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Summary

The object of the paper is the derivation of the damping matrix of timber frames with
flexible connections. The basic explicit assumption is that the loss of energy occurs only
at the joints and that the modal damping ratios are known either from experiments or
from engineering judgement. Damping matrix orthogonality is used to obtain the

damping exhibited by each of the joints.

1. Introduction

The performance of timber construction in earthquakes can be very good mainly
because of its low mass, flexibility of connections and high damping. Dowrick [1] and
Green [2] report that the damping ratio in timber structures can take a very high value,
even 15% to 20%. But according to Lazan [3], the wood itself has a material damping
ratio less than 1%. It is obvious that a large amount of energy absorption takes place in
the secondary structure and in the flexible connections of the primary structure.

The tests performed on some timber portal frames, without secondary structure, by
Ccccotti et al. [4j, confirm an equivalent damping ratio of about 15%/. No doubt, the

principal part of the energy absorption takes place just in the flexible connections of the

primary structure. These facts prove that the limber structures behave as systems with
the discrete dampers which should be properly represented in the model for a correct
dynamic response analysis. The other property of flexible connections, their stiffness

capacity, is not the subject of the present analysis.

The modal damping ratios for a structure are known cither from experiments or from
engineering judgement but the contribution of each joint separately is unknown. In the

global damping matrix of a timber frame structure in which the flexible connections arc
the only dampers, the influence coefficients are actually the coefficients associated with
the damping forces developed in particular joints. If the procedure of deriving
uncoupled equations of motion is followed, which also means the satisfaction of
orthogonality condition of the damping matrix, one conies to a set of equations which
relate the mode-shapes, the damping coefficients, and the modal damping ratios. From



154 FLEXIBLE CONNECTIONS AS THE DISCRETE DAMPERS

these equations it is possible to eomputc cither viscous damping coefficient for each of
the joints or their relative values. It means that the damping uncoupling imposes certain
rule on the damping distribution among the flexible joints. This will be the basis for the

approach used further in the analysis.

An alternative in handling the damping in structures is to use two methods for the
numerical evaluation of orthogonal damping matrices, developed by Wilson and Penzien
[5] and also Clough and Penzien [6]. These two methods yield an orthogonal damping
matrix which produces specific modal damping ratios, but the damping model is

fictitious one, not pretending the stress distribution within the frame to be correct. On
the contrary, in the present analysis a particular damping model is observed in which the

damping forces arc developed internally in specified locations and along specified
coordinates. In an earlier attempt, the authors [7] constructed a damping matrix for a

model in which the dampers were attached externally to the joints. That was also a
fictitious model.

2. Damping distribution analysis

For any structure of N dynamic degrees of freedom, the equations specifying the

orthogonality property of the damping matrix have the form

where Mj, Q to,-, £j arc the generalized mass and damping, the frequency and the

damping ratio, all in mode i, respectively.

The number of available equations in (1) is N(N+1)/2. It should be noted that dynamic
degrees of freedom arc associated with the displacement components in which
significant inertia forces are developed.

In structures with flexible connections, the damping forces arc developed in dashpots
between interconnected members, Fig. lb. For the correct description of damping
forces, end rotation of each member connected by a dashpot should be treated as an
independent displacement component. The motion is now fully described with
displacement components necessary to represent the inertia forces and also the damping
forces. In order to perform the dynamic analysis in these displacement coordinates, the
mass matrix and the stiffness matrix should be extended to match the order of the
displacement vector.

(1)
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Performing the undamped free vibration analysis in the extended number of
displacement components, the frequencies and the mode shapes can be obtained.
Having these data evaluated, equations (1) will yield the damping influence coefficients.
Without any loss of generality, the idea of damping distribution will be demonstrated
first on a two-storey timber frame, Fig.la. All the data necessary for numerical
evaluation and also the displacement components are presented on the figure. The
beams are flexibly connected to columns and also there is a flexible connection at the
base level. Any flexible connection is regarded as a rotational spring of stiffness s and a

rotational dashpot with some viscous damping coefficient c, Fig. lb. The spring stiffness
s depend:» on the type of joint and fastener, taken the same for all joints in this example,
and it is calculated according to DIN 1052 [8].

The frame performs lateral vibrations, antisymmetric in character. Because of dashpots,
end rotations of flexibly connected members must be taken as independent coordinates.
Observing antisymmetry, the displacement vector is of order seven which gives the

following damping matrix

1
0 0 0 0 0 0 1—0

0 0 0 0 0 0 0

0 0 0 0 0 0

II 0 0 0 C2 0 -0 0

0 0 -c> 0 0 0

0 0 0 ~C2 0 0 0

l0 0 0 0 0 0 Cj-

where Cj C2 and C3 arc the damping coefficients for the dashpots on the beams and at
the base, Fig.la.

b)

4.0 m

4.0 m

mi =4,0 t
m2=6,6 t
E=1,I 107 kN/m2
Jc=0,00288 m4

Jb=0,00216 m4

s=4050 kNm/rad

Fig. I. Dynamic made/ofa two-storey laminated timberportalframe
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The only nonzero coefficients in the mass matrix arc mn ni| and m22 'n2- The'

undamped free vibration frequencies, mode-shapes, and generalized masses are

computed and presented here as

iw]' =[6.287 47,207] sec "'

{(/',{' — [ 1.0 1,094 -0.2496 -0.2255 - 0,05522 - 0,05 -0,22148] (5)

{p,}' [l.O -0.3043 0,0351 0,42887 0,00776 0,095 — 0,34805]

MI =30,24 t, M: 4,611t

liquations 1 which express generalized damping and the orthogonality property of the

damping matrix, have the following developed form

('/'!, \\ V" +cA<!>u -«/i)2 2A/, -g, -M,

~f/;)2 +C2(</'.>2 -f^.,;)2 + U<ßn 2A/; • Ç, -M, (4)

^I (^11 ~ ^51 )(^!2 _ ^52 U (/ll ~ $1,1 X^-42 _ ^('2 U^7|l?2 ~~ ®

where ç, and Jf, are the modal damping ratios for the first anil the second mode,

respectively. If the modal damping ratios are assigned some specific values, for example
4', =0,15 and ^,=0,05, equations (4) result in c, 1304,82, c, =48,77 and c;,= 126,76.

This way the damping distribution among the flexible connections is achieved and also
the damping matrix (2) is evaluated.

A different situation may arise if the joint on the base level, Fig. la, is the fixed joint. In
that case, the number of unknown damping coefficients is less than the number of
available equations in (1) and for that reason only one of the modal damping ratios can
be assigned while the other should result from the equations. The free vibration analysis,
with a stiffness matrix of order six, gives the following frequencies and the mode-shapes

1«}' =^9.86 62,67] sec"1

{(3,}' =[l.O 2,8816 - 0,4058 -0,4572

{^2}' [ 1-0 -0.2103 -0,0681 0,4437

M1 =58,8 1, NT-4,29 t

Using these data, and also adopting £1= 0,15, the solution procedure will yield:
C|= 1484.91, c2= 202.303, and also ^=0,052.

-0,0898 -0,101146] (5)

-0,01506 0,09816]
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Il should he noticed that the position of zero and nonzero elements in the damping
matrix (2) strictly follows the displacement components in which the damping lorecs aie
actually developed. Wilson and Penzien [5| do not observe this fact since the methods
proposed by them are conceptually different from the present approach. Using their
method, the one based on Caughey series [0] for which a proportional damping matrix is

a special ease, an orthogonal damping matrix is evaluated for the illustrative purposes.
For damping ratios as above. 4i — 0, 15, 42 — 0.05. and also using the stiffness mati i.\ with
the extended number of coordinates, for the trame with fixed joints at the base, one
comes to a proportional damping matrix of the form

[e] a„[m]+a,[k] (<>)

32.024 -10,264 0 -20,528 0 0

-10.264 20,232 20.52S 20,528 0 0

0 10,264 5S.242 13,686 -3,5 0

-10,264 10,264 13,686 30,871 0 -3,5
0 0 -3.5 0 15,816 0

0 0 0 -3,5 0 15,816,

where a() and ;ii are the coefficients related to frequencies and damping ratios and |m|
and [k] arc the mass and stiffness matrices, respectively. For any conclusion, this matrix
should he compared with the damping matrix in (2).

Lateral vibrations of one-storey frame, Fig.2, arc described with four coordinates. The

damping in the joints is described with the following matrix

0 0 0 0

0 <3 -<3 0

0 -<3 0

0 0 0 L\

(7)

v-r

Vi,

v,r-v
s, c,

s, c-

20.0 m

Vs y,
3^

s,C|

3 v4

m 16,5 I

E=l,l 107 kN/ni-
6.0 m JC=0,02S8 m4

Jb=0,02502 m4

s=88766 kNm/wl

Fiy. 2. Dynamic nuu/eiOf'a one-storey iaminalcd limberporta/frame
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The undamped lïcc vibration analysis gives

co 18,834 see"' (8)

{^,}r=[l,0 -0,15725 -0,08008 -0,12066]

M 16,5 t

The terni mode-shape here is unusual for a system of one dynamic degree of freedom
and the confusion may arise. But it should be understood as the deformed shape in the
extended number of displacement components.

The expanded form of generalized damping is

+ + =2M-S-a (9)

For a given damping ratio, equation (9) relates cj and C2 If they arc equal, and for
^1=0,15, the equation results in C| C2=4544,6.

The same frame with fixed joints at the base is the only ease with no distribution of
damping since the beam to column joints take all of the dissipated energy. For the three

displacement components, the damping matrix takes the form

0 0 0

w 0 c —c

.0 -c c

With the data from the undamped free vibration analysis

co 28,406 see
1

{<j>X [ 1,0 - 0,20725 - 0,1055] (11)

T/= 16,5 /

and with the use of the expanded form of generalized damping

(&i ~ {-K + K )] 2 'M' £1co (12)

one obtains, for £ 0,15, that c is equal to 13581,46.

From the damping matrices in previous examples, and also directly from a dashpot, it
can be seen that the damping force developed in a particular joint is proportional to the

rate of change of relative rotation in that joint. But, in a dynamic analysis, that fact
would not reduce the total number of independent coordinates.
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A totally different problem, whieh is not the subject of this paper, would be if some
arbitrary distribution of damping is adopted. In that case a set of uncoupled equations of
motion could be obtained by the use of damped mode-shapes. But, it requires someone
to deal with the complex cigenproblcm and to solve it as in Hurty and Rubinstein [10],

3. Conclusion

A substantial part of energy absorption occurs in the flexible connections of some
structures, especially the timber structures since they belong to the group of
prefabricated systems. To deal with the mechanics of different types of connections and
fasteners, one should know not only their stiffness property but also their damping
capacity.

The damping model of a structure adopted here observes the fact that the joints behave

as the discrete dampers. Based on such model, the damping matrix with unknown
damping coefficients is constructed. The uncoupling procedure results in a system of
equations from whieh the numerical evaluation of damping coefficients is possible. The
resulting damping matrix in explicit form then may be used, for example, in the dynamic
response analysis of some nonlinear systems.
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