyenne 25,000, on pourra choisir

pour données le poids du pendule, sa longueur, la
longueur du ressort ainsi que sa largeur et déterminer son

épaisseur 2 a au moyen de l'équation

8E. x ä/36a5 3 Ivmg
où toutes les quantités seront connues, sauf a.

En un mot cette équation peut servir à calculer la valeur
d'une des quantités qui y sont contenues, lorsqu'on connaît

toutes les autres.
Le résultat de l'analyse expliquerait donc fort bien les

résultats des expériences de MM. Laugier et Winnerl.
Leur ressort de 1 millimètre rendait la quantité

3 tv mg

trop forte et l'isochronisme était dépassé, mais la
différence diminuait avec le poids de la lentille qui est un
facteur du dénominatenr.

Le ressort de 3 millimètres, en diminuant la quantité
K remplissait sensiblement les conditions de l'isochronisme.

La quantité K affecte la durée de l'oscillation en
faisant varier le facteur

9 (1
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Plus K sera grand, plus aussi Y r sera diminué et par

conséquent
S(l-t-K)

K V"

g (1 + K)

sera plus faible pour la même longueur du pendule.
Ce qui signifie que le ressort augmente la rapidité des

oscillations du pendule, d'autant plus que la quantité K
est plus grande. — Cette conclusion est tellement conforme
avec les expériences de Laugier et Winnerl, que je ne
puis m'empêcher de transcrire ici leur tableau pour que
chacun puisse juger soi-même.

Expériences faites avec le ressort de 1 millimètre.

2000 oscillations ont duré :

I Lentille du poids de 2 kilog.
II » » 4 kilog.
III « • 6 kilog
IV » » 8 kilog.

Amplitude de
1°

1977",00
2010".55
2020",31
2027",0-1

Amplitude de
3°

1975",60
2009",8i
2019",80
2026",68

Amplitude de
5°

1974",37
2008",93
2019",3*
2026",38

Expériences faites avec le ressort de 3 millimètres.
2000 oscillations ont duré :

II Lentille du poids de 4 kilog.
III » » - 6 kilog.
IV » » 8 kilog.

Amplitude de
1°

2024",96
2030",28.
2034",81

Amplitude de
3°

2024",89
2030",33
203i",8t

Amplitude de
5°

2024",99
2030",37
2034",98

On voit clairement dans ce tableau que l'augmentation
de longueur du ressort, et l'augmentation de poids de la
lentille en diminuant

4EeK
3 tv mg

ont fait croître
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T n V y

rn + K)'
La suspension à ressort exige donc que Yon fasse le pendule

à secondes plus long que pour la suspension à

couteau, d'autant plus que l'influence du ressort devient plus
énergique, pour établir l'isochronisme.

Sans avoir besoin du secours de toute l'analyse précédente,

on peut très bien s'expliquer l'influence du ressort
pour amener l'isochronisme, rien qu'à l'examen de la fig. 2.

L'action du ressort s'exerce en K suivant la direction K ;

si on la décompose en deux composantes dont l'une N soit
normale à I K, on trouve qu'elle vaut :

2 E eN P x cos 8 ——— tang 8 x cos 8

en vertu de (19), ou

2Ee
/2

sin. 8

c.-à-d. que la force avec laquelle leressorl agit normalement
sur le pendule a la même forme que l'action de la pesanteur

ou qu'elle est proportionelle au sinus de l'angle
d'écart. Mais son bras de levier I K augmente depuis le
commencement de l'oscillation à la fin. La valeur de I K est

1H • i, '/»1 ¦ -,
T^r? ou sans erreur appreciable —— et varie donc de
cos 8 rr cos 8

*/ /
COS a

c'est cette augmentation du bras de levier sur lequelle agit
la composante normale du ressort qui produit son effet
utile pour amener l'isochronisme.

La force normale du ressort s'ajoute à l'intensité de la

pesanteur, et produit ainsi une plus grande rapidité des

oscillations, grandes et petites.
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Ainsi ce n'est pas le raccourcissement du ressort qui,
on diminuant la longueur du pendule, amène l'isochronisme;

au contraire, le pendule devient plus long puisque
1 S' est rigoureusement plus grand que I S; mais c'est

parce que la force croissante du ressort agit sur un bras
de levier de plus en plus long à mesure que l'amplitude
augmente. L'allongement total du pendule en passant de
la position I S à la position Ì S' est du reste tellement
faible que cette variation ne peut influer en rien sur la

quantité

g {1 -t- K

puisqu'il affecte le numérateur v dont la valeur est 1,000
fois celle du ressort de 1 millimètre ; quelle influence
pourrait produire une variation d'une fraction très
petite de millimètres sur une longueur de 1 mètre placée
sous un radical

Les considérations théoriques de MM. Laugier et Winnerl,

manquent donc de justesse et ne pénètrent pas du

tout à la vraie cause de l'influence du ressort. — Leurs
expériences ont été faites a^ec beaucoup de soin et sont
telles qu'on pouvait en attendre d'artistes de précision si

éminents ; mais l'explication a été conçue après la

connaissance des faits et les expériences n'ont pas confirmé
sa justesse ; c'est bien plutôt l'explication qui a été

imaginée en vue des résultats de l'expérimentation.
Voyons maintenant si, en reprenant l'équation (5), et

en essayant d'en tirer l'équation de la courbe du ressort,

sans négliger le carré de(-j^-) à côté de l'unité, nous

arriverons aux mêmes résultats. Nous ne serons plus alors
obligés de supposer l'amplitude des oscillations aussi
petite que dans l'analyse précédente.

Si l'on fait pour simplifier
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Ee

on aura

c — lh a*) - -
îll W,

d*y
dx2

ou en faisant

dy
dx •

d3#
~~ ^' da?2

dp
dx

[h — x
c dp

il + p*) ti

en intégrant, on trouve '
¦ cdy

A i i\ CP
" dx

\nx 2 x' / "~

Vi +¦f \i /rfV

(44)

(45)

(46)

(47)

la constante est ici nulle;
on en tire :

1

dy (^--¥*3)
?ouTx-=y p= r48)

c2 — 'Ar r21i2

A l'extrémité du ressort, on a « h, et ^~ tang 8,

en désignant toujours par 6 l'angle que la tangente à

l'extrémité du ressort fait avec l'axe des abscisses.

L'équation (47) donne alors:

1 c tang 8

— h* — c sin. 9 (49)
"l Vi •*- tang 2 8
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d'où

2 sin. 8 I
On en conclut que

_ 2 Ee sin. 8

T- (»O)

(Si)
d II

La valeur^ ou d— (48) conduit à la série suivante:

(Aar-i-*») (Atf-1**)' 3ik-ix») (52)

__ s» h —- 1- — + etc.dx c 2 c3 8 c5

Le terme général de cette série est

1.3. 5.7 (2 n —3) (Aar—> ä-ar2)2"""'

2"-'. 1. 2. 3. (n — d). c211-1

Le rapport d'un terme au précédent est

1 2

(hx ^-x*)2 re — 1 v 2 '

2n c2

et on voit que ce rapport tend vers
1 "

A •* 1- ** J

Mais (Ar —j- ce2)2 varie deOà(— A2)2 tandis que c*

qui contient E2 est grand; on a, du reste, puisque
A2 A»

c2
2 sin. 8 ' 4 sin. s 8

et Is 1 2

A x — —- a;2 4 A x ä~^ä)
sin. 2e
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c'est-à-dire que ce rapport varie de o à sin.2 8.—La plus
grande valeur du rapport d'un terme au suivant ne peut
donc pas dépasser sin. 26, qui est toujours très-petit, parce

que l'angle 8 ne s'élève jamais qu'à 2 ou 3°.

La série (52) est donc très-convergente et puisque le
3me terme contient déjà la 5me puissance du sinus 8, on

peut se contenter des deux premiers et prendre :

1 (Aar ~x2' (Aar—-TT-or2)8
dy 2 2

(53)dx C 2 e5

Cette équation donne par l'intégration :

(54)

— HflZLf! 70 K- x* — U A2 x8 -t- 35 h x6 — 5 x1
y 6 c

h- _ 5607*

Si l'on fait x A et y f pour connaître les coordonnées

de l'extrémité A du ressort, lorsque l'écart est 8, on a:
A5 A7

/=17 + "^r (55)
35 e5

A2

e'~ 2 sin.
0

8 sin s 6

Au moyen de la valeur c 9a.n -, on a

2 sin. 8 „ „/= -a" Â - -35— Ä (S6)

Les termes suivants négligés contiendraient les 5me, 7me

puissances du sinus.

Puisque f ou KH est connu au moyen de 8, on en tire

m KH fIH =—-— ou
tang 8 tang 8

2 cos 6 8 sin. 2 8 cos 8
IH -— h+

35
h W

Mais lorsque le pendule est dans la position I S', telle
que sa verge K S' prolongée fait l'angle 8 avec la verticale,
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et coupe, par son prolongement, celle-ci en I, le
moment de l'action du ressort par rapport au point I qui est
le centre de rotation, devient:

P xIH ou
2 h e sin. 6_ ^ ^ h ^ ß + g^ ft ^ s e cos 9 J ^h

ou
A E e sin. 6 cos 6

__ [ 1 + 12
3S sin. 8 J (59)

Il s'agit maintenant de trouver la relation de A ou de

l'abscisse extrême, avec la longueur l du ressort.
Il faut, pour cela, exprimer la longueur de la courbe

en fonction de ses coordonnées. En désignant par s l'axe
de courbe, on sait que

ds dx V dy°'
dx3

En remplaçant -^ par sa valeur connue dans l'équation

(48), on trouve :

dxds=
v ï

hx— ya?2)2 (60)

c*

Développons en série, nous aurons :

[hx-~xY (Atf-lary (61^

dS—dx \ 1 H -t- - : H....)
\ 2cä 8 c* \

Cette série est semblable à la (52); en l'intégrant, on
obtient pour les deux premiers termes :

20 A'i' + Sj:5- 15 A x * /nn,s x+ m - + etc. (62;
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Lorsque x h, s l; donc

¥' h9l — h -t- —— (63) (lo terme suivant serait —-,—r \
15 e2 v 7 v 105 c* ;

ou

/ /'jl+ IF8'"-26) (64)

d'où

Si nous substituons cette valeur de h dans l'expression
du moment du ressort (59), celui-ci ne contiendra plus
que la variable 6.

On a alors : Moment de l'action du ressort

A Ee sin. 6 cos 8 '„¦,,. « //»„>— il -+- ia/38 sin. H) i -h "ju sin. s8 (66)
3 1

ou

-4 E e sin. 8 cos 6

_.. (l+<*m sin.2ej (67)

en négligeant les 4mes puissances du sinus, qui introduiraient

dans les intégrations les 6mes puissances de l'arc.
Mettons cette expression du moment dans l'équation

(21), nous trouvons:

i E e C

/ 2fi >"9V sm- 0 H—5-7- |s'n- Ô cos ft + l'''
10s s'n- 6 cos |

6/? m 7r2~+ u2,

et, en faisant encore
4 E e

K (69)
3 lv mg

nous trouvons :
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(70)
^9 a I

—- — —; sin. ft + K sui. 8 cos 8

dt* v]
En intégrant, on a

(711

— JL)2cose — sin. -'ft -t- — k sin. 2ft cos 2ft + C
àf- c\ 105 105 |

da
A causo que —— o lorsque ft a on obtient après

les transformations convenables et par l'intégration

T * l—A-^ l^-3f",M (72)
I '¦+¦ K ' *

420 (1 h- K) y

Pour obtenir l'isochronisme, il faudrait encore que la

constante K" fut nulle, mais puisque

K„_3o + 12_K

420(i-t-K

il est impossible que K" devienne o, K ne pouvant, par sa

nature, devenir négatif, attendu que

ì E e
K -^——.t / v m g

Lorsque K o: K" — ; si K était oo on aurait

K - HT.
Ainsi, lorsque les amplitudes ne sont plus très-petites

pour permettre de supprimer dans l'équation de la courbe

du ressort, le terme (-j-r à còlè de l'unité, et que l'on

tire la valeur de la force du ressort, de la forme rigoureusement

mathématique de celte courbe, on arrive à cette
conclusion que Y isochronisme est impossible.
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Il n'en résulte pas moins que le ressort exerce son in-
3 K" '

fluence pour diminuer le facteur 1 h j- a2) dépendant

de la grandeur de l'amplitude. En etfel, on voit que
la constante K est multipliée au numérateur par 12 et au
dénominateur par 420, d'où il suit que l'augmentation de
R affecte beaucoup plus le dénominaleur que le numérateur;

le multiplicateur de -j.- est donc d'autant plus faible

que K est plus grand. De plus pour une longueur donnée

de pendule, on voit (tue le facteur —- diminuantI ' !/(I + R)

aussi avec l'accroissement de R, cela tend encore à rendre
les oscillations moins inégales en durée.

Le résultat de la seconde analyse ne dément donc pas
complètement celui de la première. Il indique sans doute

que l'isochronisme absolu est impossible ; mais il indique
aussi que le ressort peut diminuer l'inégalité qui existe
entre les durées des oscillations de diverses amplitudes;
et comme la valeur de la force P tirée de l'équation (47)
est rigoureusement juste; que de plus les séries qui ont
donné la valeur de la flèche et de l'abscisse h ne sont eri

erreur que depuis les 5,ncs puissances du sinus, on peut
présumer que l'action du ressort sur l'isochronisme doit
s'étendre au delà des amplitudes de 3 pu 5°.

II est bien probable aussi que, lorsque les amplitudes
ne dépassent pas 5°, ou varient entre 0 et 5°, l'action du

ressort est très-approchée de celle qui a été trouvée dans
la lre analyse, ce qui est prouvé par les expériences de

Laugier et Winnerl, dont le pendule a dépassé l'isochronisme

avec le ressort de 1 millimètre.
Nous pouvons donc répéter que le ressort a d'autant

plus d'influence pour produire l'isochronisme :

1° qu'il est plus élastique, plus large, plus épais et

plus court.
2° que le pendule est moins lourd et plus court.
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Dans les deux analyses précédentes, j'ai toujours fait
abstraction de la traction longitudinale que le ressort
éprouve soit par le poids de la lentille, soit par la force
centrifuge.

Voyons si cette traction, variable suivant l'angle d'écart,

peut exercer une influence sur l'isochronisme.
Lorsque le pendule est écarté de la verticale de l'angle

ft, la composante du poids de la lentille qui tire le ressort
est mg cos ft.

La force centrifuge vaut 2 mg (cos ft — cos a).
La composante totale qui tire le ressort est done :

m g 3 cos 0 — 2 cos *

Lorsque le pendule est vertical, celle force vaut mg
(3 —2cosa).

Or le ressort dont la section est .v Qlba éprouve de la

part de cette force ul allongement i, tel que si V désigne
la longueur de ce ressort avant toute traction, on aura :

mg J3 eos. ft — 2 cos « E s- -—

d'où

mgV 3 cos 6 — 2 cos a
i

E s

La longueur totale du ressort après l'allongement sera
donc :

[.E s ¦+¦ m g 3 cos ft — 2 cos a ]

Lorsque le pendule est vertical, on a :

_ [Es -+- mg (3—2 cos a; ]
~ " "

Es

Si le ressort éprouvait, pendant toute la durée de

l'oscillation, la même traction, celle-ci n'influerait en rien
sur son action. Mais puisque cette traction diminue depuis
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la position verticale jusqu'à l'angle « où elle vaut mg cos

«, il en résulte que le ressort se raccourcit d'une quantité

très-faible sans doute qui ne peut exercer aucun effet

sur le radical \'~7~, mais qui introduit une variation
9

plus grande dans l'expression du moment du ressort
contenant l au dénominateur. Autrement, le raccourcissement
du ressort augmente sa force.

Comparons la longueur l du ressort dans la position «

à cette longueur l" dans la position verticale. On a

/" E t H-/W g (3 — 2 cos a.

I E s -t- m g 3 cos ft — 2 cos %

en effectuant la division et remplaçant les lignes trigono-
métriques par les arcs, on a très-approximativement :

Il _ l + UüL o2

l 2 Es "

d'où

l - - '"
i + 3m0 e2

2 E :

Mettons cette valeur au lieu de l dans l'expression du

moment du ressort (équation 67) après y avoir remplacé
les lignes trigonomélriques par les arcs ; puis effectuons
les intégrations des équations différentielles, nous arriverons

au même résultat final, sauf que la constante K"
devient :

3.) ¦+- 3\\ I -r-Es
120 t -f- K

Ce qui montre que le numérateur de K" est diminué

par l'effet de la diminution de traction du ressort lorsque
le pendule passe de la position verticale à la position a.

Mais celte diminution est tres-pelite a cause que 557- est

toujours petit par suite de la grandeur de E.
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Ainsi la variation de traction exercée sur le ressort
favorise l'isochronisme, mais d'une manière presque insensible

parce (pie —=-— reste une fraction qui change

peu 4 dont il est retranché et que la constante K" reste à
33-H 12 K

peu près egale a m(1 + K)
*

Les variations de température, en allongeant et en
raccourcissant le ressort, doivent probablement modifier
légèrement son action, puisque la longueur l est contenue
dans la quantité K.
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