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Summary

Application of new techniques in design of bridges although reduces the structural weight of
the system but it may also result in a significant reduction in stiffness of the structure. In this
case the bridge would be subjected to unprecedented dynamic behavior due to movement of
traffic loads. In this study a simple but accurate method for dynamic analysis of bridges has
been introduced to investigate the problems associated with interaction of mass and rotary
inertia of traffic loads in dynamics of flexible bridges. The effect of suspension mechanism of
vehicles on deformational aspects of the bridge is also integrated into this formulation. As an
example for application of this technique, the results of a brief study on the effects of speed
of traffic on dynamic behavior of simply supported rail-road bridges has been reported.

1. INTRODUCTION

Using new methods in design and construction of bridges, as well as application of advanced
materials in bridge systems reduces, not only the structural weight of the system but in some
cases it also affects the stiffness of the structure. Flexible bridges are more likely to experience
severe dynamic responses due to passage ofvehicles over the system. Dynamic behavior of a
bridge due to traffic loads is a major concern in defining the functionality of a system and it is
also considered as an important parameter in long term performance of the structure. An
accurate dynamic analysis technique for flexible bridges needs incorporation of the effects of
interaction between bridge and traffic loads. In a bridge, mass and rotary inertia of the system
is continually changing by movement of traffic loads on the structure. Considering the fact
that, mass of the traffic load is in contact with the bridge only through the suspension
mechanism of vehicles, this parameter must also be included in an accurate representation for
the bridge system and in investigation of dynamic behavior of the structure.

In this work a method based on Galerkin approximation has been developed which accounts
for most of the required features expected from an accurate analysis technique. The method
although is quite powerful in dealing with various parameters in interaction problem, it is
simple in formulation and easy in programming.

2. DYNAMICS OF A VEHICLE ON A FLEXIBLE BRIDGE

To represent the case of an ordinary vehicle, it is considered as an object supported on two
axles as shown in Fig. 1. Formulation was extended for a simple case in which bridge is
horizontal and vehicle moves in a uniform speed. Following relationships are equilibrium
conditions of vehicle on a flexible bridge system.
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Where P and Q are reactions of axles of vehicle and I is the distance between two axles
Variables yc and ac are vertical and rotational acceleration of center of gravity of vehicle and lc
is the distance between center of gravity and reaction P Parameter g is the gravitational
constant, m is the mass of vehicle and J is its rotary inertia Variables yc and ac can be
replaced by the following expressions

" 'c r " -,yQ-ypy c= y P + -j(yQ-y p) and ac=tcm -±— (2)

Where yp and yq are local acceleration of bridge at the location of reactions P and Q
respectively. By assuming small angle of rotation (i e small deformation of bridge) and in the
case where center of gravity of vehicle is at the middle (lc 1/2) ofvehicle, solution of the
equilibrium equations for P and Q results in the following expressions

(3)

The first term in right hand side of the
above equations represents the effect of
static distribution of weight of vehicle on
each axle The second and third terms are
representing the effects of local
acceleration of bridge on reaction forces
The first term in brackets signifies the
effect of mass rotary inertia while the
second term (in brackets) indicates the
effect of added mass of traffic load on
reaction forces
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3. SUSPENSION MECHANISM

There is a similarity between suspension mechanism of vehicles and vibration isolator devices
in mechanical systems This similarity can be utilized to incorporate the effect of suspension
mechanism of vehicles in dynamics of bridge by using force transmissibility factor TR (see, for
example, Paz 1991) This factor in the case of bridge-vehicle system can be interpreted as the
ratio between amplitude of dynamic force transmitted to the bridge with a flexible suspension
mechanism and without it. Theoretically, transmissibility factor is a function of damping ratio
of isolated system and frequency ratio of dynamic force, i e

m mlCO) (4)

Where Ç'\s damping ratio, co is natural frequency of system and a> is the frequency of
harmonic force In the case ofbridge, co is natural period of suspension system and co could
be a function of both speed of vehicle and natural frequency of bridge An easy way to
implement this simple technique is to modify rotary inertia and mass ofvehicle in the second
and third terms of Eq 3 by the following expressions

[J-tp — TRP J
I mn 77? „ .777

m —, - (5)

In the above relationships parameters TRP and TRH are transmissibility coefficients for
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pitching and heaving movement ofvehicle and Jtk and Ittm are modified values for rotary
inertia and mass of traffic load. Transmissibility coefficients in heaving and pitching are
different due to distinct natural frequencies for each of these movements. Usually this factor
for pitching (TRp) is much smaller than for heaving movement (TRh), predominantly because
of the large rotary inertia of vehicles. This is considered a simplified approach because by
scaling TRp and TRq differently, the coupling effect between pitching and heaving movements
of vehicle would be ignored.

Considering the above modification in mass and rotary inertia, the abbreviated form of
reaction forces P and Q are as follows.

]P,A,+ A,y,+ A,y,
[Q=A0+A2yp+Alye 2

_
Atr

_ mrn and A2=
S1

1

I1 4 J 4
(6)

4. DYNAMICS OF BRIDGE

The simplified form of differential equation of a uniform bridge loaded with only one vehicle
can be written as follows.

d 4

y d2y
EI~7 + m^~ P S(Ç,x) + QS(Ç + l,x)dxi df -1<Ç<L (7)

In which EI is flexural stiffness, m is mass per unit length. Forcing function in this equation
consists of concentrated forces P and Q, which have been applied to the system by using
Dirac-delta transformation functions represented by symbol S (see, for example, Abramowitz
et al. 1974). L is the total length of bridge and £ is the distance of reaction P from the
beginning of bridge (depicted in Fig. 1). Based on the speed of vehicle and the elapsed time
since the front axle of vehicle (reaction Q) has entered on the bridge, parameter È, can be
evaluated.

Forces P and Q are both functions of local acceleration ofbridge^ and yQ as it is shown in
Eq. 6. Interaction between load and deformational aspects of structure differentiate this
problem from the ordinary problems in classical dynamic analysis. Therefore the available
techniques in dynamic analysis of structures (modal analysis, for example) are not applicable to
this particular case because of the interaction problem. In this study an algorithm based on
Galerkin approximation (see, for example, Mikhlin 1964) has been chosen to address the
problem. According to this approach deformation of the structure is approximated by a set of
shape functions as follows.

y(x, 0 (*)•?,(') (8)

In this equation y(x,t) is vertical displacement of bridge while <j>i(x) are predefined
displacement shape Sanctions. Parameters qi(t) are shape function coefficients to be calculated
at time t and n is the number of these shape functions. Replacing this approximation for
deformation of the bridge into differential equation of system results in the following
expression.

El^tp * (x)q ,(0 + m^<j> ,(x)q ,(r)
/ 1

Ao +A,^0,(Ç)q,(t) + A2Yj0l(i; + /)qAt) 8{Ç,x) (9)

A« + A2]T<t,(£)<?,(O + A ,2>,(£ + /)?,(/) S (Ç + l,x)
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If shape functions <j>i are chosen to be a set of orthogonal functions, it can be shown that
Dirac-delta equations are expandable based on the following relationships.

<?(£*) 20.(£M(X) 311(1 ô(Ç + l,x) y£J<l>,(Ç + r)<t>Xx) (10)

In a simplified approach, natural mode shapes of system can be used as shape functions for
Galerkin approximation. By using the relational properties associated with application of a set
of normalized modal shapes (see, for example, Paz. 1991) and by pursuing Galerkin procedure,
the final result will be the following set of equations.

9„(0 + ffl I q „(')

i=i t=i

A0 +A}£t,()-f, (O + A^Xt + iyq,«)

</>„(£) +

0M + 1)

(H)

m 1,2,.. n

Where «„'s are natural periods of the bridge. The above relationship is a set of n simultaneous
coupled differential equations in time domain (£, can be evaluated based on time).

The above relationships represents a case where only one vehicle with two axles is passing
over the bridge. If the number ofvehicles are more than one and system is subjected to
damping forces, it can be easily shown that the system of equations will be changed to the
following form.

qm(t) + 2amÇm q„(t) + coXqm{t)

2> .(£ + Ê 9,(0(£) A(£) + ÉI(')£*.($+ 0* „(£) (12)
/=] ,=i j'\ ,=i j=i

m 1,2,...«

In which k is the number ofvehicles on the bridge and parameters a, ß and A are defined as:

« „(£)=a jy„(£)+0„(%+;)]/w

/UÉ) [4rt.(É) + 4#.(É + 0]/'* (13)

0]/
The following is the matrix form of the equation set No. 12.

[4]{^}+[2<]{^}+[®2]K}={54 (14)

Where [2w Ç ] is a diagonal matrix representing damping contribution in the system. Matrix
[Aç ] and vector {/ft} are coefficient matrix and load vector, respectively. These two terms
must be evaluated at time t based on location parameter £.

In comparison with classic dynamic analysis, in the above equation matrix [Aç ] is not a
diagonal matrix. This clearly indicates that the equation set is in a coupled system. Among
numerous time integration method applicable to this problem, a method based on Runge-Kutta
formulas of order five and six (see Hull et al. 1976) has been adopted as the solution algorithm
in this study. To be able to use Runge-Kutta formulas, differential equations must be
transformed to a set of first order differential equations. It can be shown that, such
transformation is possible by only using a simple change in the variables (see Hull et al. 1976).
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CASE STUDY FOR HIGH-SPEED TRAINS

The capability of this technique is shown in an example in
shown in Fig 2 is considered as traffic load on the bridge

4^ vV v
h

4 11m
(a)- The train system

H

1500 KNWeight of each car z
Rotary Inertia of each car 3 E+9 N-s mm
No. of cars in train system. 10

opfaüooIüüüp(oü°D.A.M. 4.U -r-r
/7mj ..xL1.

(c) - Bridge system •

Length
Weight of bridge
Stiffness (El)

50
150
1 E+17

meter
KN/m
N mm2

Fig. 2- The bridge - traffic model

-4 Km/h
-73 Km/h (5% damp)
-73 Km/h 1% damp

Point of exit
from bridge

-120

Fig. 3 - Displacement at mid-span during resonance

Point of exit
from bridge

-140

Fig. 4 - Displacement at mid-span at high speed

railway bridges A train system as
Dynamic analysis was carried out for
a bridge with 50 meters in length
(shown in the same figure) The
length of bridge is chosen less than
the train, to investigate the case in
which the whole bridge is loaded
steadily with traffic In this case,
bridge is considered as simply
supported single span structure

It is assumed that all the natural
modes have a damping ratio of 5%
(flm=0 05) The parameters TRP
and 77?// have been chosen
intuitively to represent a system
with characteristics of soft
suspension mechanism (0 1 and 0 9

respectively) Figure 3 illustrates
mid-span displacement of bridge
when resonance occurs at speed of
73 Km/h In this figure, horizontal
axes represents the distance of front
axle of the first car from the left
support of the bridge (Ç+1) This
figure is similar to classical
Influence Line in bridge
engineering Figures with this type
of horizontal axis hereinafter are
referred to as Dynamic Influence
Line

A case of low speed train (4Km/h)
is also included in the same figure to
simulate a behavior similar to static
analysis of the bridge As it is shown
in the figure, a lower damping ratio
causes larger amplitude of vibration
in the structure In the case of
resonance the amplitude of vibration
grows steadily with continuation of
vibration process, thus its maximum
magnitude depends on the number
of cars in the train system

By further increase on the speed of
train there will be a substantial
increase on maximum displacement
ofbridge as it is shown in Fig 4

The result of analysis for shear force
at a point close to support (at a
distance of 1% of span from the left
support) is illustrated in Fig 5 The
importance of traffic load
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Fig. 5 - Shearforce at a point close to support

representation as point loads in this
formulation is illustrated in the same
figure. According to this figure,
even in the case of static loading
(speed of 4Km/h) there is a periodic
variation on the level of shear force
in structure which aggravates by
increase on the speed of traffic. If,
for example, a detail information on
stress cycle history ofbridge for
fatigue design is required, such

accuracy in analysis is quite
important.

9. CONCLUSION

To study the effects of reduction in stiffness ofbridges on functionality and long term
performance of these systems, a technique has been proposed for accurate dynamic analysis of
these structures This method is capable of representing the effects of movement of vehicles on
bridge with a reasonable accuracy The method is based on Galerkin approximation and it
offers a phenomenal simplicity in formulation and also high efficiency in the computational
efforts However, since this method relies only on the general structural parameters of system
(such as mass and flexural stiffness), it does not have the required generality to be applied to
the detail analysis ofbridges In other words, this method can only provide a general view on
dynamic behavior of those bridges with complicated structural system In such cases the
results of dynamic analysis by this approach can be used to extrapolate the response of the
structure obtained from a detailed static analysis (by, for example, finite element method) It is
believed that, this technique can be extended to a more general formulation to serve wider
range of applications
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