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Summary

Flutter stabilization is the major subject to safely design a super long span bridge. Unsteady
aerodynamic force, in other word, 8 aerodynamic derivatives, (H.*, A*, i=l—4) defined by R.
H. Scanlan are significantly important for flutter occurrence. Especially, aerodynamic
derivative, As*, showing negative and small value, torsional flutter doesn't occur and coupled
flutter stabilize. Ai* of the rectangular cylinder with vertical plate installed at the mid-chord
point of rectangular cylinder with the slenderness ratio, B/D=20, showing negative and the
smallest, this section doesn't have highest flutter onset velocity. Furthermore, heaving branch
flutter occurs. This paper aims to clarify this mechanism of the heaving branch flutter and the
relation between torsional brunch flutter and heaving brunch flutter.

I. Background of this study

The rectangular cylinder with vertical plate and the stable fundamental geometrical shape are
shown in Fig. 1 [1]. Through wind tunnel test under the heaving/torsional 1DOF forced
vibration, unsteady pressure around these sections is measured from pressure taps. 8

aerodynamic derivatives are shown in eq. 1 [2].

where, L,M:lift and pitching moment per unit length, rj, <j> :heaving and torsional
displacement,^wind velocity, p :air density, b:half chord length (=B/2) k:reduced frequency
(=b eu /U), eu xircular frequency

These aerodynamic derivatives are calculated through the integration around sections. A*
which is the damping term in torsional 1DOF vibration is shown in Fig.2 [3]. This derivative
is important factor of torsional flutter and coupled flutter. As shown in Fig.2, Aj* of
rectangular cylinder with V.P. is negative and the smallest, therefore this section has the great
advantage for torsional flutter and coupled flutter. Furthermore, aerodynamic unsteady force
are expressed as shown in eq.l, flutter analysis is conducted. This result is shown in Fig.3 [3].

(1)
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This result indicates that flutter characteristics of rectangular cylinder with V.P. is inferior to
that of flat diamond shape box section and flutter of rectangular cylinder with V.P. is heaving
branch flutter.
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2. Heaving-Branch Flutter Mechanism

Fig.4 shows flutter characteristics of the rectangular cylinder with V.P. obtained by complex
eigenvalue analysis. As shown in Fig.4, the natural frequency of heaving motion being smaller
than the natural frequency of torsional one, heaving branch flutter occurs instead of torsional
one. In the Velocity-Frequency diagram, it should be noted that two frequency curves, namely
heaving and torsional frequencies, cross each other at certain reduced velocity, as for torsional
branch flutter, these two frequency curves never cross each other. Around this velocity, the

heaving branch flutter occurs. The facts suggest that some relations exist between flutter
instability and this frequency crossing.
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Fig.4 Flutter characteristics of the rectangular cylinder with V.P.

Based on "The step-by-step analysis" which can clarify the each role of aerodynamic derivatives
on the flutter instability, the aerodynamic damping for heaving branch is given by following
formula[3]:

pbJ
H-7I

P bs p bVl)( cop/a> t)*

V {1-(o>f/<d*),},+4C î(u>,
(2)

I At I Hfcos 0 1+1 A31 fêcos Ô1AîI Ks in 0 r 1 A31 HJs in 0 2

where, ô is logarithmic decrement for heaving branch and to is torsional frequency.
This analysis is shown in Fig.5. Fig.5 indicates that the aerodynamic damping decreases

according to the decrease of the component (-®(D | Ai* | H'sin 9 i with reduced velocity.
Therefore, this component plays a significant role of flutter excitation. Around the flutter onset
velocity, | Ai* | Hj" keeps negative value, and also sin 9 i changes from negative to positive
(see Fig.6), then, this component (-CD© I Ai*| Hj'sin 9 i turns from negative to positive.
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* 1£ ,6) n0) t
6X 0 s in 0X - cosû,0 tan" £—-—-r-

2 ®

(3)

8 moving from first quadrant to second one, the sign of sin 8 1 changes (see Fig.7). The

Velocity-Frequency diagram obtained by the step-by-step analysis is shown in Fig.8. As shown
in Fig.8, the torsional frequency decreases with reduced velocity, on the other hand, the

heaving frequency keeps almost constant value, and then, the crossing point between these two
frequencies exists. Because of this crossing, the sign of 8 changes as shown in eq.3. As the
result that, the component (-(D© | Ai" | FL'sin 8 0 decreases and the total aerodynamic
damping of heaving branch becomes negative value, which means the heaving branch becomes

aerodynamically unstable. Thus, it is concluded that the heaving branch flutter becomes
unstable because of the crossing of frequency curves.
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For Fig.4, it becomes clear that the flutter onset velocity of heaving branch is controlled by the
reduced velocity of the crossing point. Therefore the lower natural frequency of heaving
motion leads the higher flutter onset velocity of heaving branch.

The reason why heaving branch becomes unstable earlier than torsional one can be explained
as follows. In general, the smaller aerodynamic derivative Ai' makes the higher flutter onset
velocity for torsional branch. Aj* of the rectangular cylinder with V.P. being the smallest in
Fig.2, this section is most stable for conventional coupled flutter. 'In this section, however, the

heaving branch flutter occurs instead of torsional one. It is likely that this section is stable for
torsional branch, in return, the heaving branch becomes unstable. To clarify the effect of Ai,
this derivative being three times as large as the value of the thin airfoil theory by
T.Theodorsen, the coupled flutter is controlled by the heaving branch (see Fig.9,10).
Therefore, one of the conditions for the heaving branch flutter is considered that A2* has large
negative value.
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3. Conclusion

The conclusions obtained in this study are summarized as follows:

(1) It is revealed that some relations between the flutter instability for heaving branch and the
characteristic of frequency exist in case of the rectangular cylinder with V P..

(2) It is possible that Ai having large negative value, the heaving branch flutter occurs lower
velocity than the torsional one.
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