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Small Strain Non-Linear Relations for 3D Space Beam Systems
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Summary

This contribution is dedicated to the improvement of the geometric non-linear solution of 3D
beam space structural system based on a finite element approach. The improved relations are
based on all terms of the energy expression for the axial deformation. The energy due to the
deformation caused by St. Venant torsion of 3D-beam element is taken into the account for the
geometric non-linear behavicr of the 3D element. The influence of each component of a joint
deflection on the others within the non-linear solution of the element is clearly separated. The
effect of the elastically constrained members is included in relations. The new cross sectional
properties of the 3D beam are presented.

1. Introduction

Geometric non-linear behavior of space structures is investigated by many researchers. The
classical approach is dealing with the geometric stiffness matrix kg . The nodal forces are given by
the well known equation (1) from [1].

S=(ke+ ke) U (D
where S is the vector of nodal forces of the element, U is the vector of the nodal displacements,
kg is the elastic stiffness matrix and kg is the geometric stiffness matrix.

The point of interest on the influence of semirigid connections together with the non-linear
behavior of structure is described in [2], [3], [4], [5], [6]. Space structural frameworks are inten-
sively used since 1980’°s. Papers dealing with these problems are published in proceedings on

Space structures [4], [5]. At the work [9] are derived relations for the semirigid connections with
respect to the all twelve degrees of freedom in the space. The solution which is based on the
equation (1) is omitting higher order terms of the beam energy due to axial deformation. The
concept of a geometric stiffness matrix is based on the simplification that the load imposed onto
the structure is unchanged, during the load step increment. The relations which are introduced in
this paper are not using any simplification and all the terms in the energy expression are used. As
result of the approach leads to a clearly separated relations for each component of the deflection.
The other effect of the approach is that the relations are more accurate then the previous equation
(1). The detail derivation and the solution procedure is described in [6], [7], [8]. It is also
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possible to introduce the effect of the semirigid connections as were derived by Toader at [9]. The
derived results are corresponding to the relations for the plane frame structures in [10].

2. Non linear relations
2. 1 Basic Assumptions

The derivation is based on the following assumptions:

1) 3D members are straight without any imperfections

2) The local coordinate system of the member follows the right hand rule and is coincident
with major principal axis of the member

3) Navier's hypothesis is valid for the cross-section of the member.

4) Torsion is assumed to be Saint Venant type, i. g. warping s neglected.

5) The load step increment is finite

6) The loads are acting on joints

7) The structural material is elastic-perfectly plastic

8) Local stability effects do not occur

2.2. The basic relations of geometric non-linear behavior

The relation between the nodal displacements and element deformations is described by
u(x,y,z)=a U (u,uzus,.....u,) 2
where u is the vector of the element deformations and U is the vector of nodal displacements.
Matrix a is the matrix of functions describing the geometrical relations between these displace-

ments. Non-dimensional coordinates are introduced as & = £,4 = &, 17 = £, where x, y, z are

dimensions in local coordinate system and L is the length of the 3D element (Fig.1)

The deformed length of an infinitesimally small element (Fig.2) can be expressed as
54
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Fig.1: The 3D bar and beam member
(1+&;")dx where the &, is the engineering axial strain and dx is the elements length. Applying
Pythagora’s theorem, the elongation of the element may be expressed as
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2 2 2
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This can be simplified as:

e)_du 1(au) 1(m\7 1(w\" 4
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The right hand side of equation (4) represents the component
of the Green strain tensor e, . For the condition of small strain,
we can write (&, )> = 0 and the Green tensor coincides with

the engineering strain &,. If we introduce terms for the axial
deformation due to bending to the expression (4) we receive

Fig.2: The beam element

du 1(&)2 1(%)2 'u,  'u, (5)
E, = —+ —| —| +=|—] -» i 5
ox 2 \ox 2\ x ox Ix
The energy of the member due to the axial deformation (5) can be expressed by equation (6)
U=4%E[&%dy ©)
14

The whole axial energy expression is expressed as:
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ox x*t ox?

Let’s express the deflection vector u in the form of nodal displacements using the equation (2)
and perform the integration of the equation (7). After that, Castigliano’s theorem (part 1) can be
applied to the expression (7) with respect to the deflections u;, u, ...... u;2,. We obtain the
relations for the nodal forces S;, S, ........ S¢ forthe 3D barand S,, Sz, ........ Sz for the 3D
beam. To express results in the matrix form we have to introduce new cross sectional properties
to express torsional moments S, and S)o. These terms are written as

K, = §z4dA, K, =§y‘d4, K, = §z2y2d,4, (8)
A A A

We can call these expressions "moments of inertia of second order". Another feature of the ap-
proach is that each nodal force is dependent on a symmetrical square matrix which includes terms
composed only from the cross-sectional properties and constants. The non-linear influence of the
other nodal displacements are excluded from the geometric nonlinear stiffness matrices. Therefore
it is possible to separate the influences of different nodal displacements on the observed nodal
force. This approach leads to the expression for each force which relies on the 6x6 matrices for
the 3D bar element or 12 x 12 matrices for the 3D beam element.
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2.3 The Non-linear solution for 3D members with the separate effects of deflections

The general equation for the forces at the end nodes of a 3D bar element is as follows:
Si=ke U+(U" bl U)+u; (U qU)+u; (U gU) ©)
where index j relies on the index 7 of the evaluated force as j~i+3 for i=2,3 and

Jj=i-3 for i= 35,6

Wi, Ui nodal displacements (scalar quantities) which have the major effect on
the corresponding force S;
kgiooooo i-th row of the elastic stiffness matrix,
by o square 6x6 matrices, which express the loading change during the load
step (corresponds to the well known geometrical stiffness matrix k¢ )
U 6x1 vector of node displacements
vt transpose of vector U
Q g......... square 6x6 matrices which express the higher terms of order in the longitudinal

strain energy of a bar
The expression results for a 3D beam element are more complicated. The derivation procedure is
similar to that of a 3D bar element. The general equation for nodai forces applied to a 3D beam,
which represent shear, axial force and bending, is

S=ke: U+ (U" "h; U) + (U" 'h; U) (10)
+y; (UT el U) + uisg (UT H6a2 U) +uy (UT ie3 U) + ujss (UT i*6aq U)

where "h; = -'h; are square 12x12 matrices which express the loading change during the loading
step (corresponds to, the well known, geometrical stiffness matrix ke ). Superscript 7 or /
express the influence of 7#h or /st node deflection as 2 major influence
Ko sesssmmen corresponding row of the elastic stiffness matrix
U..ooovveevveeeeenno.... 12x1 vector of nodal displacements
‘el, “Se2, Je3, %4 . square 12x12 matrices which express the influence of higher order

terms in the axial strain energy expression of a 3D beam element
Ui, U, Uits, Ujsge.ronn... the node displacements (scalar quantities), which have a major

influence on the corresponding force Sy where index iis 2 and index j

is 6 for the forces S, Ss, Ss, Si12, index 7 is 3 and index jis 5 for the

forces S3, Sg, Ss, S11,
Expressions for the torsional moments S4, S are slightly different. These forces represent Saint
Venant’s torsion. The matrix equation for the nodal torsional moment is as follows:

Si=kg U+ (U" 'h; U) + (UT ' U) + u; (U” ‘gl U) +uis (UT g2 0) (11)

where index 7is either 4 or 10.

Matrices gl and g2 for the torsional moment .S,, at the near end of the element include the
same terms as matrices gl and g2 for the torsional moment Sy, at the far end of the beam
element, except they are of an opposite sign. The basic difference between the expressions for
bending moments and shear forces is in the non-linear influence of the governing deflection u;
which is separated out of the matrix equation as a factor. The torsional moments are influenced
only by the torsional deflection #4 and ;. Then the equation (10) or (11) can be expressed
in a form

S =S +8¢ + Sq (12)

Forces S¢ which corresponds to the forces which were calculated with the geometric stiffness
matrix kg are now divided into two parts (UT "h; U) and (U™ 'h; U). The first part (U” "h; U)
express the influence of the deflections at the far end of the element to the solved nodal force S;.
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The second part (U" 'h; U) express the influence of the deflections at the near end of the element
to the solved nodal force S;. For the force S; the matrix 'h; = 0. Similarly for the force S, the
matrix "h; = 0. For the force S; and S are matrices "h; = - 'h; and the terms remind in the
geometrically stiffness matrix k¢. Thus, the effect of the geometric non-linear behavior expressed
by the approximate formula using the geometric stiffness matrix is good for axial force, but the
other non-linear influences to the shear forces and bending and the torsional moments are not
taken into the account in the equation (1).

Matrices ‘el, ‘e2, ‘e3, ‘e4 for shear forces S, and Ss, and similarly for S; and S, include the
same terms, however they are negative for ‘el, 'e2, ‘e3, ‘e4 for the forces Sz and S, at the far end
of the element. The same is true for the torsional moments S, and S;o. Therefore, only matrices
'el, 'e2, 'e3, 'ed need to be written to express the forces S and force S;. The matrices ‘el, ‘e2,
'e3, 'e4 for the bending moments vary in a position and value of non zero elements. The following
are matrix expressions showing the non linear relations between internal forces and deflections
with respect to the governing deflections which are as factors out of the matrices.

The elastic matrix kg; in this expression can be submitted by the matrix with the influence of
semirigid connections as was derived in [13]. We can therefore solve the member forces with
respect to the non-linear behavior with included semirigid connections. The coefficients for the
connections can be established either by experiments or by FEM calculation of a joint with respect
to the material non-linear behavior. The simple iteration procedure described at the example at [6]
could be applied for the solution.

2.4 The effect of the shear torsional energy

The influence on the geometrically non linear behavior due to the shear energy should be also
included in the expression for the energy of the element. In the space framework the forces at any
joint are distributed to the bending and the torsional moments. Also the torsional energy should be
taken into the account. The space frame members are usually made from tubes. The Saint Venant
torsion express properly the behavior of the member. Several basic assumptions are as folows.
With respect to these assumptions the cross sections of the beam are not deformed, they are only
rotated against each other under the Saint Venant torsion. For the position at axis x, e.g. 2z, =0,

yo =0 we can write

duy . Fuyx s duy, JFuy

Fo=0.55=0  rzy=0 _&ﬁyo__&é’ =0 (13)
We can now write the expression for the rest of the shear stress tensor as follows

_ a; A z &, a,
Vo = 3 Ye=ataz (14)
Energy of the deformed beam due to the shear deflections can be expressed at equation (15)
w2 2 2 uy 15

o3 (3 s (R AR e e e O

After the same procedure which was shown and explained above, we will receive matrix expres-
sion for the nodal forces with respect to the energy spent for the shear deformation due to the
Saint Venant torsion. The values of terms in the matrices are similar to the values at the stiffness
matrix with respect to the axial deformation. For the materials with relatively large shear modulus
is therefore reasonable to include the effect to the analysis. Final matrix equation for the nodal
forces is different for the forces due to the shear and bending and different for the forces due to
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the torsion S, and S;o. This fact is similar as at the previous equations (10) and (11). We can
write for the first group of the forces the equation (16)

s=92A{eU+ 1leUU" ¢ U} (16)
and for the torsional forces we have
Sy = %é“dUUTrU, 810= GZ—A”’dUUTrU, (17

These expressions can be added to the equation (12) and solved simultaneously. The orthogonal
transformation from the local to the global system can be used to express the non-linear
expression for the whole system.

Conclusion

The derived equations allow to obtain geometric non-linear solution of an arbitrary 3D beam
system with the possibility to solve effect of each deflection component separately. The accuracy
of the solution can be easily controlled according to which matrices are used. The stability of
large one-layer systems is highly effected by the real rigidity of nodes, which can be partially
plastified. The derived equations allow to solve 3D system with respect to the non-linear behavior
with the effect of the semirigid connection. The evaluation of the effect of each deflection to the
non-linear behavior of system is assume to be done with respect to different topology of space
systems.

References

(1] J.S. Przemieniecki, Theory of Matrix Structural Analysis, Mc Graw Hill, (1968)

[2] Y. Goto and W. F. Chen, Second- Order Elastic Analysis for Frame Design, J. of
Struct. Eng. ASCE, Vol. 113, 7, July, 1501-1529, (1987)

[3] J.Y.Richard Liew and W. F. Chen, Stability Design of Semirigid Frames, John Willey
& Sons Inc., New York, (1996)

[4] H. Nooshin, Third International Conference on Space Structures, Elsevier Ap
plied Science Publishers, London, New York, (1984)

[5] G. A R Parke and C. M. Howard, Space Structures 4 th Conference Proceedings on
Space Structures , Thomas Telford Services Ltd. London , (1993)

[6] M. Vasek, Solution of Bars or Beams with repect to Geometrical Nonlinearity,
Stavebnicky Casopis VEDA, Vol 24, 5, 415- 428, Vyd. Slovenskej Akademie Vied,
Bratislava, (1975)

[71 M. Vasek, The Non-linear Behaviour of Large Space Bar and Beam Structures,
G.AR. Parke and C.M.Howard, Space Structures 4 th Conference Proceedings on
Space Structures , 665-674, Thomas Telford Services Ltd. London, (1993)

[8] M. Vasek, M. Drdacky, K. Hoblik, Research Report of the Czech Grant Office no.
103/93/2027 , Space Roof Structural System, Pittsburgh, Prague, (1996)

[9] I H.J. Toader, Stability functions for Members with Semirigid Joint Connections,

J. of Struct. Eng., Vol.119, 2, February, ASCE, 505-521, (1993)

[10] M. A M.Torkamani, M.Sonmez, J.Cao,Second-Order Elastic Plane-Frame Analysis

Using Finite Element Method,J. of Struct. Eng., Vol. 123, 9, Sept, ASCE, (1997)



	Small strain non-linear relations for 3D space beam systems

