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1. Problem statement

In modeling steel-concrete composite beams, two kinematical aspects should be considered the
deformabihty of the shear connection and the non-uniform distribution of the longitudinal displacements m
the slab (shear-lag) The deformabihty of the shear connection allows a shp at the beam-slab interface,
mcreasmg the global flexibility of the structure, while the shear-lag effect implies a non-uniform
distribution of stresses m the slab Furthermore, the behaviour of the composite beam is strongly influenced
by the concrete time-dependent effects [1] Although the effects of creep, connection deformabihty and
shear-lag have been extensively examined m literature, their interaction is not completely known
For this purpose, a general analysis for composite beams has been developed to encompass shear-lag effect,
flexible shear connection, creep and shrinkage of the concrete [2] Starting from the definition ofa suitable
displacement field which takes into account slipping at beam-slab interface and slab shear déformation, a
global balance condition is obtained by means of the virtual work principle By assuming a linear elastic
behaviour for steel beam and shear connection, and a linear viscoelastic behaviour for the concrete slab, the
problem is governed by a coupled system of four integral-differential equations The unknowns of the
problem are the functions descnbmg beam deflection, axial displacements of the steel beam and the
concrete slab, and intensity (along the beam axis) of the shear-lag effect introduced by means of a suitable
shape function for the shear warping of the slab cross section (depending on the pomt of the cross section
only) In particular, the shape function is a quadratic function constant on the slab depth, null at the beam-
slab interface and satisfying conditions ensuring local equilibrium at the slab free edges
Given the generality of the creep function adopted, a closed form solution cannot be achieved for the
system In order to obtain an accurate numerical solution, the system is solved by introducing two
discretizations one for the time interval, which permits solving the integral-differential problem by a step-
by-step procedure considering a set of simpler differential problems, and the other for the beam axis m
order to apply the finite differences method

2. Principal results

An extensive numerical parametric analysis, earned out for beams with different geometry and subjected to
different restraints and load conditions, has made it possible to obtain some information on the complex
time dependent behaviour of composite structures In particular, the time evolution of the shear-lag and the
mutual influence between shear-lag and connection deformabihty have been studied m detail For the sake

of brevity, only results related to an isolated case (but which can be qualitatively extended to a wide class
of composite structure) are reported here

Fig 1 shows the numerical results obtained for a two-span continuous beam The creep analysis was
performed with the CEB creep function [3] by considering the following values for concrete strength and
relative humidify fcl(=30MPa and RH=50% The solution at loading time ^=28 days (elastic solution) is
compared with the viscoelastic solution (^=25550 days) Furthermore, results obtained taking into account
the shear-lag effect (curves denoted by SL) are compared with those obtained under the classical hypothesis
adopted for composite beams with flexible shear connection, namely preservation of plane cross section for
the steel beam and the concrete slab considered separately (curves denoted by P) The most important
results are summarised m the sequel

1 The beam axis deflections notably increase as a consequence of the time-dependent behaviour of the
concrete, while they are less sensitive to the shear-lag effect (Fig la)

2 The shear-lag effect, as is well known, strongly modifies the stress distribution m the slab only m the
neighbourhood of the intermediate support, by significantly mcreasmg the value which would be
obtained by assuming the plane cross section hypothesis for concrete slab and steel beam (Fig lb)
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3. Influence of the shear connection stiffness (p) on shear-lag is shown in Fig. lc, where the elastic values
of the stresses aSLand op at the intermediate support cross section are compared. Increasing p, shear-
lag stress oSLincreases more than oP as shown by the dashed curve related to the ratio oSL/op. The
coupling between the shear-lag effect and the shear connection stiffness is thus evident.

4. Fig. Id shows the influence of creep on the shear-lag effect. The time evolution ofthe ratio between Ac
and aSL(see Fig. lb) is reported for three different values of the shear connection stiffness. Such a ratio
permits defining the slab effective width bea- (adopted by the principal technical codes, e.g. ENV 1994-
2) as

6/2 6/2

V= J ccdx b jf(x)dx
°SL -b/2 aSL -b/2

where b is the real value of the slab width anàflx) is a function depending on the cross section only. It
is evident that such a ratio, even if it depends on die p value, remains almost constant in time showing
a substantial uncoupling between creep and shear-lag effect.
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Fig. 1. (a) Influence ofshear-lag and concrete creep on the beam deflections, (b) Concrete creep effect
on the slab stress distribution, (c) Influence ofthe shear connection stiffness on the shear-lag effect, (d)
Influence of the concrete creep on the shear-lag effect.
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Summary

The calculations of the stresses for the statically indeterminate composite structures as

general, are presented. The approximate methods EM and AAEM and exact method are
applied. The stresses, for the example of statically indeterminate composite structures due
to uniformly distributed load and the shrinkage of concrete are determined. Using the
limiting concrete creep functions the upper and lower limits of the stresses are
determined.

1. The exact method (TM)

Ute cross section of the composite structures contain concrete (b), prestressing steel (p),
steel member (n) and reinforcing steel (m). Concrete is considered as a linear viscoelastic
material. Hie relaxation of the presstresing steel is taken into account.

ab EboR'{e-es), ap EpR!pS (1.1)

Other kinds of steel: steel member (n) and reinforcing steel(m) obey Hook's law :

g£ E%e k=n,m. (1.2)
The exact method, established by Lazic, using linear integral operators, is applied. Starting
from the integral stress-strain relationship the expressions for stress and strain, in the exact
method, are derived without mathematical negligence. Calculation of statically
indeterminate composite structures is same as calculation of the corresponding structures
whose material is homogeneous and elastic except that in composite structures we solve

integral equations.

2. The approximate methods (AAEM, EM

Hie algebraic stress-strain relationship for concrete contain two independent parameters:
the reduced creep coefficient cp(t,to) and the aging coefficient x=x(t>to) (AAEM). When
X=1 the same equations represent the EM method.

ab~ — Es} — PfrPfr Gb — ab^Jo'^o) •

&~1 + X9r
,Pb=^~**Pr * ^

When the relaxation of prestressing steel is introduced, the algebraic stress-strain
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relationship for the prestressing steel may be written as:

°> EpSpe (2-2)

Calculation of statically indeterminate composite structures is same as calculation of
the corresponding structures whose material is homogeneous and elastic.

The redistribution of stresses for the example of composite structures due to uniformly
distributed load and the shrinkage of concrete is calculated. Values of stresses are shown

on the graphs 1,2 as follows.
Data: Concrete (b) Eh 30GPa, <pr =3,5 sM -30 • 10"5

Prestressing steel (p):Ep 210GPa, Fp 100cm2 gp=8%
Steel member (n): E„ 200GPa Eu

Reinforced steel (m) : Em 200GPa Fm 80cm2
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3. Conclusion

The redistribution of stresses for the composite section during in time, occurs due to
viscoelastic properties of concrete and relaxation of prestressing steel. Stresses of
concrete are reduced and stresses of steel parts are increased. Using the concrete creep
function of the aging theory in the exact method and the hereditary function in the EM
method the upper and the lower limits of the stresses are determined. We choose the
aging coefficient % in the AAEM method to lie within these limits. As we can see in
graphs this conditions for the values of coefficient % from 0,75 to 0,9 are fulfilled.
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Summary
The creep properties of concrete significantly influence the long-term behavior of steel-concrete
incomplete composite girders. In this paper, a stochastic creep analysis based on the First-Order
Second-Moment Method are carried out considering the uncertainties of creep properties. The
results are compared with those obtained from the Monte Carlo simulation. The effect of
variability of material properties on the long-term behavior of incomplete composite girders are
exhibited.

1. Introduction

The creep properties of concrete significantly influence the long-term behavior of steel-concrete

incomplete composite girders. In the design of those structures, the deterministic creep coefficient,
such as the ACI-209 model, the CEB-FIP-90 model is utilized to estimate long-term effects. These

creep properties are subjected to some amount of variability. Therefore, it is not so easy to
correctly predict the long-term behavior of these girders. In this study, a stochastic creep FEM
analysis based on the First-Order Second-Moment Method are carried out considering the
uncertainties of creep properties. The results are compared with those obtained from the Monte
Carlo simulation.

2. Stochastic FEM Analysis based on the F.O.S.M

The incomplete composite girder in this FEM analysis consists of a concrete beam element, a steel

beam element and a continuous spring element which connects concrete and steel.

Using the age adjusted effective modulus method in constitutive low on the concrete, the creep
stiffness equation of the incomplete composite girder is expressed as following.

[#} {f} + {Gl W
where

[AT] :crcep stiffness matrix of composite beam, {U} :creep displacement vector

{F} xxternal force vector, {G} : creep force vector

The sensitivity displacement is derived from Eq.(l) as
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(2)1 J
ax, axt

1 ' axt w
/ 1 -m)

where Xi is probabilistic variables such as the relative humidity, affecting creep behavior of
concrete. The value m is the number of the probabilistic variable. The variances of deflection and

stress of the concrete slab and steel beam can be evaluated from Eq.(2).

3. Calculation and Results

3000

The CEB-FIP-90 model has adopted as a creep coefficient, which mainly consists of 4 terms of the
relative humidity, the mean compressive strength of concrete, the notational size of member and
the age of concrete. Besides the creep coefficient the aging coefficient and the modulus elasticity
of concrete at loading time also effect the age adjusted effective
modulus in the analysis. In this study, the relative humidity, the
compressive strength of concrete at the age of 28 days, the
modulus of elasticity of concrete and the aging coefficient are

regarded as probabilistic variable. The data of those values are the

mean value and the coefficient of variation which represents the
scatter. Other data are deterministic values.
The numerical calculations are carried out for the simple
composite beam shown in Fig.l. The following numerical values

are adopted: span length L=40m; modulus elasticity of steel
E,=2.1xl03MPa; uniformly distributed sustained load

p=54.145kN/m; rigidity of connector Qz=0.4kN/mm/mm; loading
time and final time for creep analysis is 14days, lOOOOdays,

respectively; mean relative humidity RH=60%; mean
compressive strength of concrete at the age of 28days
f<i=30MPa; mean aging coefficient % =0.76; mean modulus

elasticity of concrete Ec=2.85xl05MPa.
The comparisons of the variance of creep deflection and

creep stress of concrete at the mid span are shown in Fig.2
and Fig.3 between this study and Monte Carlo simulations,
where the number of sampling calculation is 1000, and

every coefficient of the variation of relative humidity,

compressive strength of concrete, aging coefficient, and

modulus elasticity of concrete ranges from 10% to 40%.
Results of this study show good agreements with those

from Monte Carlo simulations.
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4. Conclusion

The present paper expresses the incomplete composite
analysis including the scatter of material properties of
long-term behavior, which results in good agreement with
the results evaluated from the Monte Carlo method.
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