Performance validation of large seismic response modification devices Autor(en): Seible, Frieder / Filiatrault, André / Benzoni, Gianmario Objekttyp: Article Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte Band (Jahr): 83 (1999) PDF erstellt am: **01.05.2024** Persistenter Link: https://doi.org/10.5169/seals-62826 ### Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. ### Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch # Performance Validation of Large Seismic Response Modification Devices # Frieder SEIBLE Professor UC San Diego La Jolla, CA, USA Born in 1952, received his Ph.D. in 1982 in Civil Engineering from the University of California, Berkeley. #### Gianmario BENZONI Senior Development Eng. UC San Diego La Jolla, CA, USA Born in 1956, received his Ph.D. in 1981 in Structural Engineering from the Politecnico Di Milano. #### André FILIATRAULT Professor UC San Diego La Jolla, CA, USA Born in 1960, received his Ph.D. in 1988 from the University of British Columbia, Vancouver, Canada # Tom POST Chief Caltrans, ESC Sacramento, CA, USA Born in 1961, received his B.Sc.E. (Civil) in 1983 from The Univ. of Michigan and his Juris Doctor in 1990 from the Univ. of the Pacific, McGeorge School of Law. # **Abstract** In the seismic retrofit design of California's Toll Bridges, seismic isolation is used in several bridges to limit the seismic force input into the superstructure and to avoid costly superstructure retrofit measures which would require partial lane closures and traffic interruptions. Isolation bearings designed for these seismic bridge retrofit projects can have ±1.2 m horizontal design displacements while carrying up to 50 MN of axial load from gravity and seismic overturning effects. Viscous dampers to provide energy absorption and deformation control at movement joints are designed with up to 5 MN capacity. Seismic Response Modification Devices (SRMDs) with these capacities have not been manufactured or tested to date and questions concerning scale-up effects for these response modification devices become critical since the safety of the retrofitted bridge relies on well defined friction and energy absorption characteristics. Only fullscale real-time dynamic testing of these new SRMDs can verify the actual response characteristics and thus validate the structural retrofit concept. Fig 1 SRMD Test System The Caltrans Seismic Response Modification Device Test System (SRMD), developed jointly by Caltrans, UCSD, and MTS, requires an exceptional hydraulic power, equal to about 19,000 liters (5,000 gal) of oil storage and pressurization through nitrogen gas up to 34 Mpa (5,000 psi), in order to achieve the technical specifications indicated in Table 1. The machine performance, the different types of isolating devices and dampers to be tested, and the testing objectives and procedures, drove the overall design approach. The isolating devices Table 1 Technical Specifications | Vertical Force | 53,400 kN | |---------------------------|--------------| | Longitudinal Force | 8,900 kN | | Lateral Force | 4,450 kN | | Vertical Displacement | ±0.127 m | | Longitudinal Displacement | ±1.22 m | | Lateral Displacement | ± 0.61 m | | Vertical Velocity | ±254 mm/s | | Long. Velocity | ±1,778 mm/s | | Lateral Velocity | ±762 mm/s | | Height of Specimen | Up to 1.52 m | | Relative Platen rot. | ±2° | considered were the Friction Pendulum System (FPS) and high damping rubber or lead core elastomeric isolation bearings, proposed solutions for the Benicia-Martinez and Coronado bridges, respectively, as well as viscous dampers and lock-up devices, common to almost all the toll bridge retrofit projects. Testing objectives ranged from slow speed uni-directional testing for basic performance characterization to high speed, 3-D testing for energy based analysis. The investigation of the effect of wear and aging was also an important issue in the proposed test program, through re-characterization of the performance of the prototype SRMDs already exposed to the actual bridge loads, deformations and environmental conditions. The testing system consists of a horizontal prestressed concrete reaction frame (concrete box), and of a moving platen, connected by four horizontal actuators to the concrete box. The platen slides over four hydraulic hydrostatic low friction bearings attached to the floor of the concrete structure. The platen also extends with four steel outrigger arms that support four low friction-sliding actuators at their tops. The testing system is completed by two additional reaction structures: a steel cross beam, removable and linked to the concrete box through a tie-down rod system, and a heavily prestressed reaction wall on one end of the machine. Due to the large displacements of the test specimens in the longitudinal and transverse directions, the traditional solution of a platen with hinge connection to horizontal and vertical actuators was not practical. This configuration would have required very long stroke vertical actuators, with deep excavation inside the existing building. Space limitations, difficulties of access for tall excavating equipment and the need to maintain the rest of the existing laboratory in working condition during construction made this solution impractical. The adopted solution was the use of 4 vertical hydraulic sliding bearings which support the moving platen, apply the vertical load, and allow horizontal motion and swivel capacity with very low friction (less than 0.2% of vertical force). The four horizontal actuators have a 2.5m stroke, 800 ton capacity and dual 20m³/min. servo-valves, and the 4 vertical low friction bearing actuators have 0.25m stroke, 2,000 ton capacity and 11m³/min. servo-valves each. This paper describes the design, construction and performance characterization of a full-scale testing facility (Fig. 1) which will allow the real-time 6-DOF dynamic characterization of these new generation of seismic response modification devices for long span bridges.