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Summary

This contribution is dedicated to the improvement of the geometric non-linear solution of 3D
beam space structural system based on a finite element approach. The improved relations are
based on all terms of the energy expression for the axial deformation The energy due to the
deformation caused by St Venant torsion of 3D-beam element is taken into the account for the
geometric non-linear behavior of the 3D element The influence of each component of a joint
deflection on the others within the non-linear solution of the element is clearly separated. The
effect of the elastically constrained members is included in relations The new cross sectional
properties of the 3D beam are presented

1. Introduction

Geometric non-linear behavior of space structures is investigated by many researchers. The
classical approach is dealing with the geometric stiffness matrix kc The nodal forces are given by
the well known equation (1) from f 1],

S=( kE + ko) U (1)
where S is the vector of nodal forces of the element, U is the vector of the nodal displacements,
k e is the elastic stiffness matrix and kG is the geometric stiffness matrix
The point of interest on the influence of semirigid connections together with the non-linear
behavior of structure is described in [2], [3], [4], [5], [6] Space structural frameworks are intensively

used since 1980's. Papers dealing with these problems are published in proceedings on
Space structures [4], [5], At the work [9] are derived relations for the semirigid connections with
respect to the all twelve degrees of freedom in the space. The solution which is based on the
equation (1) is omitting higher order terms of the beam energy due to axial deformation. The
concept of a geometric stiffness matrix is based on the simplification that the load imposed onto
the structure is unchanged, during the load step increment. The relations which are introduced in
this paper are not using any simplification and all the terms in the energy expression are used. As
result of the approach leads to a clearly separated relations for each component of the deflection.
The other effect of the approach is that the relations are more accurate then the previous equation
(1) The detail derivation and the solution procedure is described in [6], [7], [8], It is also
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possible to introduce the effect of the semirigid connections as were derived by Toader at [9], The
derived results are corresponding to the relations for the plane frame structures in [10],

2. Non linear relations

2. 1 Basic Assumptions

The derivation is based on the following assumptions:
1) 3D members are straight without any imperfections
2) The local coordinate system of the member follows the right hand rule and is coincident

with major principal axis of the member
3) Navier's hypothesis is valid for the cross-section of the member.

4) Torsion is assumed to be Saint Venant type, i. g. warping is neglected.
5) The load step increment is finite
6) The loads are acting on joints
7) The structural material is elastic-perfectly plastic
8) Local stability effects do not occur

2.2. The basic relations of geometric non-linear behavior

The relation between the nodal displacements and element deformations is described by
u (x, y, z) a U (ui,u2,u3, u„) (2)
where u is the vector of the element deformations and U is the vector of nodal displacements.
Matrix a is the matrix of functions describing the geometrical relations between these displacements.

Non-dimensional coordinates are introduced as £ -f;,C. -f-, where x, y, z are

dimensions in local coordinate system and L is the length of the 3D element (Fig. 1)
The deformed length of an infinitesimally small element (Fig.2) can be expressed as

3D BAR

Fig. 1: The 3D bar and beam member

(l+sxa)dx where the exa is the engineering axial strain and dx is the elements length. Applying
Pythagora's theorem, the elongation of the element may be expressed as
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The right hand side of equation (4) represents the component
of the Green strain tensor exx For the condition of small strain,

we can write (exa )2 0 and the Green tensor coincides with
the engineering strain ex. Ifwe introduce terms for the axial
deformation due to bending to the expression (4) we receive

Fig. 2: The beam element

Ex êil+L(£L)\L(Ê?L)2 (5)
âx 2 V âx 2 V âx âx âx

The energy of the member due to the axial deformation (5) can be expressed by equation (6)

U s2dV (6)
V

The whole axial energy expression is expressed as:

Let's express the deflection vector u in the form ofnodal displacements using the equation (2)
and perform the integration of the equation (7). After that, Castigliano's theorem (part 1) can be

applied to the expression (7) with respect to the deflections Ui,, U2, U12,. We obtain the
relations for the nodal forces Si, S2, S6 for the 3D bar and Si, S2, S12 for the 3D
beam. To express results in the matrix form we have to introduce new cross sectional properties
to express torsional moments S4 and S10. These terms are written as

Ky=§z4dA, Kt §y*dA, Kzy=$z1y1dA, (8)
A A A

We can call these expressions "moments of inertia of second order". Another feature of the
approach is that each nodal force is dependent on a symmetrical square matrix which includes terms
composed only from the cross-sectional properties and constants. The non-linear influence of the
other nodal displacements are excluded from the geometric nonlinear stiffness matrices. Therefore
it is possible to separate the influences of different nodal displacements on the observed nodal
force. This approach leads to the expression for each force which relies on the 6x6 matrices for
the 3D bar element or 12 x 12 matrices for the 3D beam element.
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2.3 The Non-linear solution for 3D members with the separate effects of deflections

The general equation for the forces at the end nodes of a 3D bar element is as follows:
Si k,ä U + (UT hiU) + Uj (UT q U) + Uj (UT g U) (9)
where indexj relies on the index i of the evaluated force as j=i+3 for i=2,3 and

j=i-3 for i= 5,6
Uj, uj nodal displacements (scalar quantities) which have the major effect on

the corresponding force Si

kEj i-th row of the elastic stiffness matrix,
hj square 6x6 matrices, which express the loading change during the load

step (corresponds to the well known geometrical stiffness matrix kG

U 6x1 vector of node displacements
UT transpose ofvector U
q, g square 6x6 matrices which express the higher terms of order in the longitudinal

strain energy ofa bar
The expression results for a 3D beam element are more complicated. The derivation procedure is

similar to that of a 3D bar element. The general equation for nodal forces applied to a 3D beam,
which represent shear, axial force and bending, is

Si= kEi U + (UT 7hj U) + (UT 'hi U) (10)

+ u; (UT 'el U) + u,»« (UT Me2 U) + Uj (UT Je3 U) + uj+6 (UT j"*e4 U)

where 7hj -'hi are square 12x12 matrices which express the loading change during the loading
step (corresponds to, the well known, geometrical stiffness matrix ko Superscript 7 or 1

express the influence of 7th or 1st node deflection as a major influence
kEj corresponding row of the elastic stiffness matrix
U 12x1 vector of nodal displacements
'el, i+4e2, Je3, j+6e4 square 12x12 matrices which express the influence of higher order

terms in the axial strain energy expression of a 3D beam element

Uj, Uj, Ui+(j, Uj+6 the node displacements (scalar quantities), which have a major
influence on the corresponding force SE where index /' is 2 and index j
is 6 for the forces S2, S8, S6, S12, index / is 3 and index j is 5 for the
forces S3, S9, S5, Sn,

Expressions for the torsional moments S4, S10 are slightly different. These forces represent Saint
Venant's torsion. The matrix equation for the nodal torsional moment is as follows:

S; kEi U + (UT 7hj U) + (UT 'hj U) + Uj (UT 'gl U) + u,^ (UT i+6g2 U) (11)

where index / is either 4 or 10.

Matrices gl and g2 for the torsional moment S4, at the near end of the element include the
same terms as matrices gl and g2 for the torsional moment SI0, at the far end of the beam
element, except they are of an opposite sign. The basic difference between the expressions for
bending moments and shear forces is in the non-linear influence of the governing deflection u,
which is separated out of the matrix equation as a factor. The torsional moments are influenced
only by the torsional deflection u4 and u,0. Then the equation (10) or (11) can be expressed
in a form

S SE +Sg + SQ (12)

Forces Sg which corresponds to the forces which were calculated with the geometric stiffness
matrix kc are now divided into two parts (UT 7hj U) and (UT 'hj U). The first part (UT 7hf U)
express the influence of the deflections at the far end of the element to the solved nodal force S„
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The second part (UT "hj U) express the influence of the deflections at the near end of the element
to the solved nodal force S,. For the force Si the matrix 'hi 0. Similarly for the force S7 the
matrix 7h7 0. For the force Si and S7 are matrices 7hi - 'h7 and the terms remind in the
geometrically stiffness matrix ko Thus, the effect of the geometric non-linear behavior expressed
by the approximate formula using the geometric stiffiiess matrix is good for axial force, but the
other non-linear influences to the shear forces and bending and the torsional moments are not
taken into the account in the equation (1).
Matrices "el,'e2,'e3,'e4 for shear forces S2 and Ss, and similarly for S3 and Sg, include the
same terms, however they are negative for 'el, 'e2, 'e3, 'e4 for the forces Ss and S9 at the far end

of the element. The same is true for the torsional moments S4 and Sw- Therefore, only matrices
'el, 'e2, 'e3, 'e4 need to be written to express the forces S2 and force S3. The matrices 'el, 'e2,
'e3, 'e4 for the bending moments vary in a position and value of non zero elements. The following
are matrix expressions showing the non linear relations between internal forces and deflections
with respect to the governing deflections which are as factors out of the matrices.
The elastic matrix kEi in this expression can be submitted by the matrix with the influence of
semirigid connections as was derived in [13], We can therefore solve the member forces with
respect to the non-linear behavior with included semirigid connections. The coefficients for the
connections can be established either by experiments or by FEM calculation of a joint with respect
to the material non-linear behavior. The simple iteration procedure described at the example at [6]
could be applied for the solution.

2.4 The effect of the shear torsional energy

The influence on the geometrically non linear behavior due to the shear energy should be also
included in the expression for the energy of the element. In the space framework the forces at any
joint are distributed to the bending and the torsional moments. Also the torsional energy should be
taken into the account. The space frame members are usually made from tubes. The Saint Venant
torsion express properly the behavior of the member. Several basic assumptions are as folows.
With respect to these assumptions the cross sections of the beam are not deformed, they are only
rotated against each other under the Saint Venant torsion. For the position at axis x, e.g. zo =0,
yo =0 we can write^ 0,^=0 rzy o 15=^=0 (13)

We can now write the expression for the rest of the shear stress tensor as follows

r + v* xy âc âc dy I xz âc âc â

Energy of the deformed beam due to the shear deflections can be expressed at equation (15)

After the same procedure which was shown and explained above, we will receive matrix expression

for the nodal forces with respect to the energy spent for the shear deformation due to the
Saint Venant torsion. The values of terms in the matrices are similar to the values at the stiffiiess
matrix with respect to the axial deformation. For the materials with relatively large shear modulus
is therefore reasonable to include the effect to the analysis. Final matrix equation for the nodal
forces is different for the forces due to the shear and bending and different for the forces due to
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the torsion S4, and Sw. This fact is similar as at the previous equations (10) and (11). We can
write for the first group of the forces the equation (16)

S { e U + }eUUT c U } (16)

and for the torsional forces we have

S4= -4düUTrü, S10 — 10dUUT r U, (17)
2 2

These expressions can be added to the equation (12) and solved simultaneously. The orthogonal
transformation from the local to the global system can be used to express the non-linear
expression for the whole system.

Conclusion

The derived equations allow to obtain geometric non-linear solution of an arbitrary 3D beam

system with the possibility to solve effect of each deflection component separately. The accuracy
of the solution can be easily controlled according to which matrices are used. The stability of
large one-layer systems is highly effected by the real rigidity ofnodes, which can be partially
plastified. The derived equations allow to solve 3D system with respect to the non-linear behavior
with the effect of the semirigid connection. The evaluation of the effect of each deflection to the
non-linear behavior of system is assume to be done with respect to different topology of space
systems.
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