

Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte
Band: 82 (1999)

Artikel: Emergency rehabilitation of the Zárate-Brazo Largo Bridges, Argentina
Autor: Andersen, Henrik / Hommel, Dietrich L. / Veje, Ejgil M.
DOI: <https://doi.org/10.5169/seals-62172>

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 06.02.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

Emergency Rehabilitation of the Zárate-Brazo Largo Bridges, Argentina

Henrik ANDERSEN

Civil. Eng.
COWI

Lyngby, Denmark

Henrik Andersen, born 1964, received his civil engineering degree from the Technical University of Denmark in 1989. He has specialised in design and rehabilitation of cable supported bridges.

Dietrich L. HOMMEL

Diplom-Ingenieur
COWI

Lyngby, Denmark

Dietrich L. Hommel, born 1940, received his civil engineering degree from the Technical University of Braunschweig, Germany, in 1966. He has specialised in Project Management of large bridge projects.

Egil M. VEJE

Civ. Eng.
COWI

Lyngby, Denmark

Egil M. Veje, born 1954, received his civil engineering degree from the Technical University of Denmark in 1981. He is Head of Department for Rehabilitation of Major Bridges.

Abstract

In November 1996 a cable ruptured on the Guazú Bridge across the Paraná River in Argentina, one of the two almost identical Zárate-Brazo Largo Bridges. COWI was immediately after retained as consultant by the bridge owner Dirección Nacional de Vialidad in order to ensure and document the safety of the bridges and to investigate the causes of the cable failure.

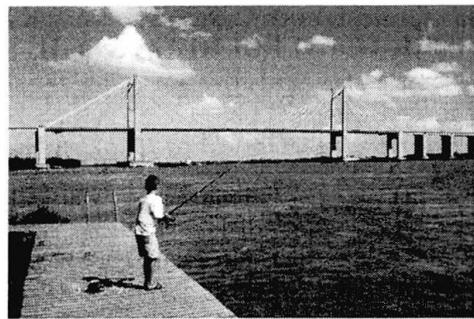


Fig. 1 Guazú Bridge across Paraná

The two cable stayed bridges are both 550 m long with a main span of 330 m. The bridges carry a 4 lane highway and a single railway track placed eccentrically. The bridges were opened to roadway traffic in 1977 and railway traffic in 1978. During the service life of the bridge there had been no prior indication of the critical situation of the cables.

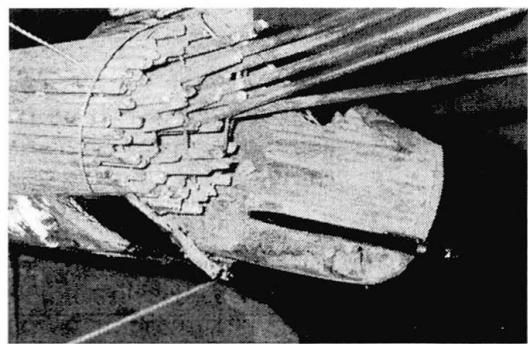
The cables consist of non-galvanised high-strength parallel wires protected by cement grout and a PE-pipe. The cable anchorage's are of the HiAm type.

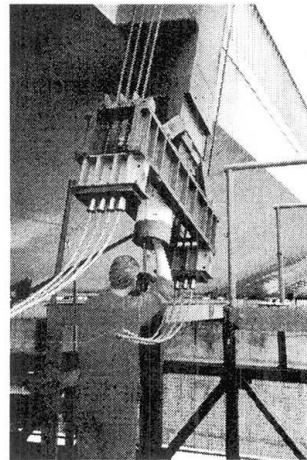
Possible causes for the cable rupture

The evaluations revealed that a combination of corrosion and fatigue damage caused the failure of one cable, see Fig. 2, and large damages to a number of other cables. The corrosion was due to insufficient performance of the corrosion protection of the original cables. The cement grout, which was supposed to be the main active corrosion protection, was insufficient in the anchorage zone due to the presence of a non-protecting epoxy tar.

The fatigue damage has been severe due to larger traffic loads than accounted for in the original design, but not least due to large amplitude cable vibrations.

These amplitudes of the vibrations have been in the order of up to 1 m, which theoretically causes stress ranges well above the endurance limit of the wires. The corrosion has furthermore increased the fatigue stresses locally due to stress concentration.




Fig. 2 Ruptured cable

Emergency Rehabilitation

The emergency rehabilitation of the bridges included:

- Evaluation of the present condition of the bridges through inspection, non-destructive and destructive testing
- Evaluation of the present load conditions by measuring the permanent cable forces by a vibration method and establish the characteristic traffic load (rail and road) on the basis of information on the present traffic
- Evaluation of partial safety factors by means of reliability based methods
- Evaluation of the required temporary strengthening and of the most urgently required cable replacements
- Evaluation of required traffic restrictions in order to ensure adequate safety at all times

*Fig. 3 Ultrasonic inspection of original cable.
Temporary strengthening also shown.*

A Rehabilitation Design Basis using reliability methods was established on the basis of the investigations carried out. This enabled a rational planning of the rehabilitation and a stringent evaluation of the allowable traffic on the bridges during the various phases of the emergency rehabilitation.

The present condition of the cables were investigated through ultrasonic inspection as shown in Fig. 3. The investigations revealed that a number of cables were deteriorated with up to 62% damage of the original cable cross section. The material properties of the wires were established from tensile and fatigue tests carried out on specimens from the cables replaced first. The tests revealed that the tensile strength of the tested wires were below the original design values and that severe fatigue damage had taken place. The wires did no longer have an endurance limit.

The establishment of characteristic traffic loads revealed that the actual traffic load on the bridges is much larger than the bridges originally were designed for.

A total of 13 cables were replaced during the emergency rehabilitation. The existing cables have been removed by cutting of the individual wires as seen in Fig. 4. It has been recommended to provide temporary wind ropes between the cables in order to limit the large amplitude cable vibrations. Furthermore, installation of guide deviators has been recommended in order to reduce the bending stresses in the anchorage zone.

A complete rehabilitation of the bridges is expected to be carried out during 1999/2000.

Fig. 4 Removal of existing cable by cutting of individual wires