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Summary

The contribution deals with the time-dependent analysis of the state of stress and strain
distributions on the contact surface of a reinforced concrete two layered element (in the sense that

„new material" means topping layer and „old material" means prestressed plate structure). We

suppose that the structural system is linearly viscoelastic quasihomogenic isotropic continuum.
The linear aging model for concrete creep is used. The theoretically derived solution procedures
are examplified by particular numerical examples

1. Mathematical Formulation of the Problem

We will deal in our analysis with the quasistatic problem of the two-layered planar composite
structure with technologically conditioned defects. We suppose that the principles of the linear

theory of viscoelasticity are valid. The mathematical representation of the discussed physical
model is the operator equation [1]

L (u) f (1)

in the domain Q Q, cj Q2 (Q <z E3) which is bounded per partes smooth surface

S 5, u S2 (5, o S2 0), u u(P, t) {u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)} is a sufficiently
smooth vector-function, where P e Q, / > 0. The solution of the Eq (1) satisfied the following
conditions

w*= 0 on Sa,Sb (2)

+o(0),c,1nK ux^ FX onS-(s'uSb), (3)

"la, "1o, on Q, nfl2. (4)

This problem is equivalent to the problem of finding the element of energetic space which
mininimalize energetical functional [1,2]

F (u) (u,u)W) -2(u,f) (5)
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The basic idea of FEM is to represent the displacement functions u (h,v,w) within the element

by continuum shape functions of the form

u(*,y,z,t) ^Nl(x,y,zK(t), (6)
1=1

where N, (i 1,2,...Z,) are the shape functions associated with the L nodes and

ui (/ \,2,...L) are nodal values of the displacement u(x, y, z, t), etc. The strain rate field within
the element can be defined as [3]

é(x, y, z, t) B(x, y, z)5(t), (7)

where B is a matrix ofgradients of the shape functions and 6 is the nodal velocity vector. The

equilibrium of the stress rates ct is given by

£ j*BT6dV Ra, (8)
Ve Ve

where R' is the applied nodal load rate vector. The stress-strain relationship for inelastic rate

processes may be given by the formula

ô D(é - r)), (9)
where D is elasticity matrix and t) is the creep strain rate (for instance)

Tl 91(CT,t,T).

We may transform the system of equilibrium equations into the matrix equation

K5=R'+R'1 on Q, (10)

where K ^ J BTDB dV is the assembled stiffness matrix and
e Ve

R" =£ jVüTHfV (11)

is the vector of the creep process. After some rearrangements Eqs (10) and (11) can be written in
he incremental form over a time interval

KA8 AR° + ARa on Q, (12)

where

AR"=£ jBTDAqdV. (13)
e y«

Numerical schemes for the solutions ofEqs (12), (13) are discussed in [4].
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2. Linear Aging Concrete Creep and Shrinkage Model

The characteristic of concrete that distinguishes it from the traditional viscoelastic material is the

aging effect. Experimental tests [5] indicate that response on the increment of load is

independent of all other part load increments, so that the principle of superposition is valid. Due
to this fact the integral-type creep law has the form [6]

e(t) jn(M')da, (14)

where

n(t,f)=j(.,f)

i

- V

- V

j(l + v)

2(1 + V)

;d + v)

and

J(u') — + Y AT1 (t')(l - e~(1~n'T) E(t') E28J
E(t') ft ' V4 + 0.85t

A
where are constants (retardation times) and Aj are aging coefficients. For shrinkage of

concrete we can assume the relation [6]

edi (t) 0.0008c' (t - 7) / (35 +1 - 7) (15)
6

in which t is in days and drying is assumed to begin at t0 7 days, c'= lie, is correction factor

[6].

3. Numerical Example

This section deals with the numerical solution of some viscoelastic aging creep problems - two
layered reinforced concrete plate with a prestressed lower layer. The analysed plate is simply
supported in positions a and b (Fig. 2). The length of the system is 6000 mm, width 1190 mm.
The thickness of the lower layer is 70 mm and upper concrete layer 170 mm, respectively. The
cross-section of the given structure is in Fig.l

Fig. 1 Cross-section of the plate system

The plate carries a uniformly distributed load with the intensity q 5,68 kN / m2 (dead load)
and a line load with the intensity p 20,07 kN/m (Fig.2). The triangle represents the course of
the prestressed force in the individual strings. The prestress on 8 wires <|> 5mm is realised.
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P 33,4 kN

q 6,76 kN/m
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Fig. 2 Longitudinal section and values of prestressed forces

Characteristics of the materials are as follows: a lower concrete layer of type B 30 (E! 32500

MPa) according to the code STN 73 1201 [7] and an upper layer B 20 (E2 27000 MPa),

respectively. The following cases were considered:
1) upper layer shrinking, lower layer non creeping s/nc

2) both layers creeping O c/c
The time intervals taken: 0, 5, 10, 20, 50,100, 300, 500, 1000 and 3000 days. We assume a 28

day time interval for hardening of concrete. The top layer was laid down after 200 days.
Between the layers the conditional technological horizontal defect range of the half-span was
taken into account, too (case B). It means, that the following cases were solved:
A - without defect on section a - b

B - with defect on the section a - d.

Figs 3 and 4 represent the time - dependet vertical deflections in the half-span of the system.

Fig. 3 Vertical deflections w(d,t) for case A, s/nc, O c/c
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Fig. 4 Vertical deflections w(d,t) for case B, s/nc, O c/c

Normal and shear stresses for individual cases (A and B) under line - load (position c - where

max. bending moment was expected) were calculated. Courses of normal stresses o, for cases

A and B are given in Figs 5 and 6.

Fig. 5 Normal stresses ox(c,t) for case A; s/nc, O c/c. The full lines represent values

a^c.t ->oo) anddashedlineo^c.tsO)
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Fig. 6 Normal stresses o,(c,t) for case B; s/nc, O c/c. The full lines represent values

a x (c, t -» oo) and dashed line a x (c, t 0)

4. Conclusions

- on the interface of the layers cumulation of the shear stresses on the perimeter of the structure
occured

- creep - deflection was 3 time larger than classical elastic deflection, that positively influence
the course of the stresses

- the presence of technologically conditioned defects on the interface of the layers negatively
influenced the stiffness of the system, in spite of the prestress on the lower layer

- a very significant element of the layered system is the technological surfacing, of the interface
of the layers.
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