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Summary

This paper deals with a test of a two-span continuous composite girder comprising sudden

changes of cross-sections and mixed cross-sections (class 1 at mid-span and class 4 on
internal support). Mainly the behaviour at serviceability limit state and ultimate limit state is

presented. Also comparisons are made with different types of global analyses and with
numerical simulation using a sophisticated software.

1. Introduction

In the frame of new concepts developed in Europe, particularly during the drafting of
Eurocode 4 - Part 2 for composite bridges [1], some discrepancies with the French regulation
[2] have appeared leading SETRA to order a two-span continuous composite beam test to
INSA in Rennes. The loading procedure of this test has included several phases related to :

- the behaviour at serviceability limit state (non accumulation of deformations due to
variable loads, cracking monitoring on the intermediate support) ;

- the resistance at ultimate limit state (maximum loads and possible redistribution of
bending moments).
In parallel with this experimental approach, a specialized software has been developed on the
basis of the finite element method specially adapted to the verification of composite bridge
beams. This software is only used here for the simulation of the present test ; but in the future,
it will be applied to the calibration of the various methods of analysis proposed in [1 ] covering
a wider range of span lengths, different ratios between consecutive spans...

2. Test presentation

As shown in fig. 1, the tested composite beam comprises two continuous spans of 7.5 m and
is subject to two independent concentrated loads P and Q each located at mid-span. This beam
is class 1 at mid-span and class 4 on support A2 (due to the class 4 web). The bottom flange
has a variable thickness (10 mm at mid-span, 15 mm on support A2) in order to simulate a

composite bridge beam where the maximum resistance bending moments are reached almost
simultaneously in sagging and hogging zones at ultimate limit state. Between the two loads,
the web is heavily transversely stiffened to avoid a premature shear buckling.
The mechanical properties of the structural steel, reinforcement and concrete have been

measured on several specimens leading to the characteristic values given in table 1.
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fy(MPa) fu(MPa) | fem (M^a) fck(MPa)

Web 480 570 j Concrete 31.3 27.5

10 mm flange 385 540
15 mm flange 465 585 "1 Table 1 Material properties
Reinforcement 475 610

Using these properties together with partial safety factors equal to 1, the mechanical

properties of the composite cross-sections are as follows :

Mpi Rd =1166 kN m in sagging moment regions ;

"(eff)

i! 12.3 x 108 mm4

I2 7.4 x 108 mm4 MeLRd' 935 kN m in hogging moment regions.

During the casting of the slab, the steel beam was propped all along its length. The type of
concrete was selected to minimize the effect of shrinkage ; so, the free shrinkage measured on

an independent specimen of slab was equal to about 1 x 10"4 after one month. Due to this
shrinkage and to the permanent loads, the stresses in structural steel and concrete have been
estimated at -3.3 MPa (lower flange under load P) and + 1.2 MPa (concrete in tension over
A2) respectively.
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Fig. 1- Tested continuous composite beam

Test results and comparison with different types of analyses

The loading procedure comprises 123 phases. The main phases are summarized in table 2.
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Phase number P(kN) Q(kN) Observation

Table 2. 8 100 100 • First cracks (0.1 mm)

Loading in the slab over

procedure intermediate support
14 400 400 • Cracks 0.2 mm

19 to 29 5 cycles 400-450-400 400

Serviceability 30 to 39 5 cycles 400-475-400 400

limit state 40 500 400 • First plastification in
41 to 48 5 cycles 400-550-400 400 the lower flange under P

61 to 66 5 cycles 400-550-400 400 (cracks <0.3 mm)

93 to 101 P Q from 0 to 550

Ultimate 101 to 113 550 to 810 550 • Shear buckles over
limit state the support

122 890 550 • Beam failure

Figure 2 shows the variation of the beam deflection at the loading point P. Figure 3 shows the

variations of the bending moments at mid-span (loading point P) and over the intermediate

support (point A2). These moments have been derived from measurements of the bearing
reactions at supports Al and A3. They have also been checked against strain gauges measures

on the steel flanges near support A2.
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Fig. 2 Load-deflection curve
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Fig. 4 Distribution ofcrack widths

3.1. Serviceability limit state

(a) The first yielding appears during phase 40 for P 500 kN and Q 400 kN. A series of 5

cycles has been carried out around this loading (see table 2) and no cumulation of plastic
deformation has been observed. But for phases 61 to 66 (P varying from 400 to 550), there is

a more significant residual deflection (about 6% due essentially to the cracking of the slab
obtained after the first cycle). This result tends to confirm the choice of a limitation of stresses

of 1.0 fy in the structural steel proposed in EC4-2 [1].

b) The crack widths have been carefully monitored up to phase 40 (S.L.S.). The reinforcement
was designed according to EC4-1 [3] for a crack width of 0.3 mm. The distribution of the
crack widths on each side of the intermediate support is shown in fig. 4.
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Fig. 3 Variations ofthe bending moments at mid-span and over support A2

c) In fig. 3 related to the phases 93 to 122 (see table 2), the calculated bending moments at

serviceability limit state have been plotted :

Mp Mgf 701 kNm (elastic bending resistance in the test condition) ;

MÄ2 =-607 kNm> for: P Q 520 kN.
Elastic analysis has been used adopting a cracked zone over 15 % of the span length on each

side of support A2. The plotted points fit perfectly with the experimental curves.

3.2. Ultimate limit state

(a) Three types of analyses according to EC4.2[1] have been compared :

- an « uncracked » analysis without redistribution giving :

pW 655 kN with : M^2 -935 kNm, Mp 790 kNm

-an « uncracked » analysis with a 10 % redistribution of the hogging bending moment at A2
leading to :

p(2)=794 kN with : MX2 =-935 kN m, Mp 1050 kNm
-a « cracked » analysis as in 3.1.(c) giving :

p(3) 830 kN with : MX2 -839 kNm Mp 1166 kNm

All these calculated values of Pu are on the safe side in comparison with the experimental

value p|jexp) 890 kN.The high value of P^exp^ is likely to have been allowed on account of
redistribution of moments from mid-span to support A2. The points corresponding to the
above analyses are plotted in fig. 3. In the present investigation, the « uncracked » analysis
with a 10 % redistribution appears particularly appropriate whereas the « cracked » one tends

to underestimate the bending moment on support A2.
(b) The shear plastic or buckling resistance has been verified in accordance with EC4.1[3]
giving :

VRd Vba Rd 680 kN between Al and P ;

VRd Vpi Rd 998 kN between P and A2 (aspect ratio of the web panels of about 1).
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That leads to a maximum ratio Vsd / VR(j of 0.57 close to 0.50. Consequently, the reduction

of the calculated ultimate load Pu due to the vertical shear force is only 0.5 %.

(c) The connection was designed to resist the maximum possible shear flow at ultimate limit
state (32 and 38 headed studs were welded between Al and P and between P and A2
respectively, each having a shear resistance of about 100 kN).
(d) No lateral-torsional buckling has been observed during the test. But the calculation

according to Annex B of EC4.1 (clause B.1.2) [3] would give 0.92 and a reduction

factor xlt °f about 0.6 what seems to be a paradox. The very good behaviour of the tested

beam can only be explained by the presence of the high density of vertical stiffeners welded to
both flanges and to the web. By spreading and adding their stiffness to the flexural stiffness

k2 of the web (such a method is not in EC4.1), Xlt becomes 0.37 < 0.40, what leads to

Xlt

4. Numerical simulation

A numerical model based on the finite element method has been developed at INSA in Rennes

using specialized beam elements (for steel and concrete), shear connector elements and

buckling elements [4]. This model has been generalized for composite bridge girders by
introducing other possibilities such as gradual or sudden changes of cross-sections, local
buckling of web in class 4 (by means of the concept of effective depth), tension stiffening in
slab after the stage of stabilized crack formation, and creep of concrete allowing to take into
account the sequence of construction (this last aspect is not concerned in the paper) [5]. The
effect of tension stiffening has been formulated in accordance with Annex L of EC4.2 [1]
expressing the average tensile force Ns of the slab versus the average strain esm as shown in

fig. 5 (with factor ß 0.40).

N,

Fig. 5 Tension stiffening curve

Load P+Q (kN)
1600

0 50 100 150

Fig. 6 Comparison of the load-deflection
curves

The composite beam tested above has been discretized using 186 finite beam elements and 68
shear connector elements. The simulated curve of the load versus the deflection (at the loading
point P) is compared with the experimental one in fig. 6, showing a good agreement provided
that a light additional deflection due to the vertical shear force in the web is taken into account
for the elastic phase. Moreover, the simulated variations of the bending moments at mid-span
and over support A2 are compared with the experimental ones (already given above) in fig. 7
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and 8. But it is worth pointing out that the tension stiffening effect is only included in the
simulation of fig. 7 and not in that of fig. 8. The better agreement in fig. 8 may appear a

paradox though both simulations give the same ultimate load Pu. As explanation of such a

paradox, it is possible to advance the gradual vanishing of tension stiffening during the test
under the repeated cyclic loadings around the serviceability limit state. Also, some uncertainty
of the real effective width of the slab in hogging moment zone may affect the results of the
numerical simulation.

Load P+Q (kN)
1600 _

Fig. 7 Comparison ofload-bending
moments curves (with tension stiffening)

5. Conclusion

1600 Load P+Q (kN)

o 500 looo |m:2|;M!
(kNm)l I P

Fig. 8 Comparison of load-bending
moments curves (without tension
stiffening)

The tested beam, representative of a composite bridge beam, confirms that the proposed
methods to verify the serviceability limit state and the ultimate limit state in EC4-2 are safe
and in rather good agreement with the experience. The software used for the numerical
simulation gives results very close to the measured ones. It will be applied in the future to
calibrate the analyses proposed in EC4-2 and to precisely define their scope.
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