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Aerodynamic Instability of Long-Span Cable-Stayed Bridges
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Summary

In this paper an analysis of the aerodynamic behaviour of fan-shaped long span cable-stayed bridges
under nonstationary aerodynamic loads is developed. A numerical analysis is carried out, based upon
time integration of the motion equations of the discretized structure. The main structural nonlinearity
arising from the elastic response of stay is accounted for together with the nonlinear effects related to
the assumed nonstationary model of the aerodynamic loads. Moreover, a continuous model of the
bridge based on the hypothesis of a small spacing between stays is developed, whose analytical
results are usefully compared to numerical ones.

1. Introduction

As is well known the cable-stayed bridge scheme evoked great interest as a valid solution for long
spans, particularly regarding the so-called fan-shaped scheme of the self-anchored type.

The structural behaviour of this scheme is marked by a dominant state of axial tensions in the stays
and of axial compression in the girder, while less important is the bending stress as a result of the
prevailing truss behaviour of the scheme.

Moreover, in long-span bridges the analysis of the dynamic behaviour is the most important one. The
influence of moving loads, the precence of seismic forces and the influence of aerodynamic effects
must be carefully examined; in fact, the more dangerous stresses and deformations are related to
these kinds of external action. Therefore, the fan shaped cable-stayed bridge scheme, suitable for
long spans, requires an accurate analysis of the aerodynamic instabilities.

In this paper an anlysis of the dynamic instability of long-span cable-stayed bridges under non
stationary aeodynamic loads is developed by using both a discrete model of the bridge and a
contitmous one based on the assumption of small spacing between stays. The intrinsic nonlinearity
arising from Dischinger constitutive equation is taken into account together with the nonlinear
effects arising from the deformation dependent nonstationary aerodynamic forces.The analysis is
developed at first by analyzing the flexural and torsional oscillations of the bridge. Then, the critical
wind speed, both in the case of flutter and stall flutter is investigated.
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2. The structural model of the bridge

The fan-shaped scheme of cable-stayed bridge of Fig.1 is considered, in which the girder is simply
supported at its ends and is hung to the tops of H-shaped towers by means of two stays curtains.

It is assumed that the stays spacing A, the girder width 2¢ and the stay curtain interval 2b are small
quantities compared to the central span length L. The aspect ratios ri=Lo/H; r;=L¢/H of span legths
to the tower height are usually obtained on the basis of economy and of the anchor cable stability
condition.

The longitudinal vertical plane yz is assumed to be a symmetrical one; in addition, the bridge is also
symmetrical with respect to the midspan cross plane.

According to the usual erection procedures, girder and towers are assumed to be free from bending
under dead load g. Then, the cross sectional areas Ag and A, of the couple of diffused stays and of
the anchor stays, respectively, are given by

A L L
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and where o, is the allowable stress, a is the angle between a stay and its horizontal projection, and
p denotes the live load.

We assume that towers and girder’s axial elongations are negligible, and we apply the Euler-
Bernoulli bending theory and the Saint-Venant torsion theory for the girder.

As far as the stays behaviour is concerned, the Dischinger modulus E*=E/(1+y’l,> E/126,’) is used,
where E is the Young modulus, y is the specific weight, /, is the horizontal projection length of the
stay and oy is the initial tension. The tower is characterized by the flexural stiffness k.
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Fig.1. Cable stayed bridge scheme

At first we develop a discrete model of the bridge based on a finite element discretization of the
girder by using hermitian cubic interpolation functions for transverse deflection and linear
interpolation functions for torsional deformation.
Therefore, for the H-shaped towers scheme (Fig.1), the deformation of the bridge can be described
by the following displacement parameters:
- the axial displacement w of the girder;
- the axial displacements A, Ar and the torsional rotations Wy, Wg around the vertical axis of the

towers tops;- at each internal node i of the girder, where a couple of stays act on the girder:

-the vertical deflection v;;
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-the torsional rotation 0;;

-theflexural rotation @; around the x-axis.
Now the air forces acting on the bridge are considered. To give an accurate analysis of the
aeroelastic behaviour of the bridge, a sound evaluation of the aerodynamic loads must be used.
It is widely accepted that the nonstationary formulation is the most adequate one for predicting the
aeroelastic behaviour of the girder with good accuracy. Moreover, to obtain simple formulas we
refer to the simple thin airfoil theory.
According to these assumptions the aerodynamic lift / and torque m per unit length acting on the
cross section of the bridge in a laminar approaching flow with zero mean angle of attack can be
expressed by:

1 .V . © )
l= 2 pVe (2¢)[kH; v + kHch—O +k’H30] 3)
m =lpvz(zcz)[kA’i+kA‘c—é—+k2A'e] 4
2 0 1 Vo 2 Vo 3
where :
-V, is the approaching wind speed;
-p is the air density;

-K = ¢/ v, is the reduced frequency, where o is the frequency of the oscillating bridge deck.
-H;*, A;* are the nondimensional Theodorsen aerodynamic coefficients, given in real notation,
according to Scanlan, by:

kH; = 2nF kA = nF
<kH;=—n(1+F+§) JkA;=—E(1-F—39) (5)
k 2 k
k*H; = -2n(F - 529) k’A; =n(F - k—zq)

Then, the dynamical equilibrium equations of the discrete structure can be put in the following matrix
form:

M s+ K(s)s=F(s,s,t) (6)

where M is the mass matrix, s is the displacement vector and F is the external load vector.

The above nonlinear problem was solved numerically by using the Newmark integration scheme.
Moreover an algorithm based on the predictor-corrector method was used.

It must be observed that forces F depend on the reduced frequency k, that is on the deck oscillation
®. Due to the low sensitivity of the aerodynamic forces with respect to the variation of o, k is
updated only after one cycle of the midspan deflection (for the evaluation of /) or of the midspan
torsional rotation (for the evaluation of m). The updated value of ® is then obtained from the
wavelength of the corresponding oscillation. This procedure, when t tends to infinity, gives the
flexural m, and torsional wg frequencies converging to the unique critical value @, when V, tends to
its critical value V..

To determine the critical wind speed, integration stats with zero speed. Moreover, the initial
conditions at time t=0 are choosen as the first flexural and the first torsional eigenmodes.

After some oscillation cycles, an increment is given to the wind speed, and integration stats up again
assuming as initial conditions and as @ value, the final displacements, velocities, and © values of the
previous wind-speed step. The computation goes on step by step by means of wind-speed
increments, and at each step w is updated as previously discussed and when © convergence is
reached, the motion character (damped or undamped) is estimated in order to determine the critical
condition.

Now a continuous model of the bridge is employed to obtain simple formulas able to capture the
main features of the bridge behaviour [1,2]. This model is founded on the assumption that the spacing
A is very small compared to the main span length L.; this allows the development of a continuous
structural model assuming a continuous distribution of stays along the deck. In this case, for
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symmetrical motions with respect to midspan, the deformation of the girder is described by the
flexural v(z) and torsional 6(z) displacement functions, respectively, together with the scalar
displacement parameters A;=-Ag, ¥=¥|=-¥p with w=0.

To give analytical developments, the following quantities are introduced:
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=-—;V , 1) = ,Ut =—=; = 7
S=gpVED=—"00 =15 00) Qs sed) 0]
) YZHZE.E:= Io, e Co, e uHo, g - I,Ho, ®
120, "4 We¢  EbH,”  Bg 7" b'Eg
ko * Pol 2
L= # Ao = ELp‘i—gSin(l.o cos? oysp= Igcigz—dgq.xo 9)
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where:

- p is the mass per unit length of the girder;

- I, Io, C; are the flexural inertia, the polar moment of inertia of mass and the torsional rigidity factor
of the girder cross section

In practical cases the nondimensional flexural £ and torsional t stiffness parameters are very small

(e<0.3, t<0.1). This corresponds to a prevailing truss behaviour of the bridge in which girder’s

bending and torsion are of local nature, while axial forces and overall displacements are well defined

on the truss bridge scheme(e=t=0). This enables terms in € and < to be disregarded with respect to

others in the equilibrium equations.

With these assumptions the dynamic equilibrium equations for the continuous model are:
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The aerodynamic instability and the corresponding critical wind speed can be obtained by putting the
solution of eqn (10) in the form:

V(E, 1) = V(E)e"; U(t) = Ue™;0(E, t) = 8(&)e™; w(t) = ye* (12)

where a purely immaginary value of s=a+iw corresponds to flutter.

Substituting eqn (12) in (10) a linear homogeneous system in the time independent displacement
variables introduced in (12) is obtained; putting its determinant equal to zero and disregarding less
relevant terms, the following frequency equation is obtained:

o'+ 0 A (2F +1G) + P (1+ 9" - BREG, + f¥G,) +
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GBQ%(WF +7G,) +(0* —ByQ’G,) =0 (13)
with
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1 G n kG 272
Gl(k)=E(I—F—2“E) G2(k)=£"2—(F—T); G;(k)=‘E2—F; (15)

where oo and ©,9 denote the flexural and torsional free oscillation frequencies in still air [2].
The flutter condition is formulated by putting s=iQ. in eqn (13). We obtain the flutter condition:

Q! (-G, +2FPG, - 2FP*G,) + Q> (2G, - 2FBG,) -G, =0 (16)
and

2 _ Q(2F +7G,)-1G,
9" = o7 » an

and the critical wind speed is given by the relation : (V/cwoy)=(Quke)*
Now, the single degree of freedom torsional mode of flutter of stalled airfoils is considered. In this
case, according to the Ragget theory, the aerodynamic moment can be expressed by:

m=Loviac)kale S + kAl6] (18)
2 Vo
with
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where S, is the slope of the steady state moment versus angle of attack, approching n as the angle of
attack vanishes. In this case dynamical equilibrium equations (10) can be rewritten accounting only
for the torsional displacement and force parameters. After some algebra we get the following
frequency equation for stall flutter:

(20)
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The flutter condition : s=iQ2, in this case gives

P _p -28m g, Q2 = :
S, k, Bys (F. - ch)
T 2

(22)

and after some algebra

o ol 3 M+O3K)NA+236/k)] . o _ [, 15 [G/k)? +3/211G/k.)* 2] By |
s 17 [1+@/k,)?103/k T R 17 [G/k)? +1[3/k. ) k.2

<

and the critical wind speed is given by the relation : (VJ/caog)’=(Qo/ke)’.
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3. Numerical results and concluding remarks

Here we analyze a bridge scheme characterized by the following parameters: "
n=5, r=5/3; L~750m; Lg=250m; H=150m; A=25mé b=c=17m;3 I=11.69m"; 1,=918,378t,m
k1=2350t/m; p=4.8t./m; g=47t/m; p=28t/m; E=21x10%/m"; 0,=72x10°t/m’; £=0.3; 1=0.2.
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Fig 2: Critical wind speed versus frequency ratiog. Fig.3: Critical wind speed versus slope Sy

In Fig.2 the flutter critical wind speed V. is plotted versus the frequency ratio parameter ¢; it can be
observed that for p=wmov/oe=1, any wind speed is critical. In addition, a very high sensitivity of the
bridge acrodynamic behaviour emerges with respect to variations of @. In Fig.3 the torsional mode of
flutter of a stalled airfoil is examined; in particular, the critical wind speed V. is plotted versus the
slope Su of the steady state moment-angle of attack. It can be observed that the effect of the mass
coefficients § and y is very small and become practically negligible for negative values of Su.
Moreover, the numerical results obtained by the discrete model of the bridge well agree with the
analytical ones obtained by the continuous model of the bridge.

In conclusion, the two models here established, that is the discrete model of the bridge and the
continuous one, seem to work in a good agreement. Moreover, it can be observed that the discrete
model allows us to analyze more complex situations, where the continuous theory is hard to apply,
that is, for instance, non constant cross section of the girder, variable live loads, nonlinearities of
stays. However, the continuous model seems to be capable of capturing the main features of the
dynamical bridge behaviour,which is a useful tool to validate numerical results obtained by FEM
computer codes.
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