
Representation of concurrency in object-
oriented design models

Autor(en): Bretschneider, Dirk / Hartmann, Dietrich

Objekttyp: Article

Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte

Band (Jahr): 72 (1995)

Persistenter Link: https://doi.org/10.5169/seals-54647

PDF erstellt am: 30.04.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-54647

37

Representation of Concurrency in Object-Oriented Design Models
Convergences dans les modèles de projet orientés-objets

Zur Darstellung von Nebenläufigkeiten in objektorientierten Entwurfsmodellen

Dirk BRETSCHNEIDER
Civil Eng.
Ruhr University
Bochum, Germany

D. Bretschneider
graduated in 1992, has
worked on information
technologies for tunnel
rehabilitation. Since
1994, he is involved in
research on computer-
aided structural steel
design. His research
concerns realisation of

concurrency aspects in

object-oriented
engineering design
systems.

Dietrich HARTMANN
Prof.
Ruhr University
Bochum, Germany

D. Hartmann was Prof,
for Struct. Mechanics &

Optimisation at the
Univ. of Dortmund,
1982-1987. Since 1987,
he is Prof. for
Computational Eng. at
the Univ. of Bochum.
His research fields are
intelligent computation
in CAE, in particular,
object-oriented techniques,

structural
optimisation and parallel
computing.

SUMMARY
The complexity of engineering design and construction processes is appropriately managed

by applying object-oriented modelling techniques. The consideration of concurrency
aspects, inherent to design processes, significantly improves the temporal behaviour
and, thus, the acceptance of computer systems based on such techniques. A notation for
the explicit representation of concurrency in object-oriented engineering processes is

introduced. Subsequently, the power and expressivity of the notation is demonstrated by
the description of concurrency phenomena in the process "design and code verification of
steel structures according to the German Standard DIN 18800".

RÉSUMÉ
L'étude du projet et de l'exécution en génie civil sont des processus complexes, qui
peuvent être maîtrisés à l'aide de techniques basées sur les modèles orientés-objets. La
considération systématique des convergences permet d'améliorer considérablement la

rapidité et l'acceptation, par l'usager, d'un modèle informatique orienté-objet. La
puissance et la facilité d'emploi est illustrée dans le cas de la norme 'projet de calcul et
contrôle pour les constructions métalliques selon la norme allemande DIN 18800'.

ZUSAMMENFASSUNG
Die Komplexität ingenieurmässiger Entwurfs- und Konstruktionsprozesse wird sehr gut
mit Methoden der objektorientierten Modellierung bewältigt. Durch eine systematische
Berücksichtigung inhärenter Nebenläufigkeiten in den modellierten Ingenieurprozessen
kann sowohl das Laufzeitverhalten als auch die Akzeptanz eines objektorientierten
Computersystems entscheidend verbessert werden. Es wird eine Notation zur expliziten
Darstellung von Nebenläufigkeiten in objektorientierten Ingenieuranwendungen vorgestellt.

Die Mächtigkeit und Ausdrucksstärke dieser Notation wird anhand der
Beschreibung von Nebenläufigkeiten in einer typischen Ingenieuranwendung ("Nachweis
und Bemessung von Stahlhochbauten nach DIN 18800") demonstriert.

38 REPRESENTATION OF CONCURRENCY IN OBJECT-ORIENTED DESIGN MODELS

1. INTRODUCTION
The process from planning and design to construction of structures implies a plentitude of cognitive
and procedural activities each associated with a high degree of complexity. For this reason, a consistent

integration of these acitivities into an appropriate computer system is very much desirable and
benificial. At present, there are various CIM-research projects in civil engineering, funded by the
European Union, dealing with integration in computational engineering. By way of example, in the
EUREKA project CIMsteel [1] a computer integrated system applicable to the European constructional

steelwork industry is developed. In particular, the entire constructional lifecycle from design to
manufacturing is taken into account. In the ESPRIT project COMBI [2] emphasis is on the application
of advanced information technology methods in order to establish a computer integrated environment

for "cooperative" design work. In a further ESPRIT project entitled ATLAS [3] a generic platform
for the incorporation of existing "large-scale engineering" application tools is created, also knowledge

base representations for a computer integrated design system are examined.

From ongoing research at the ICE1, it turns out that object-orientation is the key technique for future
solutions in the CIM-area [4], The object-oriented paradigm offers an exceptionally suitable
platform for the representation of cognitive as well as procedural phenomena within engineering disciplines.

Furthermore, it enables programmers to overcome severe difficulties occuring in conventional
(procedural) computer science paradigms:

- The object-oriented model of a real-world engineering problem is more natural than the procedural

one. This facilitates communication between programmers and application domain experts
and provides "better" computer systems.

- The object-oriented approach leads to a much more "reliable" solution than procedural methods
because the real-world problem is modeled using visisble and persistent entities of the natural
problem domain (the objects with certain characteristics and specific behavior) instead of thinking
in abstract and ephemeral procedures.

- Due to concepts like "information hiding" and "encapsulation" the application of object-oriented
techniques ensures excellent software reusability compared to conventional solutions and, thus,
improves the possibility of future adaptions to state of the art in engineering.

2. BACKGROUND AND PROBLEM DEFINITION
In a present research project, carried out at the ICE and funded by the DFG2, the individual tasks within

structural steel design and construction, such as preliminary design, structural analysis, design
and code verification as well as structural detailing, are modeled by applying the object-oriented
paradigm. Subsequently, the above four tasks are integrated into a holistic computer system based
upon a central object-oriented database management system (OODBMS) in order to support
engineers during the entire design as well as construction process. Consequently, the computer system
consists of four distinct modules, each one representing one of the four tasks mentioned. All modules
are implemented in C++ under the operating system UNIX. The graphical user interface of the
computer sytem is based on OSF/Motif, while ONTOS [5] is applied as OODBMS.

In order to manage the complexity of the individual stages in the planning, design and construction
process and to ensure a reasonable response time of the computer system during execution it is
obvious that a concurrent (parallel or distributed)3 model is a must. This is a direct consequence of
the requirements for integration and holism. Concurrency considerations are a key issue in the
development of modern and innovative computer aided engineering systems if the natural way, in which an
organized, systematic team work of engineering design experts takes place, is to be modeled: Similar
to the human team work a team of computers concurrently performs distributed tasks of the engineering

design process. The description and subsequent implementation of concurrency, therefore, is
essential for modern and innovative computer aided engineering systems.

In the following an abstract notation for the representation of concurrency phenomena in engineering
design processes is introduced. The notation serves (1) to illustrate basic process sequences as well

1. ICE Institute for Computational Engineering, Ruhr-University Bochum

2. DFG - Deutsche Forschungsgemeinschaft (German Research Foundation)

3. The terms "parallelism" and "concurrency" will be used as synonyms throughout the paper.

D. BRETSCHNEIDER - D. HARTMANN 39

as dependencies between single design activities and (2) to detect inherent concurrency aspects —

and through this - establishing a framework for a subsequent implementation.

3. CONCURRENCY

Concurrency, as a generic solution concept, is a multi-layered phenomenon. From a programming
point of view, four distinct levels of concurrency may be distinguished. Commonly, thefollowing levels
of concurrency can be identified: the intra-instruction level (focusing on concurrent operations in
individual statements), the inter-instruction level (considering concurrency between program
statements), the program-level (concerned with concurrent partial processes within a program) and the
job-level (determining concurrent tasks from an overall system view).

A further source of concurrency lies in the various fashions in which instruction streams and data
streams consisting of single or multiple items may be processed. Following the classification by Flynn
[6] SIMD4- and MIMD5-hardware architectures may be applied for a computer realization. Recent
research in computer technology, however, makes evident that the MIMD-paradigm in association
with a message-passing mechanism offers the most powerful and general parallelization platform in

engineering disciplines. Therefore, the MIMD-concurrency concept is taken into consideration for
concurrent object-oriented modeling within the ICE group, exclusively, and with specific regard to
the four parallelization levels in programs mentioned above.

4. OBJECT-ORIENTED MODELING (OOM)

To capture the details of concurrency in engineering applications an abstract notation for its object-
oriented representation is an absolute must. An adequate notation has already been introduced by
Rumbaugh et al [7]. This notation is based upon an object-oriented analysis (OOA) resulting in a
total of three distinct submodels that are interrelated with each other (see Fig.1 Concurrency aspects
are particularily represented within the dynamic model that usually follows the establishment of an
object model but precedes the definition of the functional model.

Object model : Static structure of a real-world system

• Objects

• Associations

Dynamic model : Control aspects and dynamic behavior

• States S

• Transitions / Events E

Functional model : Data flow and data transformations

• Processes

• Data

Fig. 1 : Submodels of the object-oriented analysis

CUD CjD

Since the interactions between the above three submodels are significant for concurrency they are
briefly elucidated in the following chapter.

4.1 OOA-submodels
The representation of a real-world problem in terms of objects makes necessary a thorough analysis
of the problem domain. To manage the inherent complexity of the real-world problem it is common
4. SIMD Single Instruction/Multiple Data

5. MIMD Multiple Instruction /Multiple Data

40 REPRESENTATION OF CONCURRENCY IN OBJECT-ORIENTED DESIGN MODELS

practise to decompose the original problem into surveyable portions and to consider only specified
aspects of the entire problem in an orthogonal manner.

The object-oriented modeling follows this approach and primarily starts with the objects of the
problem domain. This leads to the object model that represents the static structure of the problem by
means of its characteristic entities and quantities (objects) as well as the relationships between them
(associations). Each object created and defined has specific properties (attributes) and contains specific

information on its behavior in terms of operational statements (methods). The object model,
mathematically expressed, forms an indirected graph where object classes are represented by
means of nodes and relations by edges or lines.

Secondly, the dynamic model is established with a direct reference to the object model. The dynamic
model describes the temporal and, therefore, dynamic behavior as well as the control aspects of the
problem solution. It is graphically defined through object state diagrams which are directed graphs.
The nodes of the graphs are equivalent to states of a specified object while transitions between states
are depicted in terms of arrows. Transitions may either be caused by events or happen automatically.

Third, a functional model is created. This model describes the data flow and transformations from
object sources to object targets during the execution of the object-oriented computer system. In

general, the functional model consists of various data flow diagrams each being a directed graph
where nodes correspond with processes and lines (arrows) with data flows.

4.2 Representation of concurrency
As pointed out in the preceding chapter, two fundamental representation concepts are applied within
the dynamic model: (object) states and transitions (between states). A state can be understood as an
abstract description of a single object with regard to its attribute values and relationships to other
objects. A state is valid over a period of time. Commonly, an object, therefore, has multiple states
during its lifetime. The states are linked by transitions that have no duration overtime. Both, states and
transitions of an object are incorporated in the object's state diagram. The entire state diagrams of the
different objects form the dynamic model of the system.

For the design of steel structures two characteristic features can be determined:

- most states represent sequences of specified computations called operations in the following,

- transitions are primarily prescribed by the design process, and, therefore, happen automatically;
only a minority of transitions is caused by explicit events created from direct user interactions.

Consequently, a key point is the detection of concurrency within the above operations. This problem
is generally dealt with by Bernstein [8] : Considering two operations each one associated with individual

input data and output data, both can only be carried out in parallel when the three conditions
shown in Fig. 2 are simultanously satisfied.

OUT (Oi) III IN (02) {}

A IN (Oi) fl OUT (02) {}

Fig. 2: Bernstein rules

a OUT (O-i n OUT(02) {)

{ } empty set

fT intersections! set

A logical AND

Inherent to the object-oriented modeling are concurrencies due to aggregation. Aggregation is an
abstraction principle most frequently used in object-oriented models of engineering disciplines. By

if% D. BRETSCHNEIDER - D. HARTMANN 41

way of example, the decomposition of a structure into single structural components along with a
part-whole relationship represents an aggregation (see Fig. 4 in the following chapter). With respect
to operations, also aggregate operations can be identified comprising several operations of one single

object (Fig. 3).

(O ^S
02

V J

Generalized operation of
one single object ; O : v 02

Aggregated operation of

multiple operations
of one single object O ; 0-| A o2

^ v merge

föFiTx"----^>— Synchronization of concur¬
rent operations

Fig. 3: Advanced concepts of the notation

Furthermore, an aggregate operation may be defined for not one but many objects. To prevent confusion

in this case, the states have to be precisely identified by a state-name in harmony with the name
of the involved object. In addition, the concept of a "generalized state" as well as two synchronization
mechanisms for concurrent operations have been defined to provide additional elements for the notation

(Fig. 3).

5. DESIGN OF STEEL STRUCTURES ACCORDING TO DIN 188006

5.1 Object model
As mentioned above, the dynamic model encompasses multiple state diagrams, each of which is
describing a network of states and transitions between these states for individual object classes. Within
the dynamic model, solely classes with significant dynamic behavior patterns are considered. The
corresponding classes are grey marked in the object class model of the application considered (see
Fig. 4).

In the scope of this paper, exclusively, the dynamic model for "design and code verification of steel
structures according to DIN 18800" [9] is examined. Design and code verification according to a given
standard is a characteristic activity in the engineering design process and can be atime-consuming
process depending on the size of the structure and the number of loading cases. As a consequence,
the detection and realization of concurrency significantly improves the temporal behavior and
effectiveness of a computer aided "design and code verification assistant" required to cope with future
needs.
6. DIN 18800 German design code for steel structures [9]

42 REPRESENTATION OF CONCURRENCY IN OBJECT-ORIENTED DESIGN MODELS

The dynamic model for "design and code verification" will be clarified through a specific example,
where a three dimensional structure is considered that consists of two plane frames connected by two

Loading case
1 + Structure

Load 0+

Stress-resultant
components

JL
Structural component —/

1 + Beam

Single beam

Frame

2+

Checking position

Fig. 4: Partial object model of the engineering application "Design and code verification"

bars perpendicular to the frame planes (Fig 5). The overall structure is represented through an aggregation

of four structural parts called "structural components". Each of the structural components
contains one or more beams. Usually, a beam has three checking positions where the local feasibility of
stresses due to given loads is checked according to DIN 188007.

Fig. 5: Partial object instance model for the example considered

The object instance diagram in Fig. 5 used to represent concurrency follows the object class diagram
in Fig. 4 when interrelating objects "Structure", "Structural component", "Beam" and "Checking
position". In addition to the symbolic notation applied in Fig. 5, relationships between objects are expressed

in a mathematical way using sets (e.g. St= {Sei, Sc2, Sc3, Sc4>, indicating that object "Struc-
7 In general, the number of checking positions in a beam is vanable and depends on the number of loading cases as well as the shape

andmagnitude of different stress-resultantcomponentsassociated with the loadingcases At present, the designandcode venfication
only encompassses stability phenomena of single structural components but not of total structures

D. BRETSCHNEIDER - D. HARTMANN 43

ture" (Sj) contains four objects "Structural component" (Sc), called Sei, Sc2, SC3 and SC4. The
relations of the objects "Beam" (BM) and "Checking position" (Cp) to other objects are represented in
a similar way.). The sets serve as a reference to the object model when concurrency phenomena will
be discussed in distinct state diagrams of the dynamic model, subsequently.

The object instance model in Fig. 5 has a tree-like structure. Following the tree from top to bottom
three levels of concurrency can be identified: (1) concurrency in the structure layer (object Sj), (2)
concurrency in the structural components layer (object Sc) and finally (3) concurrency in the checking
positions layer (object CP). All three levels will be examined separately with respect to potential sources

of concurrency.

5.2 Representation of dynamic behavior and concurrency
In the overall structure layer the sequence of the three processes "structural analysis", "design and
code verification" and "structural detailing" is obvious and demonstrated in Fig. 6. These processes
are represented by states "St (Structural Analysis)", "S^Code verification)" and '^(Structural detailing)"

of object "Structure", respectivly. All three processes can be integrated in the abstract state "St
(Structural design)" of the object "Structure" (see Fig. 6).

St (Structural design)

St (Structural analysis)

K.V=P
do: V

do: Sßd

do: S|n

-KD
ST (SA)®

t

j' St (Code verification)

|

(Sqi (Code verification)) |

(j3ç2 (Code verification)) [

|
(Sç3 (Code verification))

I

[(Sc4 (Code verification)^

[CpLCk (SAC)®

VCPlL0k ESj]

St
(Structural
detailing)

[CPlLCk (SAC)© for > 1 CpLCk e ST]

Fig. 6: Concurrency in the structure layer (object St)

The state '^(Structural analysis)" within state "St (Structural design)" is also an abstract state consisting

of three substates8:

- an initial state that "Structure" automatically represents when entering the structural analysis
operation (solid circle),

- a computation state where several activities (indicated by the keyword "do:") are performed,
particularly the solution of the stiffness equations K-V=P is carried out and leads to the displacements
V and the stress-resultant components Spd and S|n of the structure,

- subsequent to the computation state "Structure" automatically enters its final state (bull's eye),
called "St(SA)®"; the plus sign indicates that the structural analysis (SA) of the entire structure ST
has been performed successfully.

Then the state "ST(Code verification)" is entered. This state is an aggregate operation of several sub-
operations, each performed by a distinct object: The notation in Fig. 6 specifies that "design and code
verification" of the whole structure St can be performed in parallel for every agggregated structural

component Sq £ St Hence, the state "S^Code verification)" is a "nested state" where substates may
be expanded in separate state diagrams.
8 Only those aspects within state "Sj(Structural analysis)" are pointed out that express dependencies to the state of mam interest,

"Sj(Code verification) " A more detailed consideration of "Sj(Structural analysis) " and "Sj(Structural detailing) " is omitted, because
emphasis is laid on "SjfCode verification)" within this paper

44 REPRESENTATION OF CONCURRENCY IN OBJECT-ORIENTED DESIGN MODELS

The state "Sj(Code verification)" is finished when the stress analysis has been performed at every
checking position Cp, for every load case LC|<. According to the verification results state "S-|-(Structural
analysis)" or state "S-|-(Structural detailing)" is entered. This is graphically shown through arrows in
Fig. 6 representing "guarded transitions". By that object "Structure" is transfered from state "ST(Code
verification) " to another state if the individual guard condition shown as a Boolean expression in brak-
kets is true. Thus, if the stress analysis is verified at all checking positions of the structure (indicated by
condition "[Cp,LCk (SAC) ® V Cp, l-Cke Sj]" in Fig. 6) the structure can be designed in detail.
Consequently, the state "Sj(Structural detailing)" is entered. By contrast, in the case that the stress analysis
is not verified at one or more checking positions (indicated by condition "[Cp, LCk (SAC)© for > 1 Cp,

LCkeST]" in Fig. 6), the corresponding parts of the structure have to be changed. This, of course,
makes a re-analyzation of some parts or the entire structure necessary. Thus, state "ST(Structural
analysis)" is re-entered again (see Fig. 6).

As mentioned previously besides concurrency in the structure layer there also exists concurrency in
the structural components layer. This is exemplified by expanding the state "Sd (Code verification)"
that is grey-shaded in Fig. 6. Examining a single structural component, basically three groups of
operations can be parallelized when performing the stress analysis:

- computation of the effective length of all associated beams by determining the buckling factors ß

(state "Buckling factor (ß)"),

- computation of the allowable stress-resultant components representing yielding in the individual
cross section Spi (state "Allowable plastic stress-resultant components (Sp|)"),®

- execution of the stress analysis to verify that the collapse load is not exceeded at every checking
position CP| and for every load case LCk given (state "Stress Analysis against Collapse (SAC)").

f' SC1 (Code verification)

Buckling factor (ß)>—foi ^ ri2 ^ ...]
• K SC1 (ß) H

hi # ¥= -I ^

Sei (ß)®

Allowable plastic stress-resultant
components (Spß

f Sei (Spi)

Bm6 (Spi) O
BM6(SP,)©

.J

0 « O 0
Bmi(P)® BM2(ß)® BM6(ß)©|

Stress Analysis against Collapse (SAC)

SCi (SAC)

(^CpiLC1 (Code verification)^)

Cp-|LC2 (Code verification)^)

Cpi8LCn (Code verification)^)

.J

Fig. 7: Concurrency in the structural component layer (e.g. object Sd)

The concurrency incorporated between these three states is clarified by dotted lines inside state "Sei
(Code verification)" (see Fig. 7).
9 The german code DIN18800 offers three differentpossibilities to compare loading and loading capacity, thus, to verify a structure, ela¬

stic - elastic, elastic-plastic, plastic -plastic. Theconsiderations in this contributionare basedon the methodelastic-plastic Loading,
expressed instress-resultantcomponents, is basedon elastic computations Loading capacity, expressed in stress-resultant components

for plastification in the cross section, is based on plastic computations

D. BRETSCHNEIDER - D. HARTMANN 45

In addition, the three individual states themselves are again superstates entailing concurrent substa-
tes. These are either substates, describing operations of the same object (e.g. the computation of the
buckling factor "Sd(ß)") or operations of aggregated objects expressed by rounded boxes with
dashed lines (e.g. the computation of allowable yield stresses "BMi(Spi)" expressed in stress-resultant

components for every beam associated, or the execution of the stress analysis for the specified
checking position and load case "Cpj LCk (Code verification)").

In some cases it is important to ensure that computations inside states are terminated, because the
computation results are required in subsequent states. Thus, final states have to be defined, e.g. the
state Bmi (Spi)® indicating that all allowable yield stresses of beam 1 expressed in stress-resultant
components have been computed (Fig. 7).

f CP1LG1 (Code verification)

c
g
Î5
<D
m
co
CO

o
O
<
«
CD

13

5
©<

<
OT

CO

CptLC1 (Safety against collapse)

General Stress Analysis (GSA)

—
Stability analysis

[BM1(ß)®ABM1(SD|)®

[case FB]

case TFB]

Buckling

C*Elexural Buckling

Jorsional-Elexural b.i

3 O FB®

^>^>.Ofb©
»__^Otfb®

Ä.OTFB®

Local Buckling

a
GFlange plate Buckling)

cWeb plate Buckling

><
,©LB®

©LB©

[GSA©]

CP1LC1(SAC)©I
<Sd

LL

a>
m

m
_i

m

CP1LG1(SAC)t

Fig. 8: Concurrency in the checking positions layer (e.g. object Cp^

Concurrency in the checking positions layers is examined by way of an example, too. Considering the
state "Cpi LC1 (Code verification)" this state is expanded as illustrated in Fig. 8. In this case, the stress
analysis at specified checking positions can be described by means of three substates:

- an initial state that is finished automatically if structural analysis results (Sj (SA)® material's and
cross section's properties are known,

- a computation state through which safety against collapse with regard to different aspects (e.g.
flexural buckling, torsional flexural buckling etc.) is determined (state "Cpi LC1 (Safety against
collapse)"),

- two alternative final states "CP1LC1(SAC)®" and "CP1LC1(SAC)©" entered automatically depending

on the results of the code verification; the final state affects the process sequence within state
"ST(Structural design)" as shown in Fig. 6.

Inside state "Cpi LC1 (Safety against collapse)" several code verification procedures for various
categories of collapse are carried out. In detail these are a general stress analysis (GSA), verification of

46 REPRESENTATION OF CONCURRENCY IN OBJECT-ORIENTED DESIGN MODELS

safety against flexural buckling (FB) and torsional-flexural buckling (TFB) as well as verification of
stability against local buckling, separately for beam's web and flange plate (LB). All five code verifications

can be examined in parallel. The concurrent portions are elucidated by dotted lines (see Fig. 8).

The transitions between the initial state and the stress analysis as well as the final states require
measures for synchronization as introduced in chapter 4.2. State "Cpi LC1 (Safety against collapse)" basically

has three independent substates. if the guard condition at the guarded transition from the initial
state to the stress analysis state "Cpi LC1 (Safety against collapse)" is satisfied all three substates are
active at the same time. This requires a fork of the control flow. Contrary to this, the transition from the
stress analysis state to the final state "Cpi LC1 (SAC)®" needs a merge of the control flow because the
code verification at checking position Cpi for loading case LC1 can only be carried out if the
constraints of all distinct code verification procedures are fulfilled. On the other hand, the transition
from the stress analysis state to the final state "Cpï LC1 (SAC)®" needs no synchronization because
the violation of one single constraint leads to state "Cpi LC1 (SAC)®".

6. CONCLUSIONS

The abstract notation introduced in this paper provides adequate expressive power along with a high
representation density in describing concurrency of object-oriented models in engineering disciplines.

Conceptionally, also parallelisms in the inter-instruction level between single statements can be
captured using the concept of nested states.

In this contribution, particularily, all candidate categories of concurrency in the specific domain of
"design and code verification of steel structures according to DIN 18800" are demonstrated. In a
prototype computer system created at present, however, only portions of the overall concurrency
concept are materialized in a coarse-grain solution. The prototype primarily models the natural concurrency

of the team work of engineering design experts with sufficient success (see chapter 2). With
respect to the concurrent implementation basically two categories of hardware have been applied at
the ICE: (1 a highly parallel machine (transputer system) and (2) a heterogenous network of UNIX-
workstations connected by a standard Ethernet. Subsequent to an evaluation of both hardware
platforms the coarse-grain implementation model is realized on the workstation cluster applying PVM

[10] as a message passing interface and using C++ as implementation language.

ACKNOWLEDGEMENTS

The authors would like to thank the DFG, Bonn, for funding this research work since 1992. The support

by the DFG enabled the ICE research group to scrutinize a new and sophisticated field of
research within object-oriented modeling.

REFERENCES

[1] CIMSTEEL, Computer Integrated Manufacturing for Constructional Steelwork, Information Brochure
on the EUREKA 130 research project, Taylor Woodrow Construction Holding Ltd., 1994

[2] SCHERER et al., Architecture of an Object-Oriented Product Model Prototype for Integrated Building
Design, Contribution to the 5th Int. Conference on Computing in Civil and Building Engineering,
Anaheim, CA, USA, June 1993

[3] GAFIAS et al., Presentation of the EU ESPRIT research project "ATLAS", Session EP2 of the 1st Euro¬

pean Conference on Product and Process Modeling in the Building Industry, Dresden, DE, Oct. 1994

[4] HARTMANN et al., Object-Oriented Modeling of Structural Systems, Contribution to the 5th Int. Con¬
ference on Computing in Civil and Building Engineering, Anaheim, CA, USA, June 1993

[5] ONTOS DB 2.2 Reference Manual, Vol. 1 "Class and Function Libraries", ONTOS Inc., 1992

[6] FLYNN, Some Computer Organizations and their Effectiveness, IEEE Transactions, Vol. C-22, 1972,
pp. 948-960

[7] RUMBAUGH et al., Object-Oriented Modeling and Design, Prentice-Hall Int. Inc., 1991

[8] BERNSTEIN, Program Analysis for Parallel Processing, IEEE Transactions, Vol. EC-15, Oct. 1966

[9] DIN 18800 "Stahlbauten", Teile 1 und 2, Ausgabe November 1990
[10] GEIST et al., PVM 3 - Parallel Virtual Machine User's Guide and Reference Manual, Technical Report

ORNL/TM-12187, Oak Ridge National Laboratory, USA, 1993

	Representation of concurrency in object-oriented design models

