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Summary

The paper describes some of the preliminary statistical analysis of traffic data from heavily
trafficked European highways which led to the derivation of vehicular loading models in
Eurocode 1 part 3. The studies indicated reasonable compatibility between extrapolations to
extreme loads and load effects using diverse methods despite differences in modelling and
assumptions. The dominance of the effects of congested traffic for medium and long spans
indicated the need for better data on traffic jam characteristics.

1. Introduction

The comparison and the calibration of conventional traffic load models proposed for the
Eurocode 1 part 3 [1], required a complete set of target values of both axle and vehicular
loads, and load effects on representative influence lines and surfaces. A large representative
selection of spans and bridge elements was defined providing more than 800 influence lines and
surfaces. A complete survey of European traffic data, recorded by Weigh-In-Motion (WIM)
systems in D, E, F, I and UK, provided weeks of full traffic measurements vehicle by vehicle
over the main motorways and highways [2]. Among these traffic records, the most aggressive
for bridges according to the loads an the intensity were selected.

The studies described below primarily made use of comprehensive data from the A6 motorway
at Auxerre, collected over a representative week. Those undertaken by different organisations
were conducted independently and as a result employed a variety of methods and assumptions

(31
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2. Return period and fractile

The occurrence of lorries on a bridge may be described by a stationary time series X;, X,
....Xa, the i lorry having a gross weight X;. It is additionally assumed that one event occurs at
each time unit, counted by i, and that the X; are independent and identically distributed (iid),
with a cumulative distribution function (CDF) F. The return period R, of a specified value x of
X; is defined as :

R.=E[N,] , where N, = inf {n / X;<x, Xo<x, ..., Xp01<%, Xa2X}. (1a)
It is easy to show that : R, = (1 - F(x))", for F(x) <1. (1b)
If the time series is replaced by a stationary time random process (X.) (cr+, we have :

Ry= E[Tx], where Ty =inf {t / X,<x, V u<t, and X, >x}. (1c)
For any o<1, the a-upper fractile x, of X, is derived from : a = 1 - F(x,). (1d)

The maximum Yy= Max oo (Xi), if N is the expected number of lorries passing during a
reference time period T, representing the expected lifetime of a structure. Because the X are
iid, the CDF of Yy is F(x)". If y, is the a-upper fractile of Yy, it is possible to show that for N
and T — +o0:

-T T

= e if 0<o <<1. 1
R=R, T if 0<a<<1 (1e)

This relationship is independent of the value of y, and of the density of X. For example, if
T=50 years and a=0.05, we get R=975=1000 yrs.

3. Extreme Axle and Lorry Loads

The objective was to compute the probability distribution function (PDF), mean value,
standard deviation and the single, double and triple axle loads, gross weights and weights per
unit length with given return periods, from the experimental histograms of these variables
measured over a week and the traffic flow. Three methods were employed :

31 Method 1: Half-normal distribution

With this method it was assumed that the upper tails of the distributions of the local extrema of
the variables have a Gaussian shape [4]. Half-normal PDF’s were fitted to the part of the

histogram for x > x, , where X, is chosen in order to minimise the mean square error in a
Henry's diagram.

The standard Gaussian PDF was adopted with a standardised variable z : z = (x - m)/o , where
the mean m and the standard deviation ¢ were fitted on the Henry's diagram, for x = x,.

The value with a return period R is given by xg= xg+ 0.Zg , with Zg being the a-upper fractile
of Z for a=1/2N.. N; is the total number of events in a histogram for the period R, computed

from the total number Ns in the measured histogram by N,=Ns R/D (D= period of
measurement).
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3.2 Method 2: Multimodal Gumbel distributions

A bimodal (or a trimodal) Gumbel PDF was fitted to the experimental data [5]; each
distribution was obtained by a linear regression on a sub-population of the whole histogram.
The conditional PDF of the maximum load of N axles, axies groups or vehicles was computed.
The a-upper fractile x, of these maxima is given by :

1-0-pi=a and  x.=Fy () )

where p is the proportion of the distribution considered and Fy the fitted CDF of this
distribution.

33 Method 3: Multimodal Gaussian distributions

A trimodal Gaussian PDF was fitted by a least mean square method and the a-fractile of this
distribution computed [5].

3.4 Method of the asymptotic extreme distributions

As for method 1 it was assumed that the upper tails of the load PDF's have a Gaussian form
[6]. The asymptotic distributions of the maxima were derived as Gumbel PDF’s with the
parameters [7] :

2Intn) ( Ln(Ln(n)) +Ln(4H)]
a,="——— and u, =m+ ob/ZLn(n) - 2Lt 3)

in which m and o are the parameters of the normal distribution governing the maximum, and
n=p.N, where p is the proportion of this distribution in the whole distribution of the considered
load and N the total number of loads. This method provides a full PDF of the maximum instead
of only a fractile, and defines explicitly the variation of this maximum with n.

3.5 Comparisons and conclusions

Table 1 shows predictions obtained by the methods for single axle, double axle and triple axle
and gross vehicle weights for different return periods. The results show very consistent trends.
The biggest differences between the predictions appears not to be due to the methods, but
rather to the actual parameters of the distributions used to match the tails of the data
histograms.

Methods 2 and 3 give high extreme lorry weight predictions since they are based upon the
distribution of the uppermost mode of the best fit curve to the Type 4 vehicle data. Predictions
based on the entire data sample become dominated by the large numbers of Type 3 vehicles,
whose upper mode has less variance than Type 4. In several cases, the best fitting set of
distributions contains one which has a relatively low mode and total proportion, but whose
high variance leads to its dominating the extreme values. In these cases only the uppermost
mode was used.
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R Item Method 1 Method 2 Method 3 Method 4
Axle 224 * 226 234 252
20 weeks Double 356 * 353 348 332
Triple 469 * 436 439 442
Lorry 737 * 711" 736 * 690
728 750 **
Axle 236 ** 249 249 273
20 years Double 380 ** 394 376 355
Triple 504 ** 459 474 479
Lorry 782 ** 775 " 758 * 736
819" 800"
Axle 245 *** 278 264 295
2000 years Double 397 *** 442 403 379
Triple 527 **x 487 508 517
Lorry 81] *** 850" 787" 782
925 ™ 000 ™
R = return period, * R=50 weeks ** R=50 years *** R=1000 years

Based on distribution for : * = Type 3 vehicles, ™ = Type 4 vehicles.

Table 1. Comparison of the Extrapolated Maximum Loads (kN).

4. Extreme Total Load on a Lane Length

The maxima of the total load (or the uniformly distributed load : UDL) on a lane length were
computed by various methods for various lengths from 5 to 200 m, for a return period R. The
traffic used was again that in a slow lane of Auxerre.

4.1 Method 1: Half-normal distribution

The method described in 3.1 was applied to the histograms of the local extrema of the total
loads. The traffic was randomly generated by the use of its characteristic parameters and
measured inter-vehicle spacing, and a Gaussian distribution was fitted on the local extrema
histogram, for free traffic (case (a)). Congested traffic with cars (case (b)) and without cars
(case (c)) were also considered. In the case (b), the proportion of lorries was taken equal to
25%. In both jam cases (b) and (c), the spacing between vehicles (from axle to axle) was taken
as 5 m. It was assumed that 1% of the vehicles would be involved in jams occupying the
chosen lane length.

4.2  Method 2 : Monte-Carlo simulation
The Monte-Carlo method was used to create artificially and randomly composed jammed

traffic with 5 m inter-vehicle spacing for simulation purposes [8] and the parameters of Gumbel
distributions were derived.
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The ‘garages’ used in random generation were derived for Auxerre traffic, with and without
cars with eight classes of vehicle each with a derived distribution of gross weight, proportions
of weight on each axle and axle spacings.

For each span length, 50 sequences of 1000 simulations were performed, the Gumbel
distributions being derived from the maximum values found in each of the 50 simulation
sequences. It was assumed that such maxima were annual extremes from 4 traffic jams per
working day.

4.3  Method 3 : Analytical modified Poisson model

This model [6] also adopted a bimodal gross weight distribution, with two Gaussian modes,
and was applied to flowing traffic with measured vehicle spacings and to congested traffic with
and without cars.

The analytical convolution of the flow process and the gross weight distribution led to the
expression of the total load density fo(x) on lane length L :

fo(x) = PN=0)8¢ + Za0 P(N=1) Zico,..x Ca' p' (1-p)"" £(te,0ui,X) @)

where : o is the Dirac distribution in 0,
p is the proportion of vehicles in the second mode,
g is the Gaussian standardised distribution,
my=im+(-Dm; and o, =io+ (n-) o,
my, G, My, G2 are the parameters of the two modes of the gross weight
distribution.

Flowing traffic flow and vehicle weight distributions were described by a modified Poisson
process, in which the lengths of the vehicles (taken constant) were introduced in order to avoid
overlapping. The exponential law of the times of arrival was shifted to the nght of

1= Lo/S, Lo (10 m £ Lg < 15 m) being the mean length of the vehicles plus the minimum
spacing and S the mean speed.

This model is briefly defined by :
- the distribution of the inter-vehicle time intervals :
P(At=t)=p e**", u=¢/(1-¢ 1), with ¢= traffic flow rate,

- and the deduced cumulative distribution of the total number of vehicles on
the length L :

P(N< n)=P(Zi-;, a1 At>1), with t=L/S.
The a-upper fractile of Q was obtained by solving numerically the equation :
1-Fox)=1-(1-0)"™Mr=a/Ng (5)

where Nr is the total number of vehicles expected in T (Ny= ¢T).
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For congested traffic, fo(x) becomes a binomial distribution if : P(N=n)= 8, , where
k=[L/L,] is the mean number of vehicles on the lane length L, in case of jam.

The number of independent load configurations considered was ; [N'r/k], with N'r the total
number of vehicles involved in a jam on L during T, such that each vehicle belongs only to one
configuration.

44  Method 4: Simulation and extrapolation from real traffic

Method 3 was also used for providing extrapolation coefficients [6] from a reference period T
of 1 week to those of 1 month, 1 year, 50 and 500 years. The modified Poisson model gives
the 5%-fractiles of the total load Q for different periods T, noted Q(T), and the extrapolation
coefficient is defined by : Q(T)/Q(1 week).

The traffic recorded during a week was passed over the influence lines of the total load by the
simulation program CASTOR-LCPC [9], and the maximum values obtained for each length L
were magnified by the corresponding extrapolation factor for each T or R.

Congested traffic was also simulated by compressing the spacings between measured vehicles
(with or without cars), and passing the traffic over the same influence lines. The 5% upper-
fractiles of the maximum total loads for the target value calculations were derived, the number
of load cases with standing traffic on the lane length taken into account being assumed to
represent those which would occur during 100 years.

4.5 Method 5 : Jams simulation program

Another Monte-Carlo simulation program was used to generate traffic jams and to compute
bridge load effects [10], based on the Auxerre data. Vehicle weights were modelled by bi- or
tri-Gaussian distributions.

Traffic jam rates were based upon UK studies showing breakdown rates of 60 incidents per
million vehicle kilometres (I/m veh.km) for HGV, and 30 (I/m veh.km) for light vehicles. The
accident rate was 4 I/m veh.km in the simulation, with 26% of accidents blocking more than
one traffic lane.

The assumed flow in vehicles per hour above which congestion will occur were :

Number of lanes per carriageway
Blockage 1 2 3 4
No blockage 1500 3700 5500 7400
1 lane blocked 0 1300 2700 4300
2 lanes blocked 0 1200 2600

The flow rate was taken to be 1200 vph for 10 hours, 5 days per week, on a two lane
carriageway, and vehicle spaces in traffic jams were assumed to be log-normally distributed,
with : mean(log.(space))=0.647, and standard deviation of log.(space))=0.578.
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These data were used to model the build up, passage and depletion of vehicles in queues past
obstructions. Vehicle kilometres per incident were found by inverting the incident rate to give
the mean separation between successive obstructions during any desired return period for a
particular flow rate.

Successive jam location points were chosen, spaced according to the return period and flow
rate until the jam initiation point has not arrived at the bridge, the effect of the traffic on the
bridge influence line being calculated for each and the maximum in each return period
recorded. These maxima were then used to derive extreme value distributions. The 10 fractile
values were taken to have a 2000 years return period.

The program also modelled flowing traffic by using the same vehicle types and flow rates as
for jammed traffic using vaniable inter-vehicle spacing and without light vehicles.

4.6 Comparisons and discussion

The 50 years return maxima for different traffic scenarios calculated by the above methods are
illustrated in Figure 1. The congested traffic results dominated for most spans and
discrepancies between these for the various methods are mainly due to differences in
assumptions concerning vehicle length and spacing and in jam frequency.

60 @ {fa)jm1
{a)m3
50 S {alm4
— —3— (b) m1
E 40 —3—(b) m2
E 30 +(b)m3
e ——fp—— (b} m4
-l
> —— A N
10 —e@®—(c)m2
—— (c}m3
0 : 1 | —&—(c)ms
20 50 L(m) 100 200

Maximum of the total load
(a) flowing traffic, (b) congested traffic with cars, (¢} congested traffic without car
ml = half-normal distribution, m2 = Monte-Carlo simulation, m3 = analytical
Poisson, m4 = simulation + extrapolation by m3, m5 = jam simulation.

Fig. 1. Comparison of the extrapolation methods for flowing and congested traffic.

s. Extreme Load Effects

Extreme values of bending moments in a simple supported bridge at midspan for various span
lengths and bending moments of two continuous bridges (Pont a Moussen and La Nive) were

derived by five methods. Methods 1, 2, 4 and 5 were broadly as described in 4. above applied
to the relevant influence lines.
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Method 3 was based on the crude assumption that the load effect is a Gaussian stationary

process X(t). For this Rice's formula gives the level crossing distribution, with the Gaussian
density :

_ 7y ( x—m)
plx)= %gg—ex - (x2o~f) )= k.exp expt— (xZJT) J (6)

k, m and o are fitted on the level crossing histogram of the load effect computed by simulation
(CASTOR-LCPC) for a traffic record over a time period 1. Then for a reference period T and
an a-upper fractile : p(a)= av/T , which gives :

a=mto2In(kT/ ar) (+if a>0, - if a<0). @)

Table 2 shows results for the continuous bridges, by methods 1 and 3 for flowing traffic and by
methods 4 and 5 for congested traffic. Figure 2 illustrates the results for simply supported
spans for 50 years return values.

Flowing traffic Congested traffic
Bridge Moment Method 1 Method 3 Method 4 Method 5
Pont a positive 9740 9800 10460 11037
Mousson negative -3060 -3960 -3954 -3540
. positive - 46.6 433 479
La Nive negative - 420 27.4 -28.1

Table 2. Comparison of the 5%-fractiles of the extreme bending moment of real bridges (kN.m).

{a)m1

(a)m3

{a)m4
—3&—(b)m1
iy (b} m2
—gP—(b)m3
—t—— (b} M4
—_—— (bl mb
—————— (C ) M 1
—gp—(cim2
—f—(c) m5

20 50 L (m) 100 200

Maximum of the simply supported span bending moment
(a) flowing traffic, (b) congested traffic with cars, (c) congested traffic
m] = half normal distribution, m2 = Monte-Carlo simulation, m3'= Rice's formula,
m4 = simulation + extrapolation by Poisson, m5 = jam simulation.

Fig. 2. Comparison of the extrapolation methods for flowing and congested traffic.




A A.R. FLINT AND B. JACOB 477

6. Conclusions

The results obtained by the different extrapolation methods were generally in reasonably close
agreement. Having in mind that the return pericds for the characteristic values of loads and
load effects are far in excess of the period of records used, it was concluded that any of the
methods could be applied. Those described in 3.4 and 4.3 were used in European traffic
samples and 800 influence surfaces to provide target values for calibration of candidate loading
models for the Eurocode 1 part 3. It was evident that the congested traffic scenarios dominate
the maxima for loaded lengths in excess 50 m. However in the subsequent development of the
loading model dynamic magnifiers were applied to the flowing traffic effects for the lower
lengths and this altered the transition.

Acknowledgements

The investigations described were undertaken by the sub-group 8 of an EEC Committee
charged with the development of Eurocode 1 part 3 of which Mr. Henri Mathieu was the
Convenor. The analyses were undertaken at the University of Liége (B), RWTH Aachen (D),
LCPC Paris (F), and Flint & Neill Partnership London (UK).

References

[1] Eurocode 1 part 3, Traffic loads on road bridges - Assessment of various load models,
draft July 1994, revised May 1995, 82 p.

[2] Jacob B. and al., Traffic data of the European countries, Report of the WG 2, Eurocode 1
part 3, March 1989,

[3] Jacob B. and al., Methods for the Prediction of Extreme Loads and Load Effects on
Bridges, Report of the WG 8, Eurocode 1 part 3, August 1991.

Jacob B., Maillard J.B., Probabilistic Extrapolations and Maximum Load Effect Predic-
tion for Bridge Code Calibration, Proceedings of ICASP'6, Mexico, 1991, pp. 865-71.

[4] Bruls A., Détermination des actions pour le calcul des ponts-routes, IABSE Colloquium
on Fatigue of Steel and Concrete Structures, Lausanne, 1982.

{5] Flint & Neill Partnership, Vehicular Bridge Loading, Report on Preliminary Study of
Vehicle Weight Records taken at Auxerre (France, highway A6 1986), n°72-0004 Issue A,
21st September 1989.

{6] Jacob B., Maillard J.B., Gorse J.F., Probabilistic Traffic Load Model and Extreme Loads
on a Bridge, ICOSSAR’89 Proceedings, San Francisco, 1989.

(7] Cramer H., Mathematical Methods of Statistics, Princeton University Press, 1946.

[8] Bez R., Modélisation des charges dues au trafic routier, Thése n°793, EPFL Lausanne
1989,

[9] Eymard R., Jacob B., Un nouveau logiciel : Ie programme CASTOR pour le Calcul des
Actions et des Sollicitations du Trafic dans les OQuvrages Routiers, Bull. liaison des LPC,
n°164, pp 64-77, novembre-décembre 1989.

[10] Flint & Neill Partnership, Interim Design Standard - Long Span Bridge Loading, TRRL
Contractor Report 16, 1989.

b



Leere Seite
Blank page
Page vide



	Extreme traffic loads on road bridges and target values of their effects for code calibration

