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Summary

Within the framework of response spectrum analysis, a general solution for the three-
component orthotropic seismic excitation problem is presented. The contributions from three
different orthogonal earthquake components are combined in a rational manner to the
maximum and minimum values of any structure response quantity. The critical orientation of
the seismic input associated with these values is also determined. The method incorporates in
its formulation the Penzien-Watabe model of ground motion. Therefore, in contrast to the
SRSS rule, it can explicitly account for the correlation of the three seismic components, which
makes it particularly usefull in the dynamic analysis of curved bridges. All given relations are
easy to implement in current standard dynamic analysis software.

1. Introduction

According to the model of Penzien and Watabe [1], the three translational seismic motion
components on a specific point of the ground are statistically uncorrelated along a well-
defined orthogonal system of axes whose orientation remains reasonably stable over time
during the strong motion phase of an earthquake. This system of principal axes of the ground
motion is oriented such that the major principal axis "p" is horizontal and directed towards the
epicenter, the intermediate principal axis "w" is in the transverse (orthogonal) direction, and
the minor principal axis "v" is vertical (The choosen notation shall remind of Penzien-Watabe
model). This orthotropic ground motion is described by three generally independent response

spectra S°, SP and S°, with $*>SP>S°.

In the special case of equal horizontal components S*=S®, the extreme values of the structure's
response quantities do not depend on the direction "a" of the epicentral seismic component
[2,3]. However, in the general case of S*>S°, the extreme value of a response quantity strongly
depends on this direction. Therefore, the determination of the most unfavorable (critical)
epicentral direction for each response quantity is of great practical interest. Smeby and Der
Kiureghian (4] determined the critical direction in case of analogous response spectra S*=yS® ,
where O<=y<=1. Also, Anastassiadis [3} and Lopez and Torres [5] determined the critical
direction for the more general case of arbitrary response spectra.

In this paper, on the basis of the Penzien-Watabe idealization, the tensorial properties of the
extreme values of response are presented. The critical epicentral direction as well as the
correspondent maximum and minimum values of an arbitrary response quantity can be
straightforwardly deduced from these properties.
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2. Notation

A fixed global orthogonal reference system Oxyz is used for the structure. The spectra S* or sh
are applied individually in the direction of the x- or y-axis according to Figure 1. The
corresponding peak probable values of a typical response quantity R (force or displacement)
are symbolized as R,xa » R,xb, Ryya and R,y (Figure 1a,b,c,d), where the first subscript refers
to motion in direction x or y and the second (a or b) to the input earthquake spectrum (S* or
S". R,xand R,y symbolize the extreme values of a typical response quantity R produced from
a bidirectional excitation with epicentral direction along the axis x or y respectively (Figure
1e,f). An analogous notation is used for the variable system of principal axes Opwv.

y y y y 3 4
S* EEpicentral sb S g
s? Sb s?
X X X X X
Epicentral Epicentral
(@) (b) (© (d) (e ®

Figure 1. Response parameter notation

3. Tensorial properties - Critical direction

We assume that the epicentral principal axis p of the ground motion is defined in terms of an
angle 0 relative to the x axis of the
we ) fixed reference system of the structure
p (Figure 2). If $* is the design
\ o spectrum in the direction of p axis and
% S° the design spectrum in the
direction of w axis, the probable
extreme value of a response
Figure 2. Definition of angle 0 quantity R is [6] :

Ry’ = Rpa” + Run” = %58 (RipaRipa + Riwb Riwb) (la)

In the above expression, €;; denotes the correlation coefficient between the responses in
modes i and j, and R; ;. and R;w, denote the modal values of quantity R for the excitations
defined by the indices after comma. If S is the design spectrum in the direction of p axis and
S* the design spectrum in the direction of w axis, we obtain the probable extreme value

and the correlation term
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Rpw = Rpwa - Rpwp = 2i2i& (RipaRjwa - Ripp Rjwn) (1c)

The modal values R;p and R; . are connected to the modal values R;x and R,y through the
following relations, which are independent of the used earthquake spectrum S or S :

Riw=-Rixsin® + Ry cosd (2b)

Inserting these relations in the right-hand terms of (1) we obtain

R,,” =R, cos’® + R,,* sin’® + Ry sin20 (32)

R, =R,?’sin’® +R,,> cos’® - Ry, sin20 (3b)

Rpw = - (4) (R,x’ - R,,%) sin20 + Ryy cos20 (3c)
where

R:xz = R:xa2 + Rsyb2 = 2 2‘rj € (RixaRjxa * Riy Rj,yb) (4a)

R,* = Ry’ + Ry’ = i€ (Rixo Rjxo + Riya Rjya) (4b)

Ry = Rya - Rygp = 2i2jsj (RixaRjy - Rixw Rjp) (4c)

It is important to note that relations (3) are similar to the transformation rules for the
components of a symmetric second order tensor. Consequently, the four quantities R, R,y2
and R, = Ryx can be considered as components of a symmetric second order tensor,
expressed analytically by matrices

R’ Ry R,y"  Rpw
and

in the Oxy and Opw reference system respectively. Due to its tensorial character, the arbitrary
response quantity R is characterized by the following properties which are common to all
symmetric second order tensors :

(a) The trace and the determinant of the above matrices are not dependent on the orientation
of the earthquake excitation :

2 2 _ 2 2 2 2 2 2 2 2
Ryx" + R,y" = R,)" + Ryw and R,x Ry" - Ry = Ryp” Row™ - Ryw

(b) There is a specific earthquake orientation defined by the axes (I, II) for which the
correlation term R,y vanishes. This specific orientation is determined by the critical angle
(see eq. 3¢) :
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Ber = (%) tan (2R (R, - R,y)) 5)

The corresponding response quantity R takes the following maximum and minimum
values :

max R? = R,2 = (R’ + Ry?)/2 + V(R - Ry7)/2]7 +Ry’ (6a)

min R* = R,i® = (R,2 + R,")/2 -V[(R,Z - R,;7)/21% +R,} (6b)

(c) The correlation term R, takes its maximum value
max Ryw =Rz = (%) ( R, -Ru)

for a seismic excitation along axes (1,2) defined by the angle bisecting the axes (I, II). For
these seismic directions, a response quantity R takes the value

Rslz = R522 = (1/2) ( R312 + Rs[lz)

i.e., the interchange of the input design spectra $? and S® along the axes 1 and 2 does not
affect the peak value of R.

It is clear from the preceding considerations that the calculation of the maximum and
minimum values of an arbitrary response quantity requires four independent dynamic analyses
of the structure, applying input spectra S* and S° as shown in Figures 1a to 1d. All necessary
terms, €.g., the modal values in the right-hand sides of equations (4), are routinely calculated
by current standard linear dynamic analysis programs. Then, using (4), R,.* , R,,> and Ry,
can be computed, and from (6a,b) the maximum and minimum values of any response
quantity R can be immediately obtained, with no need to previously calculating the critical
angle 0. Finally, the contribution of the vertical seismic component is to be added to the above
values, according the SRSS combination rule. It is obvious that all mentioned relations can be
easily implemented in current standard software for multicomponent seismic analysis.

4. Conclusions

A general solution for the three-component orthotropic seismic excitation problem is
presented. It offers, within the framework of response spectrum analysis, a rational procedure
for determining the maximum and minimum values of any given response quantity R of a
structure. It also provides a simple means of determining the critical orientation 9 associated
with the extreme values of R. In contrast to the SRSS rule prescribed by many design codes,
the presented method can explicitly account for the correlation of the different seismic
components by incorporating in its formulation the Penzien-Watabe model of ground motion.
This fact makes it particularly usefull in the dynamic analysis of curved bridges. All necessary
relations are of a computationally simple form and can be easily implemented in current
standard dynamic analysis software.
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Summary

This contribution is dedicated to the improvement of the geometric non-linear solution of 3D
beam space structural system based on a finite element approach. The improved relations are
based on all terms of the energy expression for the axial deformation. The energy due to the
deformation caused by St. Venant torsion of 3D-beam element is taken into the account for the
geometric non-linear behavicr of the 3D element. The influence of each component of a joint
deflection on the others within the non-linear solution of the element is clearly separated. The
effect of the elastically constrained members is included in relations. The new cross sectional
properties of the 3D beam are presented.

1. Introduction

Geometric non-linear behavior of space structures is investigated by many researchers. The
classical approach is dealing with the geometric stiffness matrix kg . The nodal forces are given by
the well known equation (1) from [1].

S=(ke+ ke) U (D
where S is the vector of nodal forces of the element, U is the vector of the nodal displacements,
kg is the elastic stiffness matrix and kg is the geometric stiffness matrix.

The point of interest on the influence of semirigid connections together with the non-linear
behavior of structure is described in [2], [3], [4], [5], [6]. Space structural frameworks are inten-
sively used since 1980’°s. Papers dealing with these problems are published in proceedings on

Space structures [4], [5]. At the work [9] are derived relations for the semirigid connections with
respect to the all twelve degrees of freedom in the space. The solution which is based on the
equation (1) is omitting higher order terms of the beam energy due to axial deformation. The
concept of a geometric stiffness matrix is based on the simplification that the load imposed onto
the structure is unchanged, during the load step increment. The relations which are introduced in
this paper are not using any simplification and all the terms in the energy expression are used. As
result of the approach leads to a clearly separated relations for each component of the deflection.
The other effect of the approach is that the relations are more accurate then the previous equation
(1). The detail derivation and the solution procedure is described in [6], [7], [8]. It is also
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possible to introduce the effect of the semirigid connections as were derived by Toader at [9]. The
derived results are corresponding to the relations for the plane frame structures in [10].

2. Non linear relations
2. 1 Basic Assumptions

The derivation is based on the following assumptions:

1) 3D members are straight without any imperfections

2) The local coordinate system of the member follows the right hand rule and is coincident
with major principal axis of the member

3) Navier's hypothesis is valid for the cross-section of the member.

4) Torsion is assumed to be Saint Venant type, i. g. warping s neglected.

5) The load step increment is finite

6) The loads are acting on joints

7) The structural material is elastic-perfectly plastic

8) Local stability effects do not occur

2.2. The basic relations of geometric non-linear behavior

The relation between the nodal displacements and element deformations is described by
u(x,y,z)=a U (u,uzus,.....u,) 2
where u is the vector of the element deformations and U is the vector of nodal displacements.
Matrix a is the matrix of functions describing the geometrical relations between these displace-

ments. Non-dimensional coordinates are introduced as & = £,4 = &, 17 = £, where x, y, z are

dimensions in local coordinate system and L is the length of the 3D element (Fig.1)

The deformed length of an infinitesimally small element (Fig.2) can be expressed as
54
Y.

St
3D BAR ﬁ 7% 3D BEAM s >

$12

N

¥

Fig.1: The 3D bar and beam member
(1+&;")dx where the &, is the engineering axial strain and dx is the elements length. Applying
Pythagora’s theorem, the elongation of the element may be expressed as
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2 2 2
[6+ &)= [d%x_dx) (%d] +(ﬂ;dx] 3)
This can be simplified as:

e)_du 1(au) 1(m\7 1(w\" 4
e 1+ =2 22 s | 2= 1] @
2 ox 2 \ox 2 \éx 2\ &
The right hand side of equation (4) represents the component
of the Green strain tensor e, . For the condition of small strain,
we can write (&, )> = 0 and the Green tensor coincides with

the engineering strain &,. If we introduce terms for the axial
deformation due to bending to the expression (4) we receive

Fig.2: The beam element

du 1(&)2 1(%)2 'u,  'u, (5)
E, = —+ —| —| +=|—] -» i 5
ox 2 \ox 2\ x ox Ix
The energy of the member due to the axial deformation (5) can be expressed by equation (6)
U=4%E[&%dy ©)
14

The whole axial energy expression is expressed as:
L 2 5t 2 2 - 4 4 o2 1 7 2
Iy TE T N
255 |Nox ox ox 4\ 9x 4\ Ox ox \ Ox ox \ 0x
L s R ORCCORICO
ox &x? ox ox? 28 6x ox ax? 0x ox? %% \ Ox

2 2 ot 2
—[a—u‘—) (a u‘)z + 6;; ya L z}dAdx

ox x*t ox?

Let’s express the deflection vector u in the form of nodal displacements using the equation (2)
and perform the integration of the equation (7). After that, Castigliano’s theorem (part 1) can be
applied to the expression (7) with respect to the deflections u;, u, ...... u;2,. We obtain the
relations for the nodal forces S;, S, ........ S¢ forthe 3D barand S,, Sz, ........ Sz for the 3D
beam. To express results in the matrix form we have to introduce new cross sectional properties
to express torsional moments S, and S)o. These terms are written as

K, = §z4dA, K, =§y‘d4, K, = §z2y2d,4, (8)
A A A

We can call these expressions "moments of inertia of second order". Another feature of the ap-
proach is that each nodal force is dependent on a symmetrical square matrix which includes terms
composed only from the cross-sectional properties and constants. The non-linear influence of the
other nodal displacements are excluded from the geometric nonlinear stiffness matrices. Therefore
it is possible to separate the influences of different nodal displacements on the observed nodal
force. This approach leads to the expression for each force which relies on the 6x6 matrices for
the 3D bar element or 12 x 12 matrices for the 3D beam element.



860 SMALL STRAIN NON-LINEAR RELATIONS FOR 3D SPACE BEAM SYSTEMS A

2.3 The Non-linear solution for 3D members with the separate effects of deflections

The general equation for the forces at the end nodes of a 3D bar element is as follows:
Si=ke U+(U" bl U)+u; (U qU)+u; (U gU) ©)
where index j relies on the index 7 of the evaluated force as j~i+3 for i=2,3 and

Jj=i-3 for i= 35,6

Wi, Ui nodal displacements (scalar quantities) which have the major effect on
the corresponding force S;
kgiooooo i-th row of the elastic stiffness matrix,
by o square 6x6 matrices, which express the loading change during the load
step (corresponds to the well known geometrical stiffness matrix k¢ )
U 6x1 vector of node displacements
vt transpose of vector U
Q g......... square 6x6 matrices which express the higher terms of order in the longitudinal

strain energy of a bar
The expression results for a 3D beam element are more complicated. The derivation procedure is
similar to that of a 3D bar element. The general equation for nodai forces applied to a 3D beam,
which represent shear, axial force and bending, is

S=ke: U+ (U" "h; U) + (U" 'h; U) (10)
+y; (UT el U) + uisg (UT H6a2 U) +uy (UT ie3 U) + ujss (UT i*6aq U)

where "h; = -'h; are square 12x12 matrices which express the loading change during the loading
step (corresponds to, the well known, geometrical stiffness matrix ke ). Superscript 7 or /
express the influence of 7#h or /st node deflection as 2 major influence
Ko sesssmmen corresponding row of the elastic stiffness matrix
U..ooovveevveeeeenno.... 12x1 vector of nodal displacements
‘el, “Se2, Je3, %4 . square 12x12 matrices which express the influence of higher order

terms in the axial strain energy expression of a 3D beam element
Ui, U, Uits, Ujsge.ronn... the node displacements (scalar quantities), which have a major

influence on the corresponding force Sy where index iis 2 and index j

is 6 for the forces S, Ss, Ss, Si12, index 7 is 3 and index jis 5 for the

forces S3, Sg, Ss, S11,
Expressions for the torsional moments S4, S are slightly different. These forces represent Saint
Venant’s torsion. The matrix equation for the nodal torsional moment is as follows:

Si=kg U+ (U" 'h; U) + (UT ' U) + u; (U” ‘gl U) +uis (UT g2 0) (11)

where index 7is either 4 or 10.

Matrices gl and g2 for the torsional moment .S,, at the near end of the element include the
same terms as matrices gl and g2 for the torsional moment Sy, at the far end of the beam
element, except they are of an opposite sign. The basic difference between the expressions for
bending moments and shear forces is in the non-linear influence of the governing deflection u;
which is separated out of the matrix equation as a factor. The torsional moments are influenced
only by the torsional deflection #4 and ;. Then the equation (10) or (11) can be expressed
in a form

S =S +8¢ + Sq (12)

Forces S¢ which corresponds to the forces which were calculated with the geometric stiffness
matrix kg are now divided into two parts (UT "h; U) and (U™ 'h; U). The first part (U” "h; U)
express the influence of the deflections at the far end of the element to the solved nodal force S;.
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The second part (U" 'h; U) express the influence of the deflections at the near end of the element
to the solved nodal force S;. For the force S; the matrix 'h; = 0. Similarly for the force S, the
matrix "h; = 0. For the force S; and S are matrices "h; = - 'h; and the terms remind in the
geometrically stiffness matrix k¢. Thus, the effect of the geometric non-linear behavior expressed
by the approximate formula using the geometric stiffness matrix is good for axial force, but the
other non-linear influences to the shear forces and bending and the torsional moments are not
taken into the account in the equation (1).

Matrices ‘el, ‘e2, ‘e3, ‘e4 for shear forces S, and Ss, and similarly for S; and S, include the
same terms, however they are negative for ‘el, 'e2, ‘e3, ‘e4 for the forces Sz and S, at the far end
of the element. The same is true for the torsional moments S, and S;o. Therefore, only matrices
'el, 'e2, 'e3, 'ed need to be written to express the forces S and force S;. The matrices ‘el, ‘e2,
'e3, 'e4 for the bending moments vary in a position and value of non zero elements. The following
are matrix expressions showing the non linear relations between internal forces and deflections
with respect to the governing deflections which are as factors out of the matrices.

The elastic matrix kg; in this expression can be submitted by the matrix with the influence of
semirigid connections as was derived in [13]. We can therefore solve the member forces with
respect to the non-linear behavior with included semirigid connections. The coefficients for the
connections can be established either by experiments or by FEM calculation of a joint with respect
to the material non-linear behavior. The simple iteration procedure described at the example at [6]
could be applied for the solution.

2.4 The effect of the shear torsional energy

The influence on the geometrically non linear behavior due to the shear energy should be also
included in the expression for the energy of the element. In the space framework the forces at any
joint are distributed to the bending and the torsional moments. Also the torsional energy should be
taken into the account. The space frame members are usually made from tubes. The Saint Venant
torsion express properly the behavior of the member. Several basic assumptions are as folows.
With respect to these assumptions the cross sections of the beam are not deformed, they are only
rotated against each other under the Saint Venant torsion. For the position at axis x, e.g. 2z, =0,

yo =0 we can write

duy . Fuyx s duy, JFuy

Fo=0.55=0  rzy=0 _&ﬁyo__&é’ =0 (13)
We can now write the expression for the rest of the shear stress tensor as follows

_ a; A z &, a,
Vo = 3 Ye=ataz (14)
Energy of the deformed beam due to the shear deflections can be expressed at equation (15)
w2 2 2 uy 15

o3 (3 s (R AR e e e O

After the same procedure which was shown and explained above, we will receive matrix expres-
sion for the nodal forces with respect to the energy spent for the shear deformation due to the
Saint Venant torsion. The values of terms in the matrices are similar to the values at the stiffness
matrix with respect to the axial deformation. For the materials with relatively large shear modulus
is therefore reasonable to include the effect to the analysis. Final matrix equation for the nodal
forces is different for the forces due to the shear and bending and different for the forces due to
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the torsion S, and S;o. This fact is similar as at the previous equations (10) and (11). We can
write for the first group of the forces the equation (16)

s=92A{eU+ 1leUU" ¢ U} (16)
and for the torsional forces we have
Sy = %é“dUUTrU, 810= GZ—A”’dUUTrU, (17

These expressions can be added to the equation (12) and solved simultaneously. The orthogonal
transformation from the local to the global system can be used to express the non-linear
expression for the whole system.

Conclusion

The derived equations allow to obtain geometric non-linear solution of an arbitrary 3D beam
system with the possibility to solve effect of each deflection component separately. The accuracy
of the solution can be easily controlled according to which matrices are used. The stability of
large one-layer systems is highly effected by the real rigidity of nodes, which can be partially
plastified. The derived equations allow to solve 3D system with respect to the non-linear behavior
with the effect of the semirigid connection. The evaluation of the effect of each deflection to the
non-linear behavior of system is assume to be done with respect to different topology of space
systems.
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a

Summary

In the last two decades the Finite Strip Method (FSM) has been successfully introduced in the
studies of linear behavior, vibrations and buckling as well as nonlinear behavior of various types
of prismatic folded plates and curved shells. The reason for the introduction of this method lies
in the fact that resolving of several classes of practical problems it is much faster than the more
comprehensive and adaptable Method of Finite Elements (FEM). This is generally valid for
structures with regular geometrical shape and simple boundary conditions, whose discretization
into many finite elements is often very expensive. In such cases the FSM can be extremely
competitive in terms of cost and accuracy, both during calculations and in practical application.
Discretization of the cross-section into a mesh of finite strips enables the adoption of a finite
number of degrees of freedom in the section.

1. The Finite Strip Variational Formulation

The well-known basic procedure of the method is the discretization of plate structures into
longitudinal strip elements. The general form of the finite strip displacement function is
approximated by the product of polynomes and series which is an interpolation between the
classical Ritz and the FEM,

£=Y Y,0) TN ., 1)

where Yy(y) are functions from the Ritz and Ni(x) are interpolation functions from the FEM.
According to the Green-Lagrange's strain tensor, we present the strain components in an
arbitrary point, on the distance z from the middle plane of the plate, as functions of the
displacement components of the point of the middle plane of the plate (ug, vo, w=wy), as follows:

(uoyy2+w‘y2)—z-w‘w, 2)



864 THE FINITE STRIP METHOD IN COMPUTATIONAL ENGINEERING

A

[

™w
vZ

Fig 1 A finite strip with eight degrees of
freedom

The previous expressions can be obtained as
products of the following matrices and

vectors:

eo = I"lAn 'qu = Bul 'qu

1. - 1
no=—2_LlAw'w'L2Aw'qw ZEBWE.W.BWZ.qw
1 el u u 1 u u u
go =5L1Au 'U'L2Au ‘qu =5Bul 'U'Bu‘Z ‘qu
K=I"3Aw'qw =Bw3'qw
e, =L,Al-q} =B, q,

¢ =L,A}-q; =B}, -q]

3)
Where:
u‘n,x uq‘x 0
! n
e, =lv, e, =|0 | e =lv |
uny + vo,x u°-)' vo X
= & G &
| |
Ew,x Euo,x
-w
_ 1 2 _ 1 2
Tlo - Ewy ] gn - Euoy y K= _w.yy 2
—2w
W, w,y uo.x 'uo.yJ xy

0 ~ u u
w=| ,szAu 0| y|% O
0 q, 0 A 0 q,

The total potential energy is defined as the
sum of the potential energy of external
forces and the strain energy. The
formulation of strip characteristics will be
presented using the principle of minimum
total potential energy.

1.1 Geometrically Nonlinear Viscoelastic
Problems

In the non-homogeneous finite strip
composed of the layers of concrete and
reinforcement, the conditions of balance
represent a system of geometrically
nonlinear equations,

[K)+K®] a0 = D,(0)- [kt + Kt,)] -att,) +Q,
X )

where K is the classical or basic stiffness

matrix, K the geometrical stiffness matrix.

1.2 Geometrically Nonlinear  Elastic

Problems

As the instant strains are elastic Eq. (5) can
be written in the form:
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[Kt)+Ret)] -qt) = Q.. )

This is a system of non-linear simultaneous
equations at time t=t.

1.3 Linear Elastic Problems

By exclusion of the geometrical stiffness
matrix from the above equation we obtain a
linear system of differential equation.

iA((fo)‘q(fo):Qo- @)
1.4 Linear Viscoelastic Problems

The behavior of the material, which changes
with time, can be approximation by the
following equations of balance

K(-q(6) = Do(1)-Q, +Q (8)

which is a system of linear simultaneous
equations, which enclose time dependent
effects.

The basic stiffness matrix blocks, together
with the geometrical stiffness matrix blocks
are used in this interactive analysis:

.| R 2R
KO=|, . 2 |
| 2
r - 17 _ I
0 —l—Kuw lK:w+
14~ 0 4
EKW+ li‘éu‘
K(t)= I 3 +17 2 +
K, |~Kw+| [=K® +
2 4 4 0
2R | SR
L 4 1 L4 J
) ©)
Lgw,
2
2o | 1R
H4 2
2Ry
41
—~K" 0
| 4 J

Since the system of equations is nonlinear,
the equations of balance in any step of the
iterative procedure resolving will not be
satisfied. Due to this fact, we shall have the
vector of non-balanced forces, i.e., residual
loading. It is favorable to present this vector
separately for the linear and nonlinear part.

R=R+R-Q, (10)
Q is the load vector and q the vector of

nodal line displacement parameters for the
finite strip.

g o

2  Newton-Raphson's iterative

procedure of solution

The variational statement about stationary of
the total potential energy in nonlinear
problems results in a vector of non-balanced
forces,

R=[(D.qT]=[lﬂ(+ﬁ]-q—Q=0, (12)

Taylor's expansion of (12) gives:
R, =R{q,+8,)=R(q,)+ R—.usu toee = (13)
R, +K, 8, +..

where K,=R, is the second partial

derivative of @ calculated at qo (tangent
stiffness matrix).

If (13) is zero and if only the linear terms in
qo are considered the standard Newton-
Raphson iteration is obtained:

5, = -K;' R,. (14)

Using this approach, an iteration further
gives:

8, =-K''R, (15)

865
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where K, =R _ atq,.

The criterion for convergence, based on the
residual force values, is:

A 1005e, (16)

where N is the total number of nodal lines of
the decomposed structure, and rt. determines
the number of iteration. This criterion means
that convergence occurs when the norm of
residual forces becomes lesser than £, which
is assigned.

3 Examples
3.1 Example 1

This example presents a comparative
analysis of calculations of a prestressed
concrete element according to the theory of
prestressed concrete within a line analysis,
and to the FSM. The results differ
considerably, due to two main reasons. First,
by the FSM, as opposed to the classical
calculation based on the theory of line
girders, we can obtain the stress-strain state
of the thin-walled bar with open and
deformable cross-section. Second, in the
calculation of the stress-strain state in an
arbitrary time t, the Poynting-Thompson's
model of viscoelastic body is used.

Figure 2 presents the cross-section of
prestressed concrete element, with the
length of 10.20 m.

1.95kN/m

145 ., 910 SESEU | . N
v 1200 )

Fig 2 Cross-section of prestressed concrete
element

The element is made of C60, and it is
prestressed adhesively with four cables
7¢5mm, with total area of 5.5 cm and total
initial prestresing force of 667.2 kN. The

allowed stress in steel is 128x10% kN/m’,
and the, elasticity modulus of steel is
E¢=2x10 kN/m .

Characteristics of concrete as a viscoelastic
material are:

E, =E, =4138-10" kN/m?,
o(t,,t,) =28,
A(to,t,) =075,

] _ 2

C aliowsd — -18500 kKN/m )
! _ 2

o'mowed =2200 kN/m"*.

Apart from the own weight, the element is
subject to live loading which is transmitted
to the longitudinal beams. This loading is
considered 1o be movable, and it does not
induce the effects of concrete creep. The
loading on two beams is 3.9 kN/m. In
combination with the own weight, if it is
also considered as line loading, the loading
on both beams is 6.0 kN/m. Figure 3.
presents the mesh of finite strips with the
corresponding boundary conditions.

; 5 uy=py0

]
] EJ 10 i1 12 1B

z

Fig. 3 Mesh of finite strips and symmetry
conditions

The results of calculation are presented in
Figure 4 (a), (b) and (c). In Figure 4(a) the
diagram drawn in the full line represents o,
caused by own weight and prestressing in
the time ty, while the dotted line is for the
time t,. The stresses are calculated in the
middle of the span length. Figure 4(b)
presents the diagram of o, caused by the live
loading, and Figure 4(c) of that caused by
the total loading and prestressing in the time
te.

It can be seen that the stresses in the
concrete exceed the allowed values. The line
analysis, which can not yield good results
for such a cross-section, gives stress values
which are within the allowed limits.
According to this calculation, in the upper
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Fig. 4 Diagrams of stress o, in the middle of girder span length, (a) effect of own weight and
prestressing in tgp and t., (b) effect of live loading, (c) effect of own weight, prestressing and live

loading in t,.

fibre o,” = -18310 k}\I/mz, and in the lower
fibre 6,' = 616 kKN/m .

In addition, it should be noted that according
to the FSM, the loss of prestressing force
caused by elastic strains of concrete (3.23%)
and elastic strains and creep of concrete
(6.99%) is much lesser than the total
prestressing force loss anticipated in the

calculation according to the line analysis
(20%).

3.2 Example 2

Prefabricated prestressed concrete girders
are complex elements, 75 x 210 com,
lightened by three openings ¢50 cm. The
elements are from 13.40 to 25.40 m long,
see Figure 5 and they serve as bridge
girders. They are made of the following
materials:

o steel for prestressing 1800/1600, with

nominal cross-section of 0.93 ¢cm ,

s concrete C40.

The cutting of tendons can be carried out
only when the concrete reaches the strength
of 30 MN/m2. The reason for this is the

unfavorable stress state of the girder in the
moment of prestressing. Here we shall

_____.4 L — 11:?
5473

)

Fig. 5 View and cross-section of bridge
girder

analyze a girder, which is 19.50m long,
prestressed with 48 tendons with total arca
of 44.64 ¢m , and total initial prestressing
force of 5625 kN.

The mesh of finite strips in the cross-section
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of the girder is presented in Figure 6.
Polyhedral shell finite strips with eight
degrees of freedom were used. Eleven terms
of the series were used in the calculation of
own weight and prestressing.

4 0O
4 P4

YN

]
I I N i
2 g 2 1
., 50 10 50 10 50 29
210

LTT—*T\)

Z

Fig. 6 Mesh of finite strips in the cross-
section of girder

Figure 7 presents the most unfavorable
distribution of the stress oy in the node lines
1 and 3. Tension stress is unfavorable for
node line 1, and high stress of pressure for
node line 3

-2000

_30001 KN/m? a)

L ¥2=9.75m

i

displacement amplitudes. Complex
mathematical expressions were programmed
within the frame of the standard Newton-
Raphson's  iterative  procedure.  The
application of the FSM promises more
reliable results than the application of the
FEM, since the errors of discretization in the
former method are much lesser. Bearing in
mind that the FSM is a semi-analytical and
semi-numerical method, in the theory of
polyhedral shells, we find it very favorable
in solving of this problem.
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Fig. 7 Distribution of stress o, (kN/mZ); (a) in node line 1, (b) in node line 3

5 Coneclusions

A nonlinear FSM has been presented for use
in the design of reinforced concrete plate
structures. The procedure has advantages
over the conventional FEM, since the
application of numerical integration is
avoided, and the stiffness matrices, loading
vectors and residual forces are expressed
explicitly as a function of the nodal
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Summary.

The calculation of strength for reinforced concrete members is at present executed pursuant to
requirements [ 1], where for efforts each of combinations in sections, in view of position of the
section relatively to longitudinal axis of member (normal, inclined, spatial) the appropriate
formulas for calculation of strength are adduced. The aid [2], made in development of [1],
contains the auxiliary tables oriented on «hand-operated» calculations. However such approach
is badly combined with opportunities of computer simulation.

1. Optimum Formulation

At the same time, all problems of calculation of strength, submitted in [1] and [2] have
sufficient generality, as follows: in each of them, at given efforts, overall dimensions of
section, classes of concrete and reinforcement, it is necessary to find the minimum area of
reinforcement at which the conditions of strength, as well as parametrical and structural
restrictions, intended in [1], are provided. Such formulation of the problem of calculation of
strength quite correspondents to the problem of nonlinear mathematical programming (NMP),
as it represented, for example, in [3]:

min{F(x)[g, (x) 2 0,i=1,..q;h,(x) = 0,j=1,.., P} 1)

Here: x= x;(1,..,n) - n-dimensional the vector of unknown variables; ®(x) - scalar, in general
case - nonlinear functions of all several variables x,; g;(x),h J-(;) - scalar, in general case -

nonlinear functions of all or some variables forming system of restrictions, correspondingly, in
form of unequations and equations.

It is important to note that formalization of wide class of strength problems in form of
optimization model [1] permits during the construction of appropriate computing algorithms to
use enough general dependencies which describes stress-strained state of reinforcement and
concrete in section, without additional simplifications, stipulated by the limited opportunities of
«hand-operated» calculation.

This article enters the improved diagram of dependence of stress in longitudinal reinforcement
os from the relative depth of compressed zone of concrete & for bending and eccentric com-
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pressed members from concrete having class B30 and below, with reinforcement of class A-I,
A-II, A-TII (see fig. 1, curve 1). The stress o are described by not direct but broken line in
segment & e[gk,l] with point of inflection in {} in contrast to known simplified diagram,

adduced in [4] and used in [1]. By this it is provided the better coincidence with exact formuta
of stress [4].

— G v v
Here: o = _l—{— -reduced stress in reinforcement placed at extended or less compressed edge of

member.
Beside it is used a single expression for determination of stresses in longitudinal reinforcement

o, =R, - F(),E €[0,11] (2)

where F(E) - function, approximated the considered diagram. The interpolation polinom of 6-th
degree is applied as such function.

F)=a, + Y at! 3)

Values of coefficients a;(i=0,..,6) for classes of concrete B12,5 and B15 by Ys2=09 are
calculated on computer and listed in table.

Table. F(Y)

a; Class of Concrete T LI
BI12.5 BI15 NERGERY

a, | 0987019 0.987970 2z ?

a, | 3036522 | 2868721 g N\

a, | -36.030163 | -34.394078 i j

a, | 140012541 | 135665211 -2 S

a, 1-224673126| -222.200063 a \

a; | 149.077017 | 151.287490 4

a, | -33.430986 | -35.232187 o

¢ Ar G2 2344 8504 o7 a4 a5 10 17

fig 1.

The diagram F(£) , having been received for concrete B15, is represented on fig.1 (curve 2).
Let’s consider some problems of calculations of reinforced concrete members formulating as a

problem of NMP using dependencies (2) and (3). All the designations, except of specially
mentioned, are accepted from [2].

2. The strength calculation for normal sections of bended members

The relative depth of compressed zone of concrete, as well as tensioned and compressed areas
of reinforcement are accepted as unknown variables of the NMP problem:

x, =£,X, = As,x, = A's. The NMP problem accepts the following air:

Find the minimum of object-function:
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min P(x) =x, +Xx, C))
by executing of'

a) conditions of strength

R.(h, —a’) M

1-05 b L, - > 5
O R o Rybhe ©)

b) equation of balance
(xz(a" +21:a‘x‘] ] xj] _Rably _ (6)

Xy R,
¢) parametrical and structure restrictions

x, >0,

11
x, <11, ™
x, —0.0005bh0 >0,

x, 20

Solutions of problem (4)-(7) is illustrated by control examples taken from [2].

The example 1: b=30cm; h=80cm;, a=5cm;a’ =3cm; concrete B15 (Yr2 = 0,9 ); reinforcement
AIIl; M=20.0 toneforce-m . The results (the correspondenced values from [2] are indicated in
brackets):

x, =€ =0323(0322); x, = A, =1136(1 134)cm’

The example 2: b=30cm; h=80cm; a=5cm;a’ =3cm, concrete B15 (Ye2 = 0,9 ); reinforcement
AL, M=80.0 toneforce-m . The results :

x; =& =0538(0550); x, = A, = 3596(3591)cm’; x, = A! =10.62(10.00)cm?.

3. The strength calculation for eccentric stressed members

Unknown variables of the NMP problem are accepted as in previous example:
x,=Ex,=A;x,=A.
The object-function has a previous air and conditions of strength is presented as:

2(Rpbhix, (1-0.5%, ) + R, (h, —2') x, XK, + K, (x, +%,)-N) o N ®)
2e,(K, +K,(x, +x,)) +(h, —a' XK, +K,(x, +x,)-N)

Here :
_ 1.6EBbh[ 011 +0_])’

1,)° 01+8,
3[1:) ""
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»

x. - 16E; (ho —a']z
NGRS
h
Then the equation of balance is:

[Xz[ao +ia,-xil) —xa) +£-le —% =0 9

Parametrical and structure restrictions are recorded as

X, >0,

x, <11,

x, ~0.0005bh, >0,
X, —0.0005bh, >0, |

(10)

It is accepted that in case of symmetric reinforcement x, =x, in problem (4),(8)-(10).
The example 3. b=40cm; h=60cm, a=a’ =4cm, concrete B25
(Ys2=0,9),1, =6.0m; N, = 700tonforce; E; = 275000kgforce / em?; reinforcement AIIL;

M, = 213toneforce - m. . The results (value from [2] are in brackets):
x, =£=02350235); x, =x, = A, =651(76)cm’;

4, The strength calculation of inclined sections of bended members

The length of projection of inclined crack C, = x,, the length of projection of inclined section
C=x, and the area of cross reinforcement within the limits of inclined crack, referred to space

of cross bars Ag" = x, are accepted as unknown variables of the NMP problem.

The NMP problem has the following air:
The object-function:

min @ = x, - x, (11)
condition of strength:

1+ R, bh]
( (pf)(i]zﬂ Bt-0 + st ‘X X3 +q X, — Qmax =20 (12)

restriction on maximal value of Q, <Q,™:

% —2922?“0_20 (13)

restriction on minimum value of Q, > Q™"
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X, —Mso (14)
Pns

restriction on minimum of web reinforcement:

_(1+(pf)(pB3RBtb>O (15)
2R B

3

restrictions on value of C,:

X, —X, >0 (16)
Prrh, -
_¥B2 0 17
Xy 25 (17)
x, —2h, <0 (18)

and, at least, condition of equality Q, =Qq:

xfx3 ~(1+9,)95,Ry bhy =0
Ryw

(19)

The example 4: b=20cm; h=40cm; a=3cm;concrete B15;
(VB2=10,9), cross reinforcement A-I;

Q... =13.75 tonforce,
q, = 32 tonforce / m.

The results (value from [2] are in brackets):
x, = C, = 452(44 8)cm’; x, = C = 107(108)cm;
X3 =Agy, /S =007(0.07)cm? / cm.

Conclusions

As 1s obviously, the results of solution of examples 1-4 having been received approach, have
good coincidence with results from [2].

The all numerical experiments were conducted by computer IBM PC in environment of
programming «kEUREKA» [5} and have shown the high efficiency of offered approach. By this,
the possibility and expediency of unification of calculation problems of strength for reinforced
concrete members by reducing them to corresponding problems of NMP. Such approach can
be fruitful also for the problems of calculation of strength in which the new physical models of
reinforced concrete with plenty of unknown parameters are used and for which the «hand-
operated» calculations are highly difficult. The new method of calculation of strength for
reinforced concrete structures under the action of cross forces, offered in [6], can serve as
example of such problem.
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Summary

Dynamic analysis techniques for high-rise structures under earthquake effects are rapidly being
developed and have been recognized as indispensable tools. The valid use of these techniques
requires from the design engineer a comprehensive understanding of the limitations and
inaccuracies of the analysis, and constant review of the results for errors. Computer-based
structural design assistants are needed to provide engineers with decision support tools and to
guide them through the dynamic analysis and design of high-rise structures. Therefore, the
incorporation of knowledge-based systems techniques will play a great role in helping carrying
out the complicated dynamic analysis and design process. This paper describes the development
of a knowledge-based design tool for the dynamic analysis and design of high-rise structures
subjected to earthquake forces.

1. Introduction

As structures become more complex in shape, taller and lighter, so the need grows for better and
more reliable tools to help in the analysis and design of such structures. Dynamic analysis and
design techniques for high-rise structures under earthquake effects are rapidly being developed
and have been recognized as indispensable tools. However, their use in design offices requires
specially trained and skilled engineers. Understanding the dynamic behavior and ultimate capacity
is essential for the design of safe and economical structures. Computer-based structural design
assistants are needed to provide practicing engineers with decision support tools and to guide
them through the dynamic analysis and design processes. Therefore, the incorporation of
knowledge-based systems techniques (KBES) will play a great role in helping carrying out
complicated dynamic analysis and design of high-rise structures. This paper is concerned with the
following: Development of a knowledge-based design tool (KBDT) for the dynamic analysis and
design of high-rise structures subjected to earthquake forces. The design methodology included in
this KBDT is based on the ductility concept, and is briefly described. Knowledge representation
and the coupling of numerical methods with symbolic processing are also considered.

2. Earthquake Design Methodology

In earthquake analysis/design process, the engineer should consider the different factors that
control the inelastic behavior of a building. The most critical factors to be considered in
earthquake design are ductility and the detailing requirements. The earthquake design
methodology (EDM) adopted in this research is divided into two phases (see Fig. 1): preliminary
design phase and detailed design phase. In the first phase a simple elastic analysis is employed to
establish an initial deployment of reinforcement. In the second an inelastic dynamic analysis is
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performed to allow a detailed review and refinement of this reinforcement. The EDM has been
applied to a particular type of lateral resisting system, coupled shear wall structures.

2.1 Preliminary Design Phase

This phase comprises three stages (see Fig. 1): conceptual design, preliminary analysis (elastic),
and allocate reinforcement: in the Conceptual design stage, the overall form of the building is
specified together with the relative positions of the lateral load resisting elements. The regularity
requirements are checked against codes limitations. In the Preliminary analysis stage, an elastic
analysis is carried out of the structure under the effect of the lateral static forces obtained in the
previous stage. In the Allocate reinforcement stage, an initial estimate of elements reinforcement
1s carried out.

2.2 Detailed Design Phase

This phase comprises three stages (see Fig. 1): detailed analysis (inelastic dynamic), review
ductility, and refine reinforcement. In the Detailed analysis stage, an inelastic dynamic analysis is
carried out by choosing a suitable earthquake record to critically excite the structure. The inelastic
dynamic analysis is carried out using the program DRAIN-2D [1]. In the review ductility satge,
the rotational ductility of each structural element is estimated as [2]:

b2] :9y+9p o

ph == =1+~ ]
0}’ Hy 9)’ ()

Where: K, is the rotational ductility; __ is the maximum rotation;
8, is the plastic rotation; and 8, is the yielding rotation

The purpose of the ductility review stage is to check the performance of the structure as designed.
In the Refine reinforcement stage, the reinforcement adopted in the allocate reinforcement stage
is refined based on the result of the ductility requirements in the review ductility stage.

3. The Knowledge-Based Design Tool (KBDT)

The aim of the developed KBDT is to assists design engineers in the following tasks:

o Check the regularity requirements of a building.

« Estimate the different earthquake factors used in UBC [3] code requirements.

» Model and perform the inelastic dynamic analysis of the structure under earthquake records.
« Estimate the required reinforcement in structural elements.

A macro level schematic view of the KBDT architecture is shown in Fig. 2. The architecture has
the following components:

® Knowledge base: comprises of several modules, each module is responsible . :r 2 specific
task;

e (ontext. contains the collection of facts which represent the current state of the problem in
hand;

e Inference Mechanism: controls the system by modifying and updating the context using the
knowledge in the knowledge base;

e External analysis programs: contain the structural analysis program DRAIN-2D, which is
interfaced to the system;

e Explanation facility: provides the user with the necessary explanations about the task being
performed; and

e  User interface: provides a channel through which the user can interact with the modules of
the system.
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4. Non-linear Dynamic Analysis Module

The non-linear dynamic module is one of'the knowledge-base modules. of the system. It is
concerned with the inelastic dynamic aaalysis of RC structures undex, earthquake records. It uses
the DRAIN-2D finite element program [1]. Interfacing with the program DRAIN-2D takes place
on three levels:

Input Data Level: At this level data needed for the dynamic analysis is prepared and checked for
consistency. The earthquake record is selected from a set of records. The data in the resulting file
DRAIN.IN, is read by DRAIN-2D.

Solution Process Level: At this level, the module executes the analysis program DRAIN-2D as a
background process. During the inelastic analysis, limited information is displayed on the screen
to inform the user of progress. More detailed information is directed to an output file
DRAIN.OUT which is investigated at the evaluation level.

Evaluation Level: At this level a quantitative-qualitative transformation of the dynamic analysis
results is carried out for the user. The module interfaces to the output file DRAIN.QUT, reads the
results it contains, and transforms them into formats and graphical displays suitable for
assimilation by the user (see Fig. 3). The results that are displayed and interpreted in this way
include the following: Elastic/inelastic lateral deflections; Lateral drift at each floor level; beams
moment, axial and shear forces, and bending moments; and rotational ductility.

In case the ductility requirements are not satisfied, or if the walls yield at the base before the
beams, the user is informed by the system. The module then assists the user to carry out further
inelastic analysis with modified element strength until the design is satisfactory. During the re-
analysis phase, the module automatically modifies the input data for DRAIN-2D. The general
steps taken to carry out the dynamic inelastic analysis of coupled shear walls are shown in Fig. 4.

5. Knowledge Representation

The knowledge representations used in this system include production rules, frames and data-
driven procedures, these being provided by Quintec-Prolog and Quintec-Flex [4,5]. Additionally,
the numeric procedures are represented using FORTRAN 77 as external programs. An example
of ft typical rule that decides on the type of reinforcement configuration to be used in the beams
follows:

Rule Beam_reinfl
IF Vbcr is the critical beam shear stress
AND min_cal_beam_shear stress > Vber
THEN compute diag_steel area
BECAUSE
minum cal beam shear stress is > 0.1*beam_length*fcu**0.5/beam_height

An example of using Quintec-Flex frames is the representation of earthquake records for use by
the program DRAIN-2D. The San Francisco record is represented as frame with slot values as
shown in Fig. 5.

6. The User Interface

The acceptability of any KBDT depends largely on its user interface. The design of a good user
interface must consider many aspects of human computer usage ranging frem cognitive models of
the user's thought processes to the aspect of usability. It is assumed that the user is knowledgeable
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about structural design, but not necessarily about dynamic analysis concept. The following system
requirements were identified and form the objective of the system implementation:

Easy to use; Takes the initiative and question the user; Teaches the user how to formulate the
problem; Allows the user to invoke the system at any level of abstract; and informs the user about
the next step in the design process. The user interface of KBDT is shown in Fig. 3.

7. Conclusions

In this paper a prototype KBDT for the dynamic analysis and design of high-rise structures was
described. The prototype system helped on the iterative design to achieve a balance between
element strength and stiffness to fulfil ductility requirements. The integration of symbolic
processing and dynamic analysis methods is a necessity for a robust and practical computer-aided
earthquake design. Moreover, KBES technology could be used in collecting and managing
earthquake engineering expertise from different sources and formalizing this knowledge for future
use by less experienced engineers. Heuristics alone are not sufficient to solve real design
problems. The system needs to be linked to numerical and structural analysis modules.

The KBDT has accomplished the following:

e Automate much of the dynamic analysis/design process, which could free the design engineer
from the more tedious aspects of design and allow him to concentrate on concepts such as
ductility.

e Help the structural engineer on the efficient use of FEM programs, preparation of input data,
modeling, and interpretation of results.

e Minimize the time spent to prepare the input data to the program DRAIN-2D, and help the
structural engineer in the decision making process.

e Enable the designer to control the location and magnitude of inelasticity in structural members
using inelastic dynamic methods. This allows the engineer to design the structure based on the
ductility concept.
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Summary

Since the spectacular collapse of the famous Reichsbriicke in Vienna in the year 1976, the
attention of Austria Bridge Engineers is very much focused on the big bridges across the
Danube. The frequency of traffic on most of the bridges has reached the limit, touching some
140.000 vehicles per day in the extreme cases. This vital lifelines have to stay open under any
conditions. Therefore the assessment of the structural condition of the bridges is of upmost
importance. This paper reports on the works carried out on the bridge assessment covering 9
major bridges with the use of the dynamic characteristic method BRIMOS developed by VCE.
The potential of the method is demonstrated and relevant tests are provided.

1. Introduction

The main target of the works was to create a numerical tool for the assessment of the structural
stability of the major bridges across the Danube. As a basis the tools of the vibration
characteristic method was used. It is based on Ambient Vibration Tests carried out on the bridges
frequently. They are compared to analytical calculations with Finite Element computer models,
which represent the planned condition of the structure.

The Bridge Monitoring System BRIMOS has been developed over the past 2 years to carry out
ambient vibration tests economically. Useful results for the assessment are provided. The major
mile stones of the program are:

* Recording of the characteristic through 8 accelerometers which are moved over the bridge to
cover the whole area

* Calculation of a representative spectrum, which represents the dynamic characteristic

* Calculation of structural damping by filtering out certain Fi genfrequencies and extraction of
damping with the use of the Random Decrement Technology (RDT)

* Numerical assessment on structural integrity under consideration of the measured values

® Determination of the Eigenform as a confirmation for the fitting of calculation and
measurement

e Search for damage indicators in the signals and location of the damages
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Fig. 1 Eigenmode animated from measurement Photo 1 Hainburg bridge
For each structure a report is prepared providing the basic dynamic characteristic, an assessment
of structural safety, the values of damping for the structure and the assessment of eventual
hidden damages. In the long-term it is intended to undertake measurement frequently and to
calculate trends from the results.

The method has been proven by a number of tests in the laboratory and by a major number of
tests on bridges on site.

2. The Bridges across the Danube

In Fig. 6 of this paper the bridges considered in this report are described. All kind of structures
are represented. There is a number of cable stayed bridges made from steel or concrete or even
composite deck structures, a number of steel bridges with various spans, a major composite
bridge and a long span concrete bridge. Due to the huge amount of structures and data only
representative results can be provided.
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Fig. 2 1. Vertical Eigenmode of the Hainburg bridge
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3. Tests and Calculations

For each of the structures a base measurement has been established. It consist of a minimum of 5
measurement points per span and side of each deck structure. The time requirement for a serious
test of a bridge of 200 meter length is approximately 10 hours. The characteristic is recorded at a
Sampling — Rate of 100 Hertz and per measurement 50.000 points are stored. Amplifiers and
filters are used according to the requirement of each structure. The system is calibrated by a laser
displacement device, which provides actual displacement in millimeters. For each of the bridges
a dynamic Finite Element Calculation is carried out. It concentrates on the idea of the designers
and follows strictly the drawings. Therefore it will be representative for the "should be" case. It
serves to define the starting point of the life time performance check.

4. Major Results

The Eigenfrequency of a structure is depending on a couple of items out of which the most
important are: The mass, the stiffness, super imposed dead ioads, traffic ioading both static and
dynamic, strain from temperature difference, internal stresses from prestressing and some minor
other phenomena not yet fully understood. The method had to be calibrated against those
influences to focus the results on the most useful influences, which are stiffness and damping.

One of the most important items was to demonstrate, that the ambient vibration method produces
reliable results independent from the traffic loads applied. This was done by means of a 24" test
on one of the representative bridges, which is the Nordbriicke. Permanent measurement has been
carried out on a day, where the change in air temperature was only 2°C. The traffic on the bridge
varied from 130 vehicles at 3 o'clock in the night to almost 5.000 vehicles per hour during the
peak traffic at 7 o'clock in the morning. The variation in the results, considering more than ten
fundamental modes is in average below 1 %. This means, that ambient vibration data can be
extracted almost under any traffic conditions. The enclosed Fig. 3 show the results over 24 hours
including the temperature change, the vehicle loading and some of the relevant eigenfrequencies.

Bridge 1. Vertical Damping max. span Deck
Hainburg 0.53 1.12% 228.00 steel
Donaustadt 0.67 0.44% 1.86.00 composite
Reichsbriicke 0.83 0.68% 170.00 concrete
Brigittenau 0.75 1.67% 175.00 steel
Floridsdorf 0.77 1.44% 167.50 steel
Nordbriicke 0.86 2.30% 83.40 composite
Tulln 0.53 1.60% 176.00 concrete
Melk 0.70 1.64% 190.00 concrete
Steyregg 1.23 1.63% 181.00 composite

Tab. 1 Vertical frequency and corresponding damping

Another major task was to perform the identification of the Eigenmodes from the measured data.
This is demonstrated at the Hainburg Cable Stayed Bridge. The Fig. 1 and 2 show the calculated
Eigenmode as well as the measured one. It is obvious that the results are very good. The
measured modes are carried on to an animation program, which produces real time or accelerated
demonstrations of that measurement. These are compared with the calculations and the
differences are identified. Very often the interpretation is simple. It gives an idea about the
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function of important parts of the structure. Both, calculation and measurement, can be
superimposed to demonstrate the differences.

S. Damage Identification

The identification of damages beyond the results of visual inspection are the development area of
the future. It is well established, that any damage is represented in the signals. The difficulty
hides in the interpretation. It was observed, that the results are varying very much depending on
the qualification of the operator. Very good results have been achieved by bridge engineers,
which learned to handle a monitoring system. Monitoring engineers normally failed to assess
abnormal recordings, which they tended to identify as problems with the monitoring system.

Therefore the main task shall be to identify patterns of signals, which indicate a normal
condition. A typical example is shown in Fig. 5, which represents a crack in a prestressed
concrete structure. The so called double peak in the 1. vertical Eigenfrequency, effected are
mainly the lower frequencies, indicates a variation of stiffness with a variation of amplitude, i.e.
traffic loading. In this case the evaluation of periods with passenger car loading provides the
lower frequencies as the case with truck loading. This indicates, that the crack is open under
normal conditions and closes when trucks excite this structure. Feeding this information into the
finite element model it can be calculated that a crack, reaching from the bottom of the structure
60 cm into it, is active. The location of the crack was also determined, to be a construction joint.
This theory has been confirmed through measurement on other structures, with well known
active cracks.
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6. Conclusion

The promising results of the ambient vibration tests make it necessary to invest in further
development of the damage identification tools. It will not be possible to find easy and closed
solutions for most of the problems. Therefore an identification routine based on Fuzzy Logic will
be necessary. It has been started already to collect relevant results of bridges as many as
possible. These will be stored in a data bank, which will form the basis for comparison of cases.
Although it is clear, that it will still take a long time to make these methods simple, the proof has
been provided, that it works. A key issue of the subject is the education of bridge engineers in
dynamics and monitoring to provide the basis for the understanding of the procedures and
physics. For this purpose more major demonstration projects shall be implemented.
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Summary

The dynamic response behaviour of a prestressed concrete seven span highway bridge (761,0 m
long) was examined in September 1990 as a part of the static and dynamic loading tests (DLT)of
the bridge. In this investigation, a structural measuring technique using vehicle-induced vibrations
as well as forced vibrations induced by the rocket engines was developed for fullscale testing of
the bridges. The data yielded the dynamic characteristics of the bridge e. g. natural frequencies
f(j), mode shapes, dynamic load factor § (DLF) and the damping of the structure (9). The
obtained dynamic characteristics were compared with the theoretical computed data. Monitoring
of the highway bridge over the Danube (La Franconi Bridge) has been carried out in 1991-1997,
to evaluate the accuracy when using a simple measurement of a well defined eigenfrequency to
give a long term overall indication of deterioration or crack formation.

1. The Bridge Arrangement and Dynamic Loading Test

The main bridge structure is composed of seven span continuous beams with one frame pier (P3).
Other supports are formed by seven massive piers. The total length of the bridge is 761.0 m with
spans 83.0 m + 174.0 m + 172.0 m + 4 x 83.0 m. The highway bridge consists of two independent
bridges (left and right bridge -LB,RB) with three traffic lanes, on each bridge for one direction
only and sidewalks on both sides. The bridge box cross-section is shown in Fig. 1 and the
longitudinal section, in Fig. 2. The bridge including multispan junctions is fully described in [1].
lesting procedure and experimental analysis.The test programme included field measurements
using the instrumentation described in [3] so as to ensure coverage of entire possible range of
vibration. The vibration amplitudes were investigated and recorded in 18 selected points. The time
history of vertical as well as horizontal vibration has been registered by accelerometers (Briiel-
Kjaer, BK-8306) in the 2nd and the 3rd span of the bridge (A1-A8) and in the other spans by
inductive displacement transducers (IDT, range +40 mm), points R1- R10, see Fig.1 and Fig.2.
Output signals from the accelerometers were preamplified and recorded on two four-channel
portable tape FM recorder (BK-7005) and simultaneously via DISYS software on PC/486 at the
measuring station DMS-1. The signals from the IDT were recorded simultaneously at the station
DSM-2 and DSM-3 by the same way as the signal from accelerometers. The experimental analysis
has been carried out in the laboratory of the Department of Structural Mechanics UTC Zilina.
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The dynamic load factor &ogs and frequency response spectrum (PSD) has been determined using
the record obtained from passing vehicle velocities over the bridge by computer PC/486 via
DISYS programme and two-channel real time analyzer BK-2032. Testing load and experimental
results. The use of the test load has been in accordance with [3]. Two lorries TATRA-815 of
mass 26 660 kg and 26 740 kg were used for the highway pavement. Rocket engines (RE)

impulsive load were separately used, too. Static loading test (SLT) was perfomed before the
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Fig 2 Longitudinal section of the bridge

dynamic loading test (DLT) with both vehicles TATRA-815. Experimental procedures have been
discussed in detail by autor [3]. Formula (1) gives the criteria [2] for evaluation of moving load
dynamic effects on the bridge structure

G-1) (D

where (see also Fig. 3), 8 50 =Wy, /W5 and My, =Wy, /W The vertical static displacements
at charactenistic joint (012-178) due to standard live load (w) and due to testing load (Wpyx )
have been computed by the bridge designer [1]. The calculated dynamic effectiveness mpyn with
theoretical and experimental values of the vertical displacements varied in the range npyy =0,09 +
0,154, for different span of the bridge. The dynamic load factor 6 (DLF) used by the designer for
the bridge under investigation according to [4] is 8 = 1.10, see also [1]. DLF of the experimental
tests [3] are obtained from formula 6,,, = 1+ (8, — )My, - S€€ also Fig. 3. The DLF against
vehicle velocity are plotted in Fig. 4, 5. Natural frequencies have been obtained by using the
spectral analysis from recorded responses due to various types of dynamic loading, see also Table
1. Since the accelerometers recorded only the dynamic component of vibrating structures, so we
can consider those signals as an ergodic and stationary. The results of the analysis are fully
described in [3]. Only two PSD are shown in Fig. 6, 7 of this paper. The comparison of
theoretical (FEM) and experimental results of the natural frequencies f{j) of the vibration bridge
according to [3] are presented in Table 1.

-1 Mo =

( GBS
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The spectral analysis of the vibration time histories made it possible to ascertain the dominating
frequencies of bridge vibration by sharp peaks plotted in power spectra. The character of the

vibration caused is heavily dependent on dynamic response excitation.
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The results of the correlation analysis [3] showed that the vibration of the bridge is not ambient
vibration. The bridge vibration has predominate vertical components (bending vibration). In this
tests it was possible to predict the damping characteristics according to [2] by using logarithmic
decrement.The evaluation of the logarithmic decrement § has been done from records of fre
bridge vibration due to impulse rocket engines. The logarithmic decrement corresponding to the
first and second modes of the bridge vibrations varies in range 8=0,024 + 0,049.

3.Bridge Dynamic Parameters Monitoring

Progressive deterioration of concrete structures (RC) due to alkali silica reactions and frost-thaw
influence has become a serious problem. It has increased the importance of making observation on
full scalle structures in order to obtain the experimental results necessary for the development of
theories for predicting service life.

It has been the scope of this work to evaluate whether the relative change of a well defined
natural frequencie or the change of the corresponding damping and the change of RMS value of
the displacements amplitude of the bridge vibration observed by traffic loading can be used to give
an overall indication of deterioration or crack formation. The monitoring technique based on
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measurement of the time history of the bridge vibration due to regular traffic is not meant to give
detailed information but to be a technique simple to use to deside whether more detailed methods
should be used.

During the years 1991-1997 La Franconi bridge over the Danube has been investigated by 24
hours monitoring tests in the summer and the winter time . A theoretical prediction of the bridge
behaviour and preliminary dynamic loading tests are reported in [3].
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Testing procedure and experimental analysis. The vibration amplitudes were investigated and
recorded in selected points of the second and the third span, see Fig. 1, 2. The time history of
vertical vibration has been registered by accelerometers (Briiel-Kjaer, BK-8306) at points 039
and 090 (Al, A2, A5, A6) on each independent bridge.

Output signals from accelerometers were preamplified and recorded on four-channel analogue FM
recorder BK-7005 and simultaneously via A/D convertor DAS-16 on portable notebook
computer {PC/486) with special software (DISYS) and hardware facilities for 24 hours continuing
test. The records obtained in the bridge monitoring tests were investigated by using frequency
analyser BK-2034 and mentioned PC facilities. Fig. 8 shows power spectral densities (PSD) as an
example of the spectral analysis of the monitoring test performed in August, 1994. The damping
parameter (D-critical damping coefficient) was found by means of the 3dB bandwith method and
curve fitting techniques. The amplitude analysis has been used to obtain RMS amplitude value of
the bridge vibrations during the monitoring tests.

Experimental results. Results giving frequency and damping for lovest natural frequency in
bending and RMS amplitude value from the monitoring tests of the bridges during whole
measuring period are shown in Fig. 9. A 2.7% change in frequency is observed during a year
(summer-winter) but it is systematic from one year to the next and is partly due to changes in
ambient temperature. By measuring the frequency at the same time of year the changes from year
to year are small and non systematic and correspond to a coefficient of variation of about 0.01.
This may be considered negligible compared with the changes in natural frequency of about 30%
corresponding to advanced deterioration observed in [5].
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Fig.9 Changes in relative frequency, damping and displacement
RMS amplitude values, 1990 - 1997

There is not the same systematic change of damping and scattering of results is big. What causes
these changes is not clarified. There are changes in the temperature during the day. This may give
changes in length of bridge which can influence support conditions and damping. Windspeed,
water level, ambient relative humidity and temperature gradients through the deck, transport in
the bridge deck, in particular at the surface, and may there by also change damping [6],[7].

There is a difference of the discplacement amplitude RMS value measured in may 1991 in
comparison with other measurements results. It was maybe caused by both-side motor traffic
flows on the left bridge. All the following measurements were performed in conditions of the one
side traffic flow on each of the two bridges La Franconi. The changes of the amplitude RMS
value is caused mainly by changes of the intensity of the regular motor traffic.
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4. Conclusion

The experimental analysis of the bridge dynamic response caused by moving load as well as
impulsive load made it possible to identify six basic modes of bridge vibration. These frequencies
have been received by analysis of small amplitude vibration and so the analysis corresponds to
linear vibration. It was possible to evaluated the damping characteristics of the bridge structure
only from limited number of measurements. They are therefore only indicative. The
experimentally achieved dynamic load factor 8pxp<1,09 shows that real stiffness of structure is
fully comparable with the corresponding value for, & = 1,10 obtained by computation. The
comparison of theoretical and experimental results of the bridge parameters shows good
agreement of theoretical and experimental values of natural frequencies. The criteria of all loading
states by the Slovak standard [2] are seen to have been fulfilled.

The monitoring tests results show that the relative change of a well defined natural frequency
seems to be very little influenced by changes in temperature, humidity, support conditions, etc., in
fully hardened not deteriorated RC structure of simple geometry, if measurements to be compared
are made at the same time of the year. This indicates that the monitoring tests may prove useful by
giving an idea of the overall development of long term deterioration and cracking in RC
structures. The change in structural damping can so far not be used in a similar way because of its
big dependance on mentioned secondary influences which are comparable with deterioration or
cracking influences on change of structural damping.

The changes in deflection amplitude RMS value are heavily dependent on intensity of regular
motor traffic in the bridge deck, but vary within of the 50% RMS amplitude range measured
during the whole measuring period.
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Summary

The bridge discussed in this paper has simple composite PC girders supported by six RC T-
beam piers and one RC rigid frame pier. It is located in Nada Ward, Kobe and was severely
damaged by the Kobe Earthquake. The damage included inclination of the eccentric piers and
damage to the end cross beams. To restore the bridge, a girder connection with isolators was
used to distribute and reduce inertia force. Specifically, the slab-rubber-hinge girder connection
method was developed. Isolators with both lead-rubber bearings (LRB) and sliding rubber
bearings (SRB) and restrainers having rubber-sheathed chains were also used. Foundations,
piers and girders except the damaged end cross beams were reused with some repair.

1. Basic of Structural Framework Design

In the design, focus was placed on developing a girder connection structure and employing
omnidirectional seismic isolation to decrease both longtudinal and lateral inertia forces acting on
eccentric piers whose reinforcement possibilities were limited (see Fig. 1). The preliminary
design was first drawn up by applying the seismic coefficient method and the final,
comprehensive design was based on the nonlinear dynamic analysis of the seismic record of the
Kobe Earthquake at the Japan Meteorological Agency Kobe station. In addition, to verify the
validity of the adopted isolated structures, the cumulative strain energy was calculated by
analysis of the entire bridge, obtaining the proportions of seismic energy shared by the
foundations, piers and isolation bearings (see Fig. 2).

2. Characteristic Structure Components

2.1 LRB-SRB Combined Isolation System

Two kinds of bearings, shown in Fig. 3, were applied to the bridge. SRBs were placed under the
main girders to support the vertical load, and LRBs were placed in the gaps left under the end
cross beams by removing part of their underside to absorb inertia force during an earthquake.
This system was applied to the bridge in this paper which made use of thin rubber pad bearings
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under girders so as to limit the vertical change in that

part of the bridge. The following are the main results
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2.2 Connected Girder Structure
The girder connecting sections were designed to satisfy the Rubper
following conditions: (1) the rotation of the joint section due e
to live load deflection would not be restricted; and (2) inertia woll '
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