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Radar Inspection of Structures
Inspection par radar des structures
Radaruntersuchung von Bauwerken
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SUMMARY

Subsurface radar is being used increasingly during the investigation and appraisal of a
wide range of existing buildings and structures. The technique has been used regularly to
obtain details of construction features and defects. The use of radar techniques to esti-
mate the moisture content and porosity of construction materials poses a severe test of
the method. The paper discusses briefly alternative methods of measurement and a
number of dielectric models which have been employed as a basis for interpreting
measured data.

RESUME

Le radar est de plus en plus utilisé dans le cadre des études et évaluations d'une vaste
gamme de structures et de batiments existants. La technique est régulierement utilisée
pour obtenir des détails sur les caractéristiques et les défauts de construction. L'utilisa-
tion d'un radar pour évaluer la teneur en eau et la porosité des matériaux de construction
peut représenter un test sévere de la méthode. Cet article aborde brievement les diffé-
rentes méthodes de mesures et un nombre de modeéles diélectriques qui ont été utilisés
pour former la base de l'interprétation des données mesurées.

ZUSAMMENFASSUNG

Tiefenradar kommt bei der Untersuchung und Beurteilung von verschiedenartigen beste-
henden Gebauden und Bauwerken zunehmend zum Einsatz. Das Verfahren wird re-
gelmassig zur Ermittlung von Detailaspekten des Baus und von Fehlern benutzt. Die
Bewertung des Feuchtigkeitsgehalts und der Porositat von Baustoffen kann das
Radarverfahren schwer auf die Probe stellen. Das Referat behandelt in Klrze alternative
Messmethoden und eine Reihe von dielektrischen Modellen, die als Grundlage zur
Ausdeutung von Messdaten eingesetzt werden.
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1. INTRODUCTION

1.1 The use of subsurface radar has grown considerably in recent years, both as a geophysical tool and
for the investigation and assessment of civil engineering structures and buildings. Most commercial radar
surveys are carried out using impulse radars. These work by transmitting impulses of electromagnetic
energy and receiving energy backscattered (reflected) at discrete interfaces within the medium being
surveyed. In general energy is reflected at changes in permittivity, but very thin conductive layers may
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produce reflections similar to those associated with electrical permittivity variations [1].

1.2 The relative permittivity (g,) of dry solids is generally in the range 2 - 8, air has a value of unity
and water about 80, in the frequency range of interest. The presence of moisture in a porous media has
a large influence upon its effective relative permittivity,. For example ‘dry’ mature concrete g = 6,
whereas in a saturated mature concrete € =~ 12. This paper discusses briefly alternative methods of
measurement and a number of analytical dielectric models which have been employed as a the basis of
interpreting measured data.

2: MEASUREMENT TECHNIQUES
2.1 Two different measurement techniques are available employing :

i) air-launched pulses propagated from horn antennas mounted away from the surface being
irradiated. This equipment tends to operate at frequencies between about 1 - 3 GHz. Its non-
contacting nature allows data to be gathered at high speed and the method has been widely used
for pavement thickness evaluations {2].

ii)  ground-coupled antennas where the equipment is in contact with the medium being surveyed.
Centre operating frequencies range from about 10 MHz to 2 GHz, although frequencies above
500 MHz are most commonly employed on buildings and structures. Ground coupled antennas
are sensitive to changes in the permittivity and conductivity of the surface layer of the medium
being surveyed. The performance of antennas showing marked variations in some instances.

2.2 Material properties can be evaluated by either reflection or transmission. Air-launched pulses are
most commonly used for reflection measurements. As might be expected, such measurements only provide
information on the relative permittivity of the material in the surface zone. The transmission technique
involves passing a pulse through the media, recording the transit time for a pulse reflected from the rear
wall. Accordingly the value of relative permittivity established is an average value for the full depth of
member in question. Consider the case of a concrete slab. Millard et al [3] report comparisons of €,
obtained by reflection and transmission techniques.

Spf;cimen Storage % Estimated &
Thigkicss Condition Saturation :

(mm) Reflection Transmission
150 Dry 31 5.8 5.8
400 Dry 41 6.0 8.0
300 Wet 100 10.0 10.2

It will be seen that moisture gradients within porous media can produce erroneous estimates of g, as the
surface zone is not representative of the body of the media. This can have a significant effect on the
estimated propagation velocity and, hence, the estimated thickness of layers. There is a corresponding
influence upon any estimates which might be made for the moisture content of the media.

2.3 Another potential source of error is the increase in reflectivity of an interface brought about by
the conductivity of the media. In general this is likely to be a small influence at the frequencies employed,
unless the effective conductivity at the frequency is large (1 GHz, 6 > 0.1 S/m; 2 GHz, ¢ > 0.25 S/m) -
refer Figure 1. The DC electrical conductivity of concrete is reported to range from 0.2 S/m for wet
concrete to 0.001 S/m for dry concrete. There is little available data concerning the relationship between
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Figure 1 : Interface Reflection Coefficient versus Frequency and Conductivity of Medium 2
(Concrete) for Relative Permittivities, Eri =1, Er2=9
NB. Conductivity of Medium 1 (Air) = 0
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Figure 2 : Relative Permittivity of Mixture Based on Three Phase Spherical Inclusion Dielectric Model
(after de Loor) Concrete : Water : Air [E* = Em]
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DC and effective conductivity at microwave frequencies for construction materials, although effective
conductivity is known to increase with frequency.

3. DIELECTRIC MODELS
3.1 The short length of this paper only permits the briefest consideration of the formulation and use

of analytical dielectric models. This is a topic of considerable praciical inierest, the objective being o
determine the dielectric properties of a heterogeneous mixture of two or more substances of known
permittivities. Factors influencing the average permittivity of a mixture include the permittivities of the
individual substances, their volume fractions, spatial distributions and shapes of the constituents and their
orientation relative to the electric field vector of the incident electromagnetic waves. The substance having
the highest volume fraction is generally regarded as the host medium, with the other substances being
inclusions.

3.2 Many types of dielectric models have been developed and several comprehensive reviews of the
topic have been presented in the literature [4,5]. For our current purposes these might be broadly classified
into simple volumetric models and geometric dielectric models.

33 A volumetric model considers only the volume fraction of the constituents. For a two phase
mixture these models generally take the form

Ea = Euh + Vi (Eui - Eah) (El)

where the subscripts m, h and i denote the permittivities of the mixture, host and included material. V,
denotes the inclusion volume fraction. A linear mixture model is produced when @ = 1. When &t = 0.5
the dielectric model is known as the refractive model (since Ve = refractive index of medium). Two phase
models would arise only in a dry material (construction material solids + air) or a completely saturated
material (construction material solids + water). In practice such materials occur rarely and most porous
materials are partially saturated (construction material solids + air + water), which requires a three phase
model.

34 Geometric dielectric models seek to provide a representation of the physical nature of material in
question. Such models have a greater range of applicability than simple volumetric models. They are
generally much more complicated formulations with attendant difficulties in achieving numerical solutions,
particularly when consideration is given to the complex permittivity of mixtures containing water. Figures
2 and 3 illustrate the relationship between relative permittivity and dielectric loss factor of a mixture versus
inclusion volume fraction (V,) and the degree of saturation (S). Figures 2 and 3 were derived using
Model 2 (see below). The model is based upon spherical inclusions within a concrete host. The difficulty
of solving the ‘inverse-problem’, that is the estimation of the components of the mixture from a
determination of relative permittivity and dielectric loss factor, will be appreciated. Such a determination
gives a contour line on the surface, further information is needed to achieve a unique solution. Halabe
et al {6] have applied similar methods to concrete bridge decks.

3.5 Figure 4 illustrates the relative permittivity of a concrete member estimated by various three phase
dielectric models assuming an inclusion volume fraction (V) of 5%. This would correspond to a poorly
compacted concrete. Spherical inclusions have been assumed for geometrical models. For Models 1 and
2 the spherical inclusions are of identical size. Model 5 provides for a continuous size distribution. The
dielectric mode! details are as follows :

Model No. Model Type
1 Polder-Van Santen-de Loor Formula. e* =g, [7]
2 Polder-Van Santen-de Loor Formula. €* = ¢ [7]
3 Feng and Sen Formula (8]
4 Linear Volumetric Model [see equation (E1)]
5 Refractive Volumetric Model [see equation (E1}]
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Figure 3 : Dielectric Loss Factor of Mixture Based on Three Phase Spherical Inclusion Dielectric Model
(after de Loor) Concrete : Water : Air [E* = Em]
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Figure 4 : Relative Permittivity of Mixture Based on Various Three Phase Dielectric Models for an
Inclusion Volume Fraction, Vi = 0.05
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It is clear that different dielectric models will give substantially different estimates for the degree of
saturation, assuming that the inclusion void fraction were known at the measurement location !

4. CONCLUDING REMARKS

4.1 There is a need to develop diclectric models which match experimental data more closely. The
effective medium type theory put forward by Feng and Sen [8] is based on grain shape and does not treat
the pore space adequately. This produces computational difficulties. Endres and Knight [9] report
different values for € during imbibition and drainage of a porous media. They also note that fine pores
have an effect on dielectric behaviour which is out of proportion to their percentage of the total porosity.

4.2 The Building Rescarch Establishment has a programme of research into radar, current interests
concern experimental measurements of structural concretes and reinforcing bars, coupled with their
analytical modelling. Although it is acknowledged that further studies are required of the nature of
porosity with construction materials, there is some concern that the path of ever more complicated
dielectric mixture models, which seek to achieve a better representation of the physical reality of the
material concerned, may not be particularly rewarding. An alternative approach may be to explore the
possibilities offered by artificial neural networks.
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