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Composite Plate Girder Bridges: Safety and Serviceability
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Summary

The structural behaviour of composite bridge decks, made of two plate girders and a
reinforced concrete slab, is considered on the basis of two design examples and some
parametric studies developed with a nonlinear numerical model. The effects of the bracing
system, external prestressing, cracking of the concrete slab and the postbuckling behaviour of
the webs are discussed for ultimate (ULS) and serviceability limit states (SLS).

1. Introduction

In the last few years, composite bridge decks made of two plate girders only with thin webs
and thick flanges (up to 150mm at supports) have been extensively adopted [1,2] for both
highway and railway bridges. The webs have very often transverse stiffeners only and its
postbuckling strength is taken into consideration in design. Class 4 sections, according to the
new eurocodes EC3 and EC4 [3,4] are generally adopted for medium and long span bridges.
Special problems at ULS should be considered, namely bending moment redistributions due
to effects of cracking of the concrete slab or due to web buckling. The first problem is
considered, under different approaches, by present design codes [4 to 8]. The effect of local
plate buckling on cross section properties is considered by most of the codes for the section
analysis only and not for the structural (global) analysis. Also the effects of the bracing
system on the stresses induced on the girders by vertical loads (permanent and live), are
currently neglected. Some results for these effects are presented in this paper, and the
possible advantages of adopting externally anchored prestressing schemes in composite bridge
decks is discussed.
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2.  Design cases

Two railway composite bridge decks designed by the authors have been selected to highlight
present design criteria at ULS and SLS. The first design case (Fig. 1) consist on a 3 span
deck (main span 55 meters) one track railroad. Transversely, the deck is asymmetric due to
specific site constraints; however, the girders where located to optimize the transverse load
distribution under rail loading.
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Fig.1 Longitudinal and cross section of a composite railway bridge over river Ave, Portugal

AT SUPPORT AT SPAN For the parametric studies, the section was
simplified (Fig. 2). The bridge deck was

k y ) designed to be erected in 3 stages, first the

‘ end spans plus 1/5 of the mid span at each

side, and finally the central part (33.0m) is

lifted from the river.
700x50 . : 700x30 The second design case, refers to an
3000x25 2000x20 incrementally launched railway deck - the
7 Northern Approach Viaduct to the Tagus
700x50 _— Suspension Bridge in Lisbon. A composite
bridge deck (Fig.3), almost 1000m long, was

designed to be incrementaly launched from
Fig.2 Simplified section both ends in two parts (Fig. 4).

The superstructure is a continuous deck, with typical 76m spans from the northern abutment
to pier P14 (392.3m), where an expansion joint exists, and from the transition pier to the
suspension bridge to P14 (526.6m). Details of the conceptual design and of the erection
scheme are presented in [9]. For the parametric study a 3 span continous beam model
(604-80+60) was considered.
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Fig.3 Viaduct cross section Fig.4 Launching phase of the viaduct
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3.  Effects of the bracing system

The main girders in a composite bridge deck are connected at the lower flange level by a
bracing system (Fig. 6). If a 3D model is adopted for the structural analysis, the part of the
overall bending (even under symmetric loading) taken by the bracing system may be
evaluated. In Fig. 5 one shows the bracing system of the composite bridge deck shown in
Fig. 3 and a typical result of the induced stresses. For the diagonal bracing, horizontal
transverse loads are introduced at the "gussets”. These loads produce transverse bending
stresses at each flange; of course the two transverse bending moments are self equilibrated at
the overall section. For the section analysis at ULS of the deck, it is acceptable in design
pratice to assume some redistribution of the stresses at the lower flange.
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Fig.5 Normal stresses at lower flange due to horizontal bracing

4.  External prestressing

External prestressing in composite plate girder bridges, has been adopted in several design
cases. The main advantage is a reduction of the amount of steelwork required to achieve the
resistant capacity at ULS. External prestressing shall be considered as an external force and
the beneficial effect due to the increase of the prestressing force during the loading stages
may be neglected. That compensates for some reductions of the prestressing effects due to
geometrical nonlinearities. The main disadvantage of the classical external prestressing
scheme, where the cables are attached to the steel structure, are the high compression forces
induced at the girders requiring complex details at the anchorages. This disadvantage is
eliminated when an externally anchored prestressing scheme is possible. The example in Fig.
6 shows an external prestressing scheme solution developed for the railway deck of Fig. 3.
The cables were designed to be stressed at two stages: immediatly after erecting the steel
structure, by incremental launching, and after casting the deck slab. In Fig.7 one shows the
benefitial effect of the external prestressing in reducing the maximum stresses at the flanges.
With this scheme (case B) it would be possible to adopt 80mm thick plates at the flanges at
the support sections instead of 120mm plates required by the conventional composite girder
(case A). A reduction of about 25% in the total amount of the steelwork could be achieved
by the externally anchored prestressing scheme. Of course, part of these savings are canceled
by the cost of the prestressing cables, anchorages and deviators. For the present design case
the conventional solution (without external prestressing) was prefered mainly because the
execution time was shorter.
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Fig.6 External prestressed solution ~ Fig.7 Effects of the prestressing scheme

5. Nonlinear numerical model

For the model developed, the nonlinearities taken into consideration are restricted to cracking
effects in the slab and local buckling at the steel section. The slab is considered as an axially
loaded bar element under pure tension or compression. This assumption is acceptable for
medium to large spans, where deep girders are adopted. The constitutive relationship [10] for
the slab under tension is shown in Fig. 8. The tension branch is similar to the one proposed
in Jan. 1997 Draft of Part 2 of EC4 - Annex L, for the "Effects of tension stiffening in
composite bridges".The finite element considered is a bar element with only two degrees of
freedom at each node (vertical displacement and rotation), and the linear system of equations
is solved by the Gauss Substitution Method. At each step of the loading process, a new
stiffness matrix is evaluated, according to an iterative procedure, based on the Newton-
Rapson technique. This new matrix is updated taking into consideration the effective steel
section in the postbuckling range (based on EC3
Fl formulae), and cracked or uncracked properties of
the concrete slab. The numerical model was

7] developed for continuous plate girder bridges,

F ep with a composite deck, taking into consideration
the evolution of the static scheeme during
construction.Span by span, incremental launching

- or other execution methods, may be considered.

& At each step, steel or composite (full interaction)
Fig.8 Constitutive relationship for section properties are evaluated depending on the
concrete slab under tension phase at which the slab is casted.

6. Cracking and time dependent effects

Most of the present design codes for composite bridge decks adopt a limit state format and
allow a linear uncracked elastic model for the structural analysis. If so, bending moment
redistributions at ULS are acceptable (up to 10% in BS 5400 for class 4 sections). The main
differences between present design codes concerns the requirements for evaluation of cross
section properties for the global analysis. In BS 5400 [5] it may be assumed the slab is
cracked at 15% distance of the span each side of an internal support. Then, no redistribution
is allowed. In other codes, like the French instruction [6] and the Swiss code [7] uncracked
sections are assumed for the global analysis. If concrete is fully neglected near support
sections, tension stiffening effects are not taken into account. In both EC4 {4] and the new
Spanish recommendations for the design of composite bridges [8], an elastic analysis is
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allowed but with reduced moments of inertia to account for cracking effects.

Typical results are presented in the following Table for moments of inertia and bending
moments evaluated according to the codes mentioned above. It may be concluded from Table
1, that the influence of the different approaches is much greater for I than for M.

Code Section Approach I(m* M (kNm)
(for n=6) Live Load
EC4 Support cracked 2,644 -130942
Span uncracked 2.039 69057
BS5400 Support cracked 2.424 -128675
Span uncracked 2.039 71324
Circ n° 81-63,1981 Support uncracked 3.858 -140825
SIA 161 Span uncracked 2.039 59174

Tab.l Comparative results for I and M (for live load) according to several design codes

6000 When evaluating cross section properties, like
z ;x o f\ A I, the modular ratio n=E/E, between the
g 1500 l’ \\ ’-’ X elastic modulus of steel and concrete, time
S 0 :
S 1500 [ I dependent effects are generally taken into
£ 3000 \\ /I \\ I’ \\ / consideration in the present codes [4 to 9] by
3 % \_/ \"7/ o/ multiplying the modular ratio for short term
“ s A\ actions n,, by a coeficient [ 1+¢@(z,1,)] .
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Here ¢ is the concrete creep coefficient and ¢
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age adjusted effective modulus method is
proposed. The nonlinear model described was
used to develope some parametric studies for
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ultimate load of composite class 4 sections, and
to investigate bending moment redistributions
due to cracking and local buckling effects.

Fig.9 Influence of reinforcement on
the slab behaviour

By taking the design case of Fig. 3, the influence of the concrete strenght class, thickness of
the slab, amount (density) of reinforcement, bond action of the reinforcement and the
sequence of the erection scheme were investigated. As a general conclusion, for the ULS of
the composite sections, most of the parameters refered to above have very little influence. In
what concerns SLS, namely crack widths, the most relevant parameter is the amount of
reinforcement (Fig. 9) as also the sequence of the erection scheme in what concerns
limitation of crack widths and deformability. In what concerns bending moments, the results
obtained by elastic uncracked models are about +5% at support and -10% at span sections
compared to the ones obtained by the nonlinear model described in section 5. The results
obtained for ULS by the elastic cracked model, as proposed by EC4, are less than 1%
different for bending moments and +5% for displacements compared to the ones obtained by
the nonlinear model.
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7.  Local buckling effects

Another aspect is related to code requirements concerning the effects of local buckling in
composite bridge decks. These effects are only considered when evaluating cross section
resistance (i.e at section level) and not for the structural (global) analysis. In composite plate
girder bridges with Class 4 sections, the webs are very often in the postbuckling range at
ULS. So, a redistribution of bending moments shall be expected. In Fig. 10 one compares
results obtained by the nonlinear model and from EC4 model, for the support cross section
of the bridge deck shown in Fig. 2.The difference in the effective width of the web is +11%
and at the ultimate moment is only +2%. The force at the slab is 22% lower by EC4 mainly
due to cracking effects. In Fig.11 the influence of the phase at which composite action is
considered is highlighted for the cross section of Fig. 2, under increasing imposed curvature.
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Fig. 10 Ultimate moment obtained from Fig.11 Influence of the composite action
linear (EC4) and nonlinear analyses on the effective width of the web

8. Conclusions

Safety and serviceability problems for composite bridge decks were discussed on the basis of
two design cases. A nonlinear model was adopted for parametric studies and results were
compared with the ones obtained by a draft for EC4 (Part 2).
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