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The Fracture Theory of Composite at Bearing Strain in End Faces
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Summary

In continual approximation for construction of the theory of fracture the material is mod-
elled by orthotropic elastic (in case of brittle fracture) or by elastic—plastic (in case of plastic
failure) body. For modelling of the fracture mechanism considered the phenomenon of sur-
face instability near the end face is used. The exact solution was used for computation of
theoretical strength limits, corresponding to fracture at bearing strains on end faces. The
comparison with experimental results was made for unidirectional fibrous materials.

1. Introduction

The article is devoted to investigation of mechanism of fracture of composite materials and of
structures elements fabricated from these materials in compression, when in end faces bearing
strains occur. This phenomenon occurs, for example, in uniaxial compression when fracture
of material initiates near end faces. This fracture is not propagated far from end faces. For
this reason, the ultimate strength of material, corresponding to fracture at bearing strains
in end faces, is some what lower than the ultimate strength of the material at the fracture
of the whole material (far from end faces). For description of this phenomenon the continual
theory of fracture is proposed with modelling of material (in continual approximation) by
orthotropic elastic (in case of brittle fracture) or by elastic—plastic (in case of plastic failure)
body. The phenomenon of surface instability is applied for modelling the fracture mechanism
considered. For description of phenomenon of surface instability under applied normal load
the three—dimensional linearized theory of deformable bodies stability, which is presented,
for an example, in [2] is used. For solution of formulated problems (within the framework
of linearized theory of deformable bodies stability) the system of integral representations is
used. As a result of exact solution equations are obtained for determination of theoretical
values of ultimate strength related to fracture at bearing strains in end faces. Values of
theoretical nltimate strength are computed related to fracture at bearing strains in end faces
with application of composite materials with polymer (brittle fracture) and metal (plastic
failure) matrix. Comparison was made with results of experimental studies for unidirectional
fibrous composites.
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2. Main relations and statements

Fracture at bearing strains in end faces occurs under compression. It consists of local frac-
ture near end faces. When the increase of compressive load is insignificant no propagation
of fracture far from end faces occurs. This fracture mechanism is realized also in structural
elements fabricated from composite materials in places where they are joined with metal
structural elements. The fracture at bearing strains is very marked in case of unidirectional
fibrous composite under compression along the fibers and the layers, when the end faces are
not fixed by special procedures. Consequently, following special features are characteristic
of fracture mechanism at bearing strains in end faces.

1. It occurs mainly under compression of unidirectional fibrous composites and of laminated
composites (under compression along fibers and layers).

2. It occurs mainly in cases with unfixed end faces.

3. It occurs near end faces and does not propagate far from end faces.

For an example we consider the unidirectional fibrous boron—aluminium in the case of 50%
content of the fibers under uniaxial compression along the fibers. Nature of fracture at
bearing strain in end face of this composite is shown on Fig.1. Since the compression along
fibers or layers and end faces is analysed, it is logical to assume that at the initial stage a
local stability loss occurs (the surface instability near the loaded end face). The foregoing
considerations lead to following main statements of the present continual theory.

1. In the analysis of the phenomenon of bearing strains in end faces the influence of lateral
surface of the specimen or of the structural element will be not accounted for. This state-
ment allows to analyse the lower half-space (z3 = 0).

2. The phenomenon of bearing strain in end faces at the initial stage will be assumed to occur
as a result of surface stability loss near the loaded end face. Only surface instability will be
analysed, when stresses and displacements attenuate at increasing distance from the end face.

Fig.1. Fracture of unidirectional composite at bearing strains in end face in azrial compres-
sion (boron—fibers, aluminium-matriz). The view after fracture
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3. The analysis of surface instability near the loaded end face will be carried out within the
framework of the three—dimensional linearized theory of deformable bodies stability [1,2].
The second variant of the small practical deformations theory will be used {2] (precritical
state is determined with the use of geometrically linear theory).

4, In the analysis of plastic failure (materials with metal matrix) the generalized conception
of continuing loading will be used [1,2]. Consequently, we will not take account of the change
of unloading zones in the process of stability loss. This statement allows to analyse in the
general form the brittle and plastic failure.

5. The precrnitical state will be assumed to be homogeneous in the analysis of surface insta-
bility near the loaded end face.

6. The external load at z3 = 0 will be assumed "dead” load, and this validates the use of
static method of analysis [2].

7. Laminated and fibrous composites will be considered. For laminated composites it will
be assumed that layers are directed perpendicularly to the end face surface z3 = 0. With
application to fibrous composites the unidirectional or orthogonally reinforced materials will
be analysed under the condition that the direction of main reinforcement is perpendicular
to the end face z; = 0.
8. In continual approximation these composites will be modelled by compressible homoge-
neous orthotropic body. The model will be used of elastic linear body at brittle fracture (in
case of polymer matrix) and the model of elastic—plastic body at plastic failure (in case of
metal matrix). The assumption will be made that the axes of symmetry of material prop-
erties (in continual approximation) coincide with axes of the chosen coordinate system. In
case of the model of transversely isotropic body the planes z; = const will be assumed as
isotropy planes.
Taking into account the foregoing main statements we will consider main relations. For
three—dimensional precritical state main equations of the three—dimensional linearized the-
ory of deformable bodies stability [2] with application to compressible bodies have the form

Loatic = 0; n,m,a,fB=1,2,3

§—— w""“'ﬂbzf’_azp; Wamaf = “-’nmaﬁ(”gn agz» Ogs) (2'1)
Components of the asymmetric tensor of stresses of Kirchhoff are determined [2] from the
expression

tam = wnmaﬂ%:' (22)

For homogeneous precriticall state (with application to the second variant of the small pre-
critical deformations theory [2]) following relaiions hold

Wnmap = SnmbafAng + (1 — 6nm)(Bnabmp + 6npbme)tinm + 6npbmatpp (2.3)
In [2] expressions are presented for determination of values of An.g and y,. for various
models. In case of bnttle fracture (polymer matrix) it may be assumed

Anﬁ)/“nm = const; Hnm = Grm (24)
In case of plastic failure (metal matrix) it may also be assumed
Anp = Anp(0]1, 0%, 035) Hnm = fnm (001, 032, 033) (2.5)

The existence of relations (2.5) complicates the analysis significantly.
On the end face (z; = 0) the following boundary conditions hold

tam =0 at T3 = 0 m=1,2,3 (2.6)
In view of the local character of the surface instability, the conditions of attenuation ”at
infinity” (at z3 — —oo) should be put in the following form

Upm — 0, tom — 0 at z3 — —00 2.7)
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The formulation of the problems is complete with foregoing relations and with taking account
of symmetry properties for components wamag [2]. Consequently, the problem of eigenvalues
is obtained (relative to loading parameter o3,) in the form (2.1)-(2.7).

3. Theoretical results

Within the framework of the foregoing formulation we will consider now the computation of
the theoretical strength limit corresponding to fracture at bearing strains in end faces. We
will consider arbitrary form of stability loss in variables z, and z;, including local (in z, and
z,) forms of stability loss. It should be remarked that in [2] surface instability was considered
when the load was applied along the plane boundary (s3; = 0) and only periodical (in z,
and z;) forms of stability loss were investigated. In case of arbitrary forms of stability loes
the solution will be represented in the form of Fourier integrals

+00
tn = o= [ [ va(zs, 1, 0z){exp[—i(a1z) + azz2)]}donday;

—-co
+ 00

B = 2% J | ram(zs, o1, ca){exp[—i(a1z1 + aaz2)]}day day; (3.1)

Introducing (3.1) into (2.1)~(2.7) we obtain the eigenvalues problem, formulated relative to
functions v, and r,,, (3.1). The solution of this eigenvalues problem will not be presented
here as the extent of the article is restricted, additional information may be found in [3,4].
Here only final expressions will be presented, obtained by exact solution of this eigenvalues
problem. In the exact solution characteristic equations are obtained corresponding to surface
instability near the loaded end face. These expressions will be presented separately for the
plane and the three—dimensional problems.
In the case of ihe plane problem (plane deformation in the plane z,0z3) with application to
the model of orthotropic body characteristic equations are obtained in the following form
win = 0 wiss1 = 0; wiiss + wis1s = 0; n=0 (3:2)
In the case of three—dimensional problem (with additional condition ¢, = ¢%;) with ap-
plication to the model of transversely isotropic body (the axis oz3 is the isotropy axis)
characteristic equations have the form

wasss = 0; wa13 = 05 (w1133 + wr3s) ™t =0 O=0 (3.3)
In (3.2) and (3.3) the notation is introduced
I= \/&*11110-’3333(0’3113601331 - w%ns) + \/0—’1331603113(601111603333 - &’%133) (3-4)

It should be pointed out that characteristic equations (3.2) and (3.3) taking into account the
notation (3.4) are obtained in the unified general form for the finite precritical deformations
theory [2] and for two variants of the small precritical deformations theory [2] in the case of
elastic and elastic-plastic models. For derivation from (3.2)-(3.4) of results corresponding to
the second variant of the amsll precritical deformations theory [2] (this problem is considered
in this article) it is necessary to use for determination of components of the tensor w the
expressions (2.3).
In the following only the case of uniaxial compression along the axis oz will be considered.
In view of this the following condition should be assumed

ey =0y, =0 (3.5)
We also introduce the following notations:
(I3)7 - theoretical strength limit in compression along the axis ozj, corresponding to the
fracture of the whole specimen or structural element;
(II7)3M - theoretical strength limit in compression along the axis ozs, corresponding to the



AN. GUZ 787

fracture of the specimen or structural element at bearing strain in end face;

(II5)es ~ experimental value of the strength Limit in compression along the axis oxs, corre-
sponding to the fracture of the whole specimen or struciural element;

(O5)3M — experimental value of the strength limit in compression along the axis ozs, corre-
sponding to the fracture of the specimen or structural element at bearing strain in end face;
—{0% ) — critical value of the compressive load, corresponding to the internal [2] stability
loss in the structure (for the whole specimen, corresponding to the infinite body);
—(034)3M - critical value of the compressive load, corresponding to the local stability loss
near the loaded end face.

Taking into account the foregoing notations and ihe second main statement of the present
theory the following equality may be written

(O3)F = ~(o%)3 (3.6)
In analogous manner [5] we may also write
(03)r = —(03s)er 3.7

Omitiing all intermediate calculations, we will present only final results concerning the eval-
uation of the considered theoretical strength limits. We remark that for analysed composite
materials (Fig.3 and 4), taking into account the notations (2.2) and (2.3) following inequal-
ities are valid

Ass >> Gis; Ass >> s (3.8)
with application to the brittle and plastic fracture.
Taking into account (3.8) with application to the case (3.5), from (3.2)—(3.4) after some
cumbersome transformations the following result is obtained

[(037)r — (I5)5%] - [(I5)r]? ~ (A2 )24nf) — A -15 0 (3.9)

For case of brittle fracture in (3.9) the value u;; should be substituted for G3. In view of
inequalities (3.8) for structural materials the following result is obiained

(O3)F¥ < (I3)r (3.10)
It means that the values of theoretical strength Limits (II; ) and (II7 )3™ differ insignificantly.
As an example, the laminated composite at brittle fracture will be considered. We

introduce notations: E,, v, and S, — Young modulus, Poisson coeflicient and concentration
of the filler (or reinforcing elements); E,,, v, and S,, — Young modulus, Poisson coeflicient
and concentration of the binder (of matrix). For structural materials we assume also

o E,>> En, (3.11)
In this case, taking into account known results, [rom (2.9) for a laminated composite we
obtain

[(@5)r - (O3)F¥] - [(T5)e] ' = gy s 2@ (3.12)
From (3.12), which corresponds to the considered example, it follows that the difference
between theoretical strength limits (II7 )z and (117 )3 is insignificant.

4. Comparison with experimental results

Three resulis will be considered in this chapter which related with experiments. In our com-
panson of theoretical results with experimental results we will use the relation (3.10), since
in experimental studies quite frequency the values of (II7)r and ([I7)7¥ are not disting-
wished. Values of theoretical strength limits (II5)r are computed in {5] for some materials.
1. Nature of fracture of unidirectional composite at bearing strains in end face in axial
compression (boron—fibers, aluminium—matrix) is shown on Fig.1. The photograph of Fig.1
correspond to the view of specimen after fracture. The above mentioned fracture arose near
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first end of specimen. Design and technological technigues, excluding occurence of the above

mentioned fracture near second end of specimen were utilized.

2. We consider unidirectional fibrous boron-reinforced plastic in case of brittle fracture at

50% content of fibers (S, = S;, = 0.5). In this case following results were obtained
(I )es = 3.10GPa; (1 )y = 2.00 — 3.00GPa (4.1)

In (4.1) in determination of (II;)r the scatter of properties of epoxy resin is taken account

of.

3. We consider the unidirectional fibrous boron—aluminium at plastic failure in the case

of 50% content of fibers (S, = S,, = 0.5). Results were obtained [4,5] for annealed and

nop—annealed aluminium, we present the results in the lable :

Material (03)2¢, MPa (II3)7¥, MPa
annealed 665 736
non-annealed 1282 1467

These results taking into account the inequality (3.10) demonstrate a good agreement be-
tween theoretical and experimental results. Additional information and analysis of related
problems are presented in monograph [5] and article [6].
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