Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte

Band: 79 (1998)

Artikel: Best cross stay location for super long span suspension bridge

Autor: Yoneda, Masahiro / Ohno, Katsunori / Tamaki, Yoshihiko

DOI: https://doi.org/10.5169/seals-59919

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Best Cross Stay Location for Super Long Span Suspension Bridge

Masahiro YONEDA

Assoc. Prof. Kinki Univ. Osaka, Japan

Katsunori OHNO

Eng. Kawasa Industries Inc. Tokyo, Japan

YoshihikoTAMAKI

Eng. Kawada Industries Inc. Tokyo, Japan

SUMMARY

This paper deals with the best cross stay location for a super long span suspension bridge with a center span of 2,500m. Compound flutter performance is investigated by the direct flutter FEM analysis for 3-D frame model. Both measured aerodynamic forces on the deck and Theodorsen's aerodynamic forces on the flat plate were used for the flutter analysis. From these analytical results, some useful informations for the best cross stay location are obtained in designing a super long span suspension bridge with a center span of 2,500m.

1. Analytical study

The following cases were considered to investigate the effects of cross stays on compound flutter speed:

- 1) Case-S with a pair of cross stays only on the side spans
- 2) Case-C with a pair of cross stays only on the center span
- 3) Case-SC with a pair of cross stays in both the side and center spans

In this paper, it is assumed that a pair of cross stays with each cross sectional area of $0.01m^2$ (Young's modulus of elasticity=1.4 \times 10^7 tf/m²) is effective for compression in analyzing each case mentioned above.

2. Effects of cross stays on flutter performance

Flutter speeds for the cases described above were computed using Model-O which was idealized as three dimensional frame-work (see Fig.1). Both measured aerodynamic forces on streamlined box girder as shown in Fig.2 and Theodorsen's aerodynamic forces on the flat

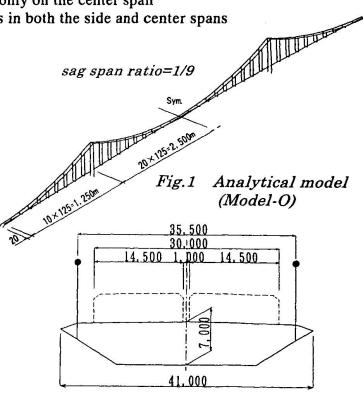
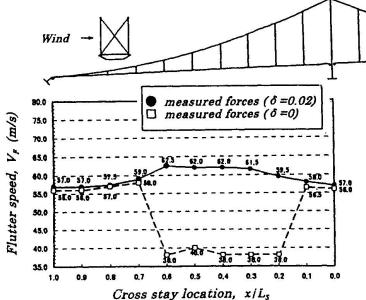



Fig.2 Section of girder

plate were used for the flutter analysis. Figs.3 \sim 5 show the analytical results by the direct flutter FEM analysis method. These analytical results are summarized below.

- (1) Greatly reduced compound flutter speed have been observed in some cases when the measured aerodynamic forces on the deck were used for the bridge with a pair of cross stay only on the side spans (see Fig.3).
- (2) The best cross stay location on the center span is not nearly dependent on different acting aerodynamic forces, and the maximum flutter speed based on the measured aerodynamic forces by the installation of a pair of cross stays in best position x/L=0.3 is almost equal to the value based on Theodorsen's aerodynamic forces (see Fig.4).
- aerodynamic forces (see Fig.4). (3) The flutter speed of a bridge with a pair of cross stays on side spans x/L_S=0.5 and on the center span x/L=0.3 respectively due to the measured aerodynamic forces is $V_F = 59.5 \text{m/s} (\delta = 0.02)$ which is lower than $V_F = 62 \text{m/s}(\delta)$ =0.02) with a pair of cross stays only in side spans, $x/L_s=0.5$ (see Fig.5). On the other hand, it was obtained from the flutter analysis based Theodorsen's on aerodynamic forces that flutter speed by the installation of cross stays both at $x/L_s=0.5$ and x/L=0.3 is $V_F = 75$ m/s. Hence, it must be emphasized that the flutter analysis based Theodorsen's aerodynamic forces is not always sufficient for streamlined box girder suspension bridges with the cross stay system effective for compression.

Effects of cross stays on flutter speed Fig.3(Case-S) Œ measured forces (\$\delta\$=0.02) 80.0 measured forces ($\delta = 0$) Theodorsen's forces ($\delta = 0$) (s/m)Flutter speed, V, 85.0 40.0 35.0 0 25 0.40 0 20

Fig. 4 Effects of cross stays on flutter speed (Case-C)

Cross stay location, x/L

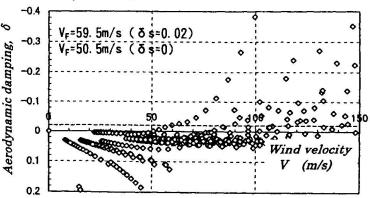


Fig.5 V- δ curve (Case-SC) (cross stays location; x/L_s =0.5 for side spans, x/L =0.3 for center span)