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Summary

The object of the paper is the derivation of the damping matrix of timber frames with
flexible connections. ‘The basic explicit assumption is that the loss of energy occurs only
at the juints and that the modal damping ratios are known cither from cxperiments or
from engincering judgement. Damping matrix orthogonality is used to obtain the
damping exhibited by cach of the joints.

1. Introduction

The performance of timber construction in carthquakes can be very good mainly
because of its low mass, flexibility of connections and high damping. Dowrick [1] and
Green [2] report that the damping ratio in timber structures can take a very high valuc,
even 15% to 20%. But according to Lazan [3], the wood itself has a material damping
ratio less than 1%. 1t is obvious that a Lkirge amount of energy absorption takes place in
the secondary structure and in the flexible connections of the primary structure.

The tests performed on some timber portal frames, without sccondary structure, by
Cecceotti et al. [4], confirm an cquivalent damping ratio of about 15%. No doubt, the
principal part of the energy absorption takes place just in the flexible connections of the
primary structurce. These fucts prove that the timber structures behave as systems with
the discrete dampers which should be properly represented in the model for a correct
dynamic response analysis. The other property of flexible conncctions, their stiffness
capacity, is not the subject of the present analysis.

The modal damping ratios for a structure arc known cither from experiments or from
cngineering judgement but the contribution of cach joint separately is unknown. In the
global damping matrix of a timber frame structure in which the flexible connections arc
the only dampers, the influence coefficients are actually the coefficients associated with
the damping forces developed in particular joints. If the procedure of deriving
uncoupled equations of motion is followed, which also mcans the satisfaction of
orthogonality condition of the damping matrix, onc comes to a set of equations which
relate the mode-shapes, the damping cocfficients, and the modal damping ratios. From



154 FLEXIBLE CONNECTIONS AS THE DISCRETE DAMPERS ///‘

these cquations it is possible to compute cither viscous damping coefficient for cach of
the joints or their rclative valucs. It means that the damping uncoupling imposes certain
rulc on the damping distribution among the flexible joints. This will be the basis for the
approach used further in the analysis.

An alternative in handling the damping in structurcs is to use two methods for the
numerical cvaluation of orthogonal damping matrices, developed by Wilson and Penzien
[5] and also Clough and Penzien [6]. These two methods yield an orthogonal damping
matrix which produces specific modal damping ratios, but thec damping model is
fictitious onc, not pretending the stress distribution within the frame to be correct. On
the contrary, in the present analysis a particular damping model is obscrved in which the
damping forces arc developed internally in specified locations and along specificd
coordinates. In an carlicr attempt, the authors [7] constructed a damping matrix for a
modc! in which the dampers were attached cxternally to the joints. That was also a
fictitious modcl.

2. Damping distribution analysis

For any structurc of N dynamic degreces of frecdom, the cquations specifying the
orthogonality property of the damping matrix have the form

G={sY1dp)=2 1 ¢ o, i=12,., NV
(¢} [clg,} =0, iz/ (1)

where M; , G, o, &; are the generalized mass and damping, the frequency and the
damping ratio, all in modc i, respectively.

The number of available equations in (1) is N(N+ 1)/2. It should be noted that dynamic
degreces of freedom are associated with the displacecment components in which
significant inertia forces are developed.

In structures with flexible conncctions, the damping forces arc developed in dashpots
between interconnected members, Fig.1b. For the correct description of damping
forces, end rotation of cach member conncected by a dashpot should be trcated as an
independent displaccment componcent. The motion is now fully described with
displaccment components nccessary to represent the inertia forces and also the damping
forces. In order to perform the dynamic analysis in these displaccment coordinates, the
. mass matrix and the stiffness matrix should be extended to match the order of the
displaccment vector.
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Performing the undamped free vibration analysis in the extended number of
displaccment components, the frequencies and the mode shapes can be obtained.
Having these data evaluated, cquations (1) will yicld the damping influence cocfficients.
Without any loss of gencrality, the idca of damping distribution will be demonstrated
first on a two-storey timber frame, Fig.1a. All the data nccessary for numerical
cvaluation and also the displacement components are presented on the figure. The
bcams arc flexibly connected to columns and also there is a flexible conncction at the
basc level. Any flexible connection is regarded as a rotational spring of stiftness s and a
rotational dashpot with some viscous damping cocfficient ¢, Fig. 1b. The spring stiffncss
s depends on the type of joint and fastencr, taken the same for all joints in this example,
and it is calculated according to DIN 1052 [8].

The frame performs lateral vibrations, antisymmetric in character. Becausc of dashpots,
cnd rotations of flexibly connected members must be taken as independent coordinates.
Obscrving antisymmectry, the displacement vector is of order seven which gives the
following damping matrix

- -

0 0 0 0 0 0 O
0 0 O 0 0 0 0
9 0 g G =-¢ O 0
[clJ= {0 0 0 ¢ 0 -¢, 0 2)
0 0 —¢, 0 ¢ 0 0
00 0 —¢ 0 ¢ 0
L0 0 0 0 0 0 c,]

where ¢ . ¢3, and ¢3 arc the damping cocfficients for the dashpots on the beams and at
the base, Fig.1a.

a) b)
26 > Ve 9/4
( - B my=4,0t c
\7, 2 % 8 Vi m;=6,6 t
4.0m E=1,1 107 kN/m2
Vs m, Vo v, 3.=0,00288 m*
v 1‘ — ‘ 177 J=0,00216 m*
Enll I o) » ¢l ! s=4050 kNm/rad
4.0m
vhds e sead Y’
10.0 m

g L Dynanniee model of « two-storey laminated timber portal fiamie
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The only nonzero cocefficients in the mass matrix arc myy=my and ma=m;. The
undamped free vibration frequencics, mode-shapes, and generalized masses are
comiputed and presented here as

287 47.207] see ™

6
(o) =10 1994 —02490 -02255 -005522 -005 —022148] (3
{a,} =[1_0 ~03043 0,0351 042887 0,00776 0,095 - 0,34505]

M, =30.24 1, Mo=4,611t

Equations (1) which express generalized damping and the orthogonality property of the
damping mutrix, have the following developed form

iy, =)’ e (B, —d) tedl =2M, 8 o,

¢, (s, — ¢s; ): +C2(¢42 —¢t.: )Z +C}¢722 = ZA-/: G " O, (H

g (¢.;| ~ @ )(‘/532 - ¢51)+ 6 (¢.u e )(¢42 - ¢h2 )+ (3¢7|¢72 =0

where &, and &, are the modal damping ratios for the first and the sccond mode,
respectively. 1 the modal damping ratios are assigned some specitic values, for example
S =015 and £, =0,05, cquations (4) result in ¢, =1304.82, ¢, =48.77 and ¢;=120,70.
This way the damping distribution among the tlexible connections is achieved and also
the damping matrix (2) is evaluated.

A different situation may arisc if the joint on the basc level, Fig. fa, is the fixed joint. In
that case, the number of unknown damping cocfficicnts is less than the number of
available equations in (1) and for that reason only onc ol the modal damping ratios can
be assigned while the other should result from the equations. The free vibration analysis,
with a stiffness matrix of order six, gives the following frequencics and the mode-shapes

Cer)' :[9,86 62,67] sec™

{¢,}’=[1,o 28816 -0,4058 -0,4572 —-0,0898 —0,101]46] (5)
{¢.}) =[10 -02103 —00681 04437 -0,01506 0,095 1]
M=5881, . M,=4,29t

Using these duta, and also adopting &= 0,13, the solution procedure will yicld:
¢ = 148191, ¢o= 202,303, and also &;=0,052.
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It should be noticed that the position of zero and nonzero clements in the dimping
matrix (2) strictly follows the displacement components in which the damping forees arc
actually developed. Wilson and Penzien [5] do not observe this fact since the methods
proposed by them are conceptually different from the present approach. Using their
micthod, the one based on Caughey series [9] for which a proportional damping nutrix is
aspeciad case, an orthogonal damping matrix is evaluated for the iltustrative purposces.
For damping ratios as above, &= 0,15, £,=0,05, and also using the stiffness matrix with
the extended number of coordinates, for the frame with fixed joints at the basc, one
comes Lo a proportional damping matrix of the form

{c]=a,[m]+a,[K] (H)
[32.024 -10204 0 -20528 0 0 ]
10264 29232 20528 20528 0 0
0 10264 58242 13686 =35 0
1o10,204 10264 13,686 30,871 0 -3,5
0 0 ~3.5 0 15816 0
0 0 0 -3,5 0 15,816]

where ag and a; are the coefficients related to frequencies and damping ratios and fm]
and [k] arc the mass and stiffness matrices, respectively. [For any conclusion, this matrix
should be compared with the damping matrix in (2).

Lateral vibrations of one-storey frame, Fig.2, arc described with four coordinates. The
damping in the joints is described with the following matrix

o 0o o 0]
% = 0 ¢ -—-¢ 0 ’ o
“Tlo -, ¢, 0 %

-

) 00 e

'Xg m Vi~ V.
(e . @ Y= m=16,51
' E=1,1 107 kN/m*

i 6.0m J.=0,0288 m*
{
1

Jn=0,02592 in?
Vy | $=88766 kKNm/rad
QJL‘S' C: S, cz_j___) V4 L
o 200m

L3 2 Ihvrnariic modcd of a one-storey kol timber porial framie
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The undamped {ree vibration analysis gives
w = 18,834scc™ )
(4.} = [1,0 ~0,15725 —0,08008 - 0,12066]

M=10651

The term mode-shape here is unusual for a system of onc dynamic degree of frecdom
and the confusion may arise. But it should be understood as the deformed shape in the
extended number of displacement componcents.

The expanded form of gencralized damping is
(thy ~ &) +ad (-6, +¢31)+"}‘/§421 =2M-$-w (9)

For a given damping ratio, cquation (9) relates ¢; and ¢ . If they arc equal, and for
£1=0,15, the cquation results in ¢c;=c;=4544,6.

The same frame with fixed joints at the basc is the only casc with no distribution of
daniping sincc the beam to column joints take all of the dissipated energy. For the threc
displacement componcents, the damping matrix takes the form

[0 0 o]
=10 ¢ -¢ (10)

G - &
With the data from the undamped free vibration analysis
w=28,406 scc™
(¢} =[1.0 —0,20725 -0,1055 (11
M=106,5 ¢

and with the usc of the expanded form of generalized damping
A = b0+ (s + )] = 2-40 -0 (12)
onc obtains, for &= 0,15, that c is cqual to 13581,46.

From the damping matrices in previous examples, and also directly from a dashpot, it
can be seen that the damping foree developed in a particular joint is proportional to the
rate of change of relative rotation in that joint. But, in a dynamic analysis, that fact
would not reduce the total number of independent coordinates.
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A totally different problem, which is not the subject of this paper, would be if some
arbitrary distribution of damping is adopted. In that case a set of uncoupled cquations of
motion could be obtained by the use of damped mode-shapes. But, it requires someone
to deal with the complex cigenproblem and to solve it as in Hurty and Rubinstein [10].

3. Conclusion

A substantial part of encrgy absorption occurs in the flexible connections of some
structurcs, especially the timber structures since they belong to the group of
prefabricated systems. To deal with the mechanics of different types of connections and
fusteners, one should know not only their stiffness property but also their damping
capacity.

The damping model of a structurc adopted here obscrves the fact that the joints behave
as the discrete dampers. Bascd on such modcl, the damping matrix with unknown
damping cocfficients is constructed. The uncoupling procedurc results in a system of
cquations from which the numerical evaluation of damping coefficicnts is possible. The
resulting damping matrix in explicit form then may be used, for example, in the dynamic
response analysis of some nonlincar systeims.
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