**Zeitschrift:** IABSE reports = Rapports AIPC = IVBH Berichte

**Band:** 82 (1999)

**Artikel:** The Faroe cable-stayed bridge: maintenance experience with major

components

Autor: Bloomstine, Matthew L. / Stoltzner, Erik

**DOI:** https://doi.org/10.5169/seals-62171

## Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch



# The Faroe Cable-Stayed Bridge - Maintenance Experience with Major Components

#### Matthew L. BLOOMSTINE

Project Manager COWI AS Lyngby, Denmark

Matthew L. Bloomstine, born 1955, received his engineering degree from the Technical Univ. of Denmark in 1987. He has specialised in inspection, maintenance and rehabilitation of major bridges.

### Erik STOLTZNER

Civil Engineer, Danish Road Directorate, Copenhagen, Denmark

Erik Stoltzner, born 1944, received his civil engineering degree from the Technical Univ. of Denmark in 1969. He is Area Manager for Operation and Maintenance in the Bridge Department.

### Abstract

A cable-stayed bridge such as the Faroe Bridge is a unique and complicated structure, which requires a systematic and technically correct maintenance. The paper presents experience from operation, inspections and maintenance works over the first 14 years of service, with focus on certain major components. Overall costs for operation and maintenance are also presented, as well as costs for some particular operation and maintenance activities.

Based on experience from the first 14 years, the estimated annual total cost of operation and maintenance over the next ten years corresponds to approximately 0.6% of the present value of the cost of construction. This is quite a low level, which indicates the success of maintenance considerations in the design and an effective operation and maintenance program.

## Abstract

The Faroe Bridges are two bridges with a total length of approximately 3.3 km, which connect the Danish islands of Zealand and Falster and carry the southern motorway, which connects Copenhagen with Germany and the rest of Europe. The 1,596 m long northern bridge crosses the sea between Zealand and the small Faroe Island. The southern bridge, which is the subject of this paper, is a cable-stayed bridge between Faroe and Falster with a length of 1,726 m. Construction of the bridges commenced in 1980 and they were opened for traffic in 1985.

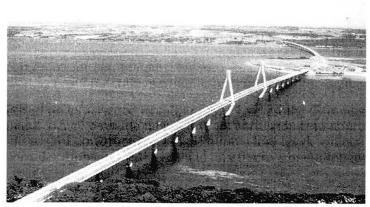



Figure 1 An overview of the Faroe Cable-Stayed Bridge



The superstructure of both bridges is a steel box girder, which is continuous over the entire length with expansion joints located at each end. The cable-stayed section of the southern bridge has a navigation span of 290 m with a vertical clearance of 26 m and two side spans, each with a length of 120 m. The cables are arranged as a fan system of single cables, which are placed in a central plane symmetrically around the pylons. The cables are of the parallel wire type and protection is provided by PE ducts, which are grouted with cement mortar.

The paper presents operation experience, inspection routines and experience, maintenance works and costs from the first 14 years of operation concerning the following topics:

- General routines for inspections.
   Running/continuous Inspections, General Inspections and Special Inspections.
- Corrosion protection of cables.
   A description of the corrosion protection system and inspection experience.
- Wind induced cable oscillations and the system introduced to minimise these.

  The original and the improved interconnection wire system and experience with these.

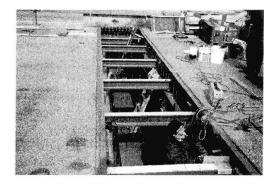
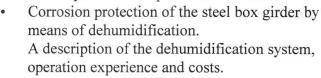




Figure 2 Replacement of expansion joints





- Water intrusion problems and remedies.
- Expansion joints which each have a total movement capacity in the range of 1 m. An unexpectedly early replacement.
- Access equipment.
   Various equipment for inspection and maintenance.

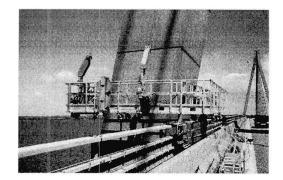



Figure 3 Access equipment, Bucket snooper boom and Skyclimber platform

Furthermore, overall maintenance economy is presented with a breakdown in individual items.

### Conclusion

Despite a high level of consideration to maintenance aspects in the design of the Faroe cable-stayed bridge and other cable-stayed bridges, there are still a number of challenging problems to be solved during the service life. There is still room for improvement concerning accessibility and maintainability. The lessons learned from maintenance should be incorporated in future design work in order to obtain even better bridges with lower maintenance costs and a long service lives.