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Summary

As far as stecl-rod structures are concerned the yield-hinge theory is a very cllicient
approach of the ultimate-load theory. The deformability of scmi-rigid connections signifi-
cantly allects the load-carrying behaviour and as a consequence the clasto-plastic failure.
[ the present paper a lormulation of a generalized yield-hinge theory in combination with
the consideration of the deformations of connections is consistently developed from the
theory of plasticity. The numerical example shows the efficiency of the proposed method.

1 Introduction

The harmonization of the national and international standards will affect the design of
steel structures in the future. Due to the reasons of salety and economy it is advised
to apply methods which allow to consider the nonlinear geometrical clfects as well as
the nonlinear niaterial behaviour. As far as [rames are concerned the yicld-hinge theory
is widely accepted. Ilarlier proposed methods, c.g. GREENBERG & Pracrr ([5]), were
restricted to the geometrical nonlinear theory of sccond order (theory of 2nd order) or by
considering just P — d-cllects (P — é-mcthod). Morcover, the plastic behaviour was only
considered in regard to the bending moment. A few authors took the nlcraction of the
internal forces in the plastic regime into account. Thus, yielding an inconsistent theory
as shown in [3]. In order to derive an advanced numerical procedure for the yicld-hinge
theory the above-mentioned simplifications are not necessary.

Yield-hinge theory methods can be subdivided into two main branches: concenlric-yicld
hinge theory and cecenlric-yicld hinge theory (gencralized yicld-hinge theory). The main
advantage ol any yield-hinge approximation is based on its cconomical application [rom
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the computational point of view and oun its vivid derivation (GEBBEKEN [3]). Studics
have shown that the yield-hinge theory represents the load-carrying behaviour of {rames
sulliciently for a wide range of applications.

In this paper both, the theory and its numerical treatment in context of the finite element
method are presented in order to determine the nonlinear elasto-plastic load-carrying
behaviour and the ultimate Joad of frames. In addition, this contribution focusses on
developing a practice related method.

2 Fundamentals of the yield-hinge theory

‘The assumptions of the yicld-hinge theory of beams are alinost identical to the assumpti-
ons of the classical rod-theory (LumpE [6]). The frames comprise of more or less siender,
prismatic and straight steel members with rigid or semi-rigid structural conncclions al
the joints. In the three-dimensional casc the numerical node has six degrees of frecdom
which are the nodal displaccments and the nodal rotations associated to the six nodal for-
ces. Yield-hinge models are introduced for the purpose of representing the actual plastic
deformations as well as the actual ultimate load-carrying capacity of beam memnbers.

Fu = Fir

Load —»

stable ¢ uastable

Deflection —™

Figure 1: Comparison of load-deflection curves

The limil points (I'ig. 1) of the yield-hinge theory can be defined with the help of the
following four Jimit-load conditions:



///A N. GEBBEKEN 117

1. ecquilibrium crists,

e

the yield-condition of a cross-scclion is nol violated,

3. the virtual work on the path of plastic deformations is nol negalive,

B

the kinematic mechanism (fuilure mode) of lhe system is atlained.

The fivst three conditions deline the wltimale-load (FF,) while all four conditions define
the kincmatic-fuilure load (I%y). The wltimate-load (I,) is the maximum-load which a
structure can be subjected to. The ultimate-load might be detected as buckling-load
due to clasto-plastic loss of stability. The kinematic-failure load () is associated to the
plastic [ailure of the structure going along with the forming of a mechanism. Applying the
yield-hinge theory of first order (geometrical lincar theory) the values of Fi; and F, are
identical. Applying a geometrical nonlinear theory Fiy < F, holds. The consideration
of the geometrical nonlinearity is a requirement to carry out stability analyses. It is a
necessary condition that the virtual work of the plasticized cross-sections is not negative.
This is guarantecd if ineremental procedurcs and the generalized hield-hinge concept are
applied. The inleraction of the internal forces in plasticized cross-sections is described by
inlcraction-functions [ (yicld-funclions) which are based on the J,-flow theory.

3 Mathematical formulation of the yield-surface

We postulate a function

>0 hardening
S =, k) ¢ =0 yield-condition (clastic limit) (1)
< 0 clastic regime

where /5 are the (ultimate) internal forces and & is a paramcter that comes [rom the
yield-criterion.  The function f defines the limit-stale of cluslicity under any possible
combinations of ullimale stress-resullant coinponents (ultimate internal forces). For this,
the yicld-crilerion of HUBER, V. Misks & HENCKY (Jz-flow lheory) is best suited to
simulate the elastic limit of steel. The equation f = 0 defines the transition (elastic limit
or beginning of plastification) between the elastic (f < 0) and the plastic ([ > 0) regime.
The inequation f > 0 represents hardening of the material which is not considered here.
In the framework of the limit-load theory of frames, the yield-function is often called
"interaction-function”.

The problem of formulating interaction-functions has been tackled by many scientists
in the last three decades. A large number of different interaction-functions have been
proposed in the literature. A survey and a comparison have been published in [1].

RUBIN derived in [8] inleraction-funclions which represent the yicld-surface (yicld-locus)
of open rectangular cross-sections and double-T cross-sections. The dertvations are carried
out under consideration of all internal forces, except of the torsional moment. Thus, yiel-
ding an exact representation of the yield-surface in the case of plane bending, and a fairly
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good approximation of the three-dimensional case. The inllucnce of the torsional compo-
nent can be approximately considered by adding the value of the stress due to torsion to
the shear-stress. As far as it 1s known {rom the literature, only the interaction-functions
ol RUBIN are strictly derived from admissible ultimate stress states of full plasticized
cross-scections. So, they can be seen as the most accurate ones.

For practical purposes simplilied enmiprical interaction-functions on diflerent approximation
levels have heen proposed. Fipirical inleraction-relalions are not necessarily dertved rom
the integration of stress-states. Their mathematical structure is often very simple. These
formulac serve to approach the true ultimatce-load capacily of a cross-section which is
represented by the yield-surfuce.

In vrder to fulfill the condition of convexity of the yield-surface (DRUCKER's postulation)
a lower bound of the yicld-surface is defined by

N

NP

M,

-1 = : y

I~
—

/-

M,

Eq. 2 represents a plance in the three-dimensional space of M, A1, N. The influence of
the shear-forces is here considered according to RUBIN. Eq. 2 is the most simple yield-
function. The influence of the torsional component can be approximately considered by
adding an extra term (M,/MP)?) to the'left-hand side of the yicld-function. lor more
information about interaction formulae sce [1].

4  On the yield-hinge concepts

4.1 Concentric yield-hinges

The most simple possibilily to represent plastic load-carrying behaviour is the introduction
of conecntric yicld-hinges. In textbooks we can find applications to pure bending or
pure membrane or pure shear, repectively. Thus, concentric yield-hinges associated with
bending moment or normal-force or shear-force are introduced. The symbols for these
concentric yicld-hinges are given in IMig. 2.

)
\C

Figure 2: Symbols for concentric vield-hinges: 1st) normal-force, 2nd) shear-force, 3rd)
bending moment

For frame analysis it is widely accepted to apply concentric yield-hinges associated with
the bending momeunt. This is the classical stralegy. For the analysis of truss-structures it
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is obvious to apply concentrie yield-hinges with respect to the normal-force (normal-foree
yicld-hinge). For details see [1], [T].

The implementation of concentric yield-hinges into a computer program can casily be
achieved by the technique of static condensalion with respect to the nodal displacement
component. Thus, yielding a plastic stiffness matrix for the beam and an additional
nodal vector on the right-hand side whicl includes the plastic nodal forces. Within this
procedure, the yicld-condilion can be considered with the help of an inner iterative loop.
It is worth-mentioning that, in any casc, lhese concentric yield-hinges arc localed in the
cenlerline of the beamn and not in the ncutral azis.

4.2 Eccentric yield-hinges

GIRKMANN already pointed out in 1932 ({4]) that the position of a yield-linge moves in
thickness direction of a cross-section and that the position coincides with the location
of the neutral axis. In the following we will derive a closed and theoretical consistent
formulation for two-dimensional and thrce-dimensional frames. The kinematic relations
are drawn in Iig. 3 [or the two-dimensional case and in Fig. 4 for the three-dimensional

case,
p vl <Y
Lk
‘1
centroidal axis p
. gy
T !
" ,
p R l.
- ‘.\R p g :
A
| | | R
i zZr
IYigure 3: Generalized (cccentric) yield- IMigure 4@ Generalized (eccentric) yield-
hinge (two-dimensional) hinge (three-dimensional)

The formulation for yield-hinges is carried out in the framework of a geometrical nonlinear
formulation. Because of the incremental, iterative procedure the relations are lincarized
for cach iterative step. Consequently, we can start with the linear relation between the
nodal force veclor and the nodal displaccinent vector in the clastic regime

P=Fko*. (3)

[n order to consider the plastification at the end nodes i and j of a rod it makes sense to
write l9q. 3 explicitely with respect to both end nodes:

v 12 Ry e 12
1(‘ - j‘l — l\,“ Ll] bi, (l )
I'J' A,']‘,' /.J_}'J' Uy
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For clasto-plastic analysis we have to add the plastic deformation as well as the deforma-
tion of the connections, or vice versa, the tolal incremental displacement vector Av can
be decomposed additively into an clastic part Av®, a plastic part Av?, and a part Av?
due to the delormability of semi-rigid counections,

Av = Av® + Ao + Av? ; (5)
Av; 12 Avf i Av? ' Avf’ 12 ,
Av, = [ Avj] = [ Av;] + Aot | A : (6)

repectively. Applying an incremental procedure the lollowing holds for cach increment:

[+Af=f(Fuk)+A[(AF, k) =0. (

-1
—

Provided that the yield-conditior /' =0 (1) holds, it is a result of (7) that the incremental
part of the yield-condition has to be fulfilled by the tncrement of the nodal force vector.
Assuming an ideal plastic material beliaviour it is evident that the incremental part of
the nodal force vector is part of the yicld-surface f = 0. Rearranging and inserting (6)
into (1) we obtain

A AL 12__ ke by L4 Avf 12_ ki A t A‘Ua—A‘v’f—A”:’l . (8
; = AL - ks '('jj Av}’ - TR A()J'-—Ab;_’_‘ﬁn}l (3}

Since we have introduced the plastic deformation vector and the deformation vector of
the connections explicitely, we nced a rule how to determine them. For the plastic
deformation, we apply the well established flow-rule of PRANDTL and REUSS:

af

Ap? = \P
v aF:

=NV, M>0 (9)

or written with respect to cach node

Bl =XV (10)
Avt =XV, (1)

respectively, where AY and A¥ are proportional constants (plastic multiplicr). Tor this, it
is assumed that the yield-function f is a potential.

Annotation: This is the decisive extension lo the concentric yicld-hinge concept. With
the flow-rule (9) the material formulation is complele and consistent to the theory of
plasticily.

IFor the deformation of the connections, we apply the moment-rotation relations
expressed by

Avt= M (12)
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or written with respect to cach node
Avt =MM (13)
Au}i = /\'f Mo, (14)

respectively, where A and ,\j are the secant stiffnesses of the moment-rotation graphs.
They can be produced hy experimental investigations or by numerical analyses as shown
in GEBBEKEN et al. [2].

Finally we arrive at

v 112 pd pdl2 o g2
= []'f] = [A,:;.d k;{z} [bl] ) (13)
F 3 l"'ji k_jj v;

where [k7] is the element stiffncss matviz for an elasto-plastic rod element with semi-rigid
connections.

5 Numerical Example

Two storey four bay plane frame

The frame chosen for analysis is shown in Fig. 5. This structure has been firstly investi-
gated by STUTZKL in [9]. Tt is assumed that all girders are semi-rigidly connected to the
columns. '

Kq

KH Q3T I3 3 T 3T + 3 3333430+ 3 ¢ 44 4 3d4d)
xq 3,0

XH T I3 31 3 1+ V313 3 3 P R334 4 443 + 443

=
3,0
5,0 50 50 in m
b

q=60.0 kN/m Beams: HEB 300
H=31.0kN Columns: HEA 220
Material: Fe 360 B (St 37-2)

Figure 5: 2-D Frame: Geometrical data, yield-stress and loading
4 )
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In order to illustrate the influence of the deformation of connections on the nonlinear
cflects, STUTZKI used different types of models for the joints. All of them are truss-
like models which are vivid but costly with respect to elementation. The stiffness of a
truss member serves to simulate the moment-rotation behaviour of the connection un-
der consideration. For the author’s calculation, generalized yield-hinges have been used.
The numerical models ol the connections are now clement-inherent, quasi a makro mo-
del. Thus, the structural analyst can clement the structure as usual. Ile only needs to
define the moment-rotation bhehaviour ol the semi-rigid connection as shown in 1fig. G.
In addition, the yicld-function (2) and the interaction lormulae according to RUBIN are
utilized. In order to compare the results, the computations have been carried out for rigid
connections as well as for semi-rigid connections with the characteristics shown in IFig. 6.

Moment in kNm

60 —+
50 +
40 +
30 —
20 +

10 —

A SN N A R N |
1 2 3 4 5 6 7T-0" ¢ in radian

Figure 6: 2-D Irame: Moment vs. rotation graph

The load vs. deflection curves are plotted in FPig. T with respect to the horizontal deflection
v as shown in Fig. 7. It is obvious that the stifler the connections the stiffer the load
vs. deflection characteristic. Thus, the three upper graphs represent the behaviour of the
frame with rigid connections. The solid line has been taken over from STUTZKI wlicercas
the broken lines are the results of the author’s calculation. Their deviations are due to
the application of different interaction functions. Applying the linear interaction {ormula
the ultimate load is underestimated, while using RUBIN'S formulae the ultimate carryving
capacity of cross-sections is quite well approximated.

The studies result in a load factor of £ & 2.0 and in a horizontal deflection of the first givder
of x & 3.0cm. Slender columns, large column compressive axial loads and the influence
of the geometrical nonlinecarity resulted in a significant reduction of the magnitude of the
ultimate load factor (from & & 2.0 to x = 1.6) wheu compared to the analysis with rigid
connections. Only 80% of the first-order ultimate load was attained. Besides the nonlinecar
moment-rotation behaviour ol the connections the members partly suffer plastifications.

The results show clearly that the [rame studied here is a member of the so-called "second
order frame” family. Due to the influence of the deformations on the equilibrium formu-
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lation, these frames usually failed by elasto-plastic instability prior to the lormation of a
plastic mechanism.

b
M ' .. .
© 2,0 —+ ST B e e Ry rigid conncctions
- ——
: 2 < semi-rigid conncctions
S -~ ‘__ ——— ———
o ],5 = 4 - - v
~ (]
o 4 v
7
= 10+ b 7 —— Swuki A
J
4 Gebbeken
05— ST linear interaction
- - interaction acc. to Rubin
| | I
T 1 T
0 1 2 3

Displacement vincm

Figure 7: 2-D Frame: Load vs. deflection curves

According to the German standard DIN 18300 we have to consider safety factors in order
1o design the frame. The salety f{actor for the loads is 44 = 1.5 and the salety factor
for the material is ya; = 1.1. Thus, we can predict a design load factor of kp = 1.06.
The [rame with semi-rigid connections has a total weight of W = 47.22LN. The elastic
limit-load has been reached at kp = 0.9. Consequently, we need HEB 220 profiles for the
columns which results in a total weight of W = 52.26 kN. Assuming that the members
are rigidly connected to cach other HIEB 280 proliles are suflicient for the girders. In this
casce a total weight of W = 43.02&kN has been calculated. This comparison reveals that
on the one hand it is cconomical to apply nonlinear methods, on the other hand it is a
demand to apply nonlincar methods in order to guarantce safety.

Annotations:

The magnitude of the ullimate-load depends significantly on the deformabidity of the
conneclions as well as on lhe used inleraclion-function. If the structure furns lo be weak
duc lo gecomelrical nonlincar cffects as well as duc to plastification, the coleulation is very
scnsilive with respect to the deformations, The method is robus! vegurding the wltimalc
loads.



124

A CONSISTENT FORMULATION OF THE YIELD-HINGE THEORY FOR 3-D FRAMES
CONSIDERING THE DEFORMATIONS OF CONNECTIONS ///A

References

(4

Gebbeken, N.: Eine Flicfgelenktheorie héherer Ordnung fir raumliche Stabwerke - Zuglcich
cin Deitrag zur historischen IEntwicklung, Mitt. Nr. 32-88, Inst. fiir Statik, Universitit
Hannover, 1988 and Stahibau 57 (1988) 365-372

Gebbeken, N Rothert, L Binder, B.: On the Nuincrical Analysis of Endplate Conneeti-
ons. Journal of Constructional Steet Research, 30 (1994) 177-196

Gebbeken, N.o A Refined Numerical Approach for the Ullimate-Load Analysis of 3-D Steel
Rod Structures, submitted to Engineering Computations, (1996)

Girkmann, K.: Uber die Auswirkung der "Sclbsthilfe” des Baustalls in rahnenartigen Stab-
werken. Der Stahlban 5 (1932) 121-127

Greenberg, H.J.; Prager, W.: On Uhe limil design of beams and frames. Proc. ASCE 77
No. 59 (1951)

Lumipe, G.: Geomelrisch nichtlineare Berechnung von réumlichen Stabwerken, Mitt. Nr. 28,
Institut fiir Statik, Universitit Hannover, 1982

Rothert, H.; Gebbeken, N.: On Numerical Resulls of Reticulated Shell Buckling. Int. J. of
Space Structures 7, No. 4 (1992) 299-319

Rubin, 1.: Interaktionsbezichungen fiir doppelsymmeltrische I- und Kastenquerschnillc bei
zwciachsiger Bicyung und Normalkrafl. Der Stahlban (1978) 145-151, 174-181

Stutzki, C.: Traglastberechnung rdumlicher Stabwerke unter Beridcksichligung verformbarer
Anschliissc. Institut fir Stahlbau, RWTH Aachen (1932)



	A consistent formulation of the yield-hinge theory for 3-D frames considering the deformations of connections

