arina

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 08.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Timber Floors Strengthened with Concrete

Hans J. BLASS	Mario L.R. VAN DER LINDEN	Marina SCHLAGER
Professor of Civil Eng.	Civil Engineer	Civil Engineer
University of Karlsruhe	Delft University / TNO	Schöck Bauteile GmbH
Karlsruhe, Germany	Delft, The Netherlands	Baden-Baden, Germany
Hans J. Blass, born 1955, received	Mario L.R. van der Linden, born 1965,	Marina Schlager, born 1960,
his civil engineering degree at	received his civil engineering degree	received her civil
Karlsruhe University in 1980.	at Delft University in 1989.	engineering degree at
After four years in industry, he	After civil service he worked for a	Karlsruhe University in
went back to this University and	consulting engineering company.	1988.
received his PhD. in 1987.	From 1991 he works for TNO, a	She worked in structural
From 1991 to 1995 he was Prof.	research institute. At the same time he	timber research at Karlsruhe
for timber structures at Delft	works on his PhD. at Delft University	University until 1996 when
University of Technology and took	and assists in both education and	she took her present
his present position in 1995.	research.	position.

Summary

Timber-concrete composite (tcc) beams may be used for the renovation of old timber floors. Although these systems are not new (Poštulka, 1997) and form a simple and practical solution, they are not widely adopted. One of the reasons for this is the lack of uniform design rules. In a research programme shear tests on four different fastener types were performed as well as bending tests on tcc beams, manufactured with these fasteners. A non-linear simulation model was built that is able to perform a Monte Carlo simulation on single tcc beams and tcc floor systems. The model was successfully verified with the bending tests before other simulations were performed. Several geometries were simulated resulting in a statistical distribution of the load-carrying capacity of each geometry. This model now allows for the calculation of the characteristic system strength and stiffness values.

1. Introduction

Timber-concrete composite (tcc) floors may be regarded as an alternative renovation method of timber floors in which the timber floor is integrated and thus still functions. Metal fasteners are drilled into the top of the existing timber beams before the concrete is poured upon the planks of the timber floor. After hardening of the concrete a timber-concrete composite (tcc) beam has been realised.

In order to set up design rules for these structures and to obtain the strength and stiffness of some fastener types, a joint research programme was started in 1992. Shear tests on these fastener types and bending tests on tcc beams, in which these connectors were utilised, have been carried out at the University of Karlsruhe in Germany. A simulation model, partly based on the finite element method DIANA, has been developed at TNO and Delft University of Technology that was then used to analyse the beam tests. In this way it was possible to test the validity of the simulation model, to predict the behaviour of other tcc geometries and to obtain the statistical distribution of the short term load-carrying capacities.

2. Shear Tests

The load-displacement curves for four different connector types were determined. These connector types are respectively screws, nailplates and two kinds of dowels. Two of these joint types, screws and one kind of dowel as represented in figure 1, will be discussed here since the other connector types are not suitable for renovation purposes.

Fig. 1 Two fastener types: reinforcement bar with concrete dowel and screws at 45° .

The screws are arranged in such a way that half of them is placed at an angle of 45° and the other half at an angle of -45° with the timber beam axis. The screws are 150 mm long and are driven into the timber for about 100 mm, the remaining part of the screw forms the connection with the concrete. The dowels consist of a reinforcement bar with a diameter of 20 mm and a length of 160 mm, which is driven into the timber for 110 mm. An extra hole with a diameter of 70 mm and a depth of 30 mm surrounds the reinforcement bar and is filled with concrete during moulding. This concrete dowel decreases the stresses in the timber caused by the reinforcement bar.

3. Bending Tests

The bending tests were performed on beams with a span of 5.4 m. These beams were loaded in four-point bending and the slip of several connectors as well as the vertical displacement at midspan was measured. For some connector types the vertical displacement between the timber and the concrete was measured as well midspan and/or near the supports. Due to the type of connector a horizontal gap could occur between the timber and the concrete. Figure 2 shows the test-set-up for the bending tests.