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On the Limit Span of Cable-Stayed Structures
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Summary

The self-weight of the cable plays a fundamental role in the behaviour of very-long span cable-
stayed structures. In fact, as span becomes longer, cable stays become longer and heavier. So a
large percentage of their capacity is required to carry their own self-weight. In the present paper
the behaviour of a cable-stay under a fixed load is studied in an “exact” theory by evaluating the
actual stress and axial stiffness. The limit span of a steel cable-stay is determined by means of a
numerical procedure. The results can be easily extended to cables of new composite materials,
which will allow to cover very-long spans in the next future.

1. Introduction

Even thought the first cable-stayed structures were built in the seventeenth century, only in the
last forty years the growth of such structures has been phenomenal. Since 1955, when the
Stromsund Bridge in Sweden was built, cable-stayed structure span growth has first been gradual
and steadily. A terrific increase has occurred in the last decade: first the 602 m span Yang Pu
Bridge in Shanghai, then the 856 m span Normandie Bridge and finally the 890 m Tatara Bridge in
Japan have been completed.

Leonhardt suggested that cable-stayed spans of 1200 to 1500 m were feasible (Billington and
Nazmy 1990) and proposed a span of 1472 m for the Messina Strait Bridge. A hybrid variety with
spans of 5000 m was designed for the Gibraltar Strait Crossing (Lin and Chow 1991).

The reasons for increased spans were individualised by Podolny (1995) very well. Among these
were the increase of the horizontal navigation clearances, in order to accommodate the increasing
size and volume of marine traffic; the economic trade off of span length cost of deep water
foundations, as opposed to shallow water foundations, the risk of ship collision with piers.

The feasibility of longer spans is related to the implementation of new high-strength light-weight
materials. As spans become longer, cable stays become longer and heavier and therefore their
installation becomes very difficult. The structure will show a low stiffness because of the low
stiffness of the cables due to their sag. A long and heavy stay is also difficult to put in tension and
a high percentage if its stress is related to its self-weight. Stays with large diameter also determine
the wind drag forces to be higher.

In this paper the feasibility of very long-span cable-stayed structures is investigated. The
behaviour of a single cable-stay, subject to vertical loads only, is analysed in order to find out the
theoretical limit span. The slope of the cable is fixed to 0.4, which represents the optimum ratio
between the height of the pylon and the half span of the girder from an economical point of view
(Clemente and D’ Apuzzo 1995).
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2 The cable in the actual configuration

The behaviour of the stays under dead loads depends on the erection procedure. The girder is
usually cantilever erected and forces in the stays are controlled, so that, in the configuration under
dead loads, there are no bending moments in the structure. The bending moment in the girder has
to be considered as a local stress related to the distance between the cables. Therefore the analysis
of the structure under dead load can be carried out by referring to the statically determinate truss
scheme, in which hinges are placed at nodes. To analyse the structural behaviour under live loads,
the bending stiffness of the girder must be taken into account (Clemente and D’ Apuzzo 1990). Its
influence on the structural behaviour becomes negligible for very long-span structures. On the
other hand the ratio p/w between live and dead loads becomes very low when the span length
approaches to its limit value. So stresses due to live loads are very low with respect to those due
to dead loads.

For all these reasons a suitable modet for the stay is that of Figs. 1 and 2. The cable is fixed at left
end and its right end can move in the vertical direction only. The pylon bending stiffness is
supposed to be infinite. Actually, a the displacement of the pier top due to its deformability, can
be ﬁr::glected when evaluating the slope angle o.. The girder is supposed to have an infinite axial
stiffness.

1 A

4

Fig. 1 Cable subject to the self weight only

Consider first the cable subject to the self-weight only, whose length in the actual configuration is
£ (Fig. 1). It assumes a configuration with horizontal tangent at By. The shape of the cable is
supposed to be parabolic, and its self weight w uniformly distributed:

w=y. A, Lo /A D

Y. and A, being the weight per unit volume and the cross-section area, respectively. As will be
shown later, these hypotheses cause negligible errors in the determination of the cable geometry.
Tension at By is:

vy o
" 8-Afana, 2tana, (2)

where W=w.A is the total weight of the stay. The vertical component of the reaction at A is (ws1).
If the force P acts at the lower end, the cable assumes a new equilibrium configuration (Fig. 2).
This being closer to the straight line connecting A and B, the assumed hypothesis about w is better
satisfied than in the case of self-weight only. The vertical component of the reaction at A is

V=W+P 3)
and the horizontal component of the tension is
H = (P +W/2)/tana, 4)

0
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For a given ., the actual configuration depends on 4. and ¢, which determine the value of W. It
can be found by using the iteration procedure shown in the next section.
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Fig. 2 Cable in the actual configuration Fig. 3 Equilibrium at A and B

3. The Limit Span

While the direct solution of the equilibrium of the cable is almost hard, stresses in the cable can be
found, for a fixed configuration, in a simplest way. Consider the cable of Fig. 2, subject to its self-
weight and to load P at its lower end B. Suppose the geometrical configuration of the cable to be
fixed. In the hypothesis of parabolic shape, it is defined by the sag f at the mid-span:

y:—(4f/K2)-zz+[tana+(4f/?u)]-z (3
and the angles at A and B are defined, respectively, by the relations:
tano, =tano —4f /L tana, =tano +4f /A (6)
The actual length of the cable, in this configuration, can be approximately estimated with the
relation-ship
2 2 4 4 (7)
f=2- 1+§(ij +m~ig(z_) + fan” o
3\A 2 5\A 8
The horizontal component of the tension
H = Pjtano, (8)

is independent of the span A. It depends only on the geometrical shape of the cable. The resultant
of the self-weight W is applied at a horizontal distance from A equal to

_ J-Okz.[l +y'2]1/2dz
ey

which, in the assumption of uniformly distributed self-weight, can be supposed to be equal to A/2.
From the rotational equilibrium equation around A, the total weight of the cable can be deduced

W=(\z,) (H tanc - P) (10)

and, from this, the stay cross-sectional area

©)

w
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A, =Wy £ (11)

It is worth to note that, the ratio A/zw
depending on f/A only, W is independent
of A and so is A..

The force in the cable varies from the
minimum value at the bottom (Fig. 3)

S, =H/cosa, (12)
to the maximum value at the top
S, = Hfcosa., (13)

Also S and §, are independent of A.
They are correlated to the horizontal
' component of the tension A and to the
0 0.05 128 0.1 shape of the cable.
, In Fig. 4 the diagrams of non-
Fig. 4 H/P, G/P, S/P, and Sy'P versus f/A dlmeﬁsmnal parameters H/P, W/P, S,/P
and 5)/P versus f/A are plotted for the
case fana=0.4. They all are independent of A and y.. As one can see all the parameters increase
very much for f/A>0.05. For f/A=0, it is $;=S;=H/cosa=P/sinct. This relations, which are usually
used for the preliminary design, are approximately valid only for very low values of fTh, 1.e. when
W is negligible. When f/A increases, W becomes comparable to P and the stresses in the cable get
higher. The difference between S, and 3; increases and S,—>H. When f/A—0.1 all the parameters
tend to infinite. In fact if //A=0.1 then o;=0, and the equilibrtum at B is impossible. The minimum
and maximum stresses are respectively:

o,=8,/4, c,=S5,/4, (14)

The stresses can be evaluated in all the sections. So the variation Af of the cable length and finally
the natural length of the cable can be calculated.

The described procedure is very suitable to find out the limit span Aim of a cable-stay, this being
the span for which the whole capacity of the cable is required to carry its own self-weight. If A is
fixed, for each value of f/A the corresponding maximum stress 6=c, can be caiculated and so the
apparent tangent modulus £

15 ~

10 4

E' :E-[1+E/120-(yk/cm)2]_1/2 s

where G = (01 + 62)/2.
The following assumption were made: y.=0.078 MN/m’ and E=200000 MPa and P=1 MN. In Fig.
S the curves of ¢ versus f/A are plotted, for different values of A. First of all it is to note that all
the curves stop at f/A=0.1, that 1s the limit value for the assumed value of o. If /A—0.1, o,;—0
and H—oo, If f/A>0.1, then a; becomes negative. As a result H is negative too, and a negative
value of W would be needed for the equilibrium. With regard to this limit case, the limit value of
the span A can be defined. In fact, only one curve intersects the straight line //A=0.1 in
correspondence of the fixed maximum value of 6. The value of A, which characterises the
individualised curve is the limit value of A, for the given ©.
Fig. 6 shows the diagrams of E'/E versus ﬂk The deterioration of the apparent modulus is more
evident for high values of f/A and low values of A. This paradox can be explain with the following
consideration: for high values of A, W being independent of A, 4. must be lower and therefore 6,
is higher. As a result the stay behaves harder.
In Fig. 5 the curves relative to given values of E /E are also plotted. From a technical point of
view it is important to fix a minimum value of E'/E. So the technical limit value A of can be
defined as follows. Suppose that a value of 6 has been fixed and a value of E'/E has been chosen.
These two values define a point in the diagram. The curve o(f/A) passing through this point is the
curve relative to the maximum value of A,
The assumed hypothesis about the cable shape were tested with reference to the limit case
Jf2=0.1. The difference between the co-ordinate y at mid-span between the assumed parabolic
shape and the catenary is 1.15%. The error in evaluating zyw is about 1.7%. Obviously the errors
are lower when f/A<0.1.
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Fig. 6 E'/E versus f/A

The limit value of the span A
depends mainly on the stress
G. The value of 5, which can
be assumed for the
preliminary design, is related
to the ratio p/w between live
and dead loads. If £, is the
limit stress of the cable, the
allowable stress is between
JJ/3 and f/2. This study
being relative to the analysis
of very long-span cable-
stays, low values of p/w
were considered. Therefore
values of & very close to the
allowable ones were
assumed.

In Fig. 7 the diagrams of the
deflection f7A versus A are
plotted, for different values
of o. It is apparent that f/A
varies almost linearly with A
and significant reduction of
it can be obtained by
increasing . The sag ratio
S\ is correlated to the
deformability of the cable
and so is the ratio E'/E,
which is also plotted in

Fig. 7 versus A, for usual
values of 0. As obvious £ /E
decreases when A gets
higher. It decreases more
rapidly for lower values of
the stress G.

In Fig. 8 the diagram of the
cable cross-section area A4,
versus A is plotted for
different values of ¢. All the
curves show a slight
increment of A, with A, that
becomes very rapid for high
values of A. The value of A,
for which the slope in the
diagram changes, increases
with A. It is evident that to
obtain a reduction of 4., ¢
must be increased. For a
given value of 4. the curves
show the same tangent,
which happens to be
independent of A. Therefore
fixing a value of AA/AM is
equivalent to fix a value of

c
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4, Conclusions

In the design of a cable-stay its own self-weight is usually ignored and the actual configuration is
confused with the straight line connecting A and B. As a result the force in the cable is supposed
to be constant and equal to P/sina. This assumption is acceptable only if f/A ~ 0 and, therefore, if
W 1s very low. This condition is satisfied only for short spans.

In the case of very long-spans the cable weight becomes very high and the sag ratio f/A is not
negligible. The force in the cable is everywhere higher than P/sinc.. Both the differences S;—P/sinc
and S>3 increase with f/A. As a result the self-weight of the stay cannot be ignored in the cable
design. It is worth to point out that stress in the cable being higher than P/(A. sinat) the apparent
modulus is higher than one could expect.

The numerical results shown in this paper are relative to steel cables, but they can be easily
generalised to other materials. In particular, from the values of ¢ in Flg 5, those of the ratio o/y.
can be deduced, . being equal to 0.078 MN/m’.

Materials, characterised by low values of o/y,, have the potential to cover longer distances in the
next future. Carbon fiber composite cables seem to be very, good because of their high strength
(~2000 MPa) and their very low unit weight (0.015 MN/m’), but may have a lower Young’s
modulus. The aerodynamic behaviour of light stays is also to be investigated. New high
performance materials are available also for the beam and pylon, which translate to reduced
weight and thus loading but they are too expensive at the present time.
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