Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte
Band: 72 (1995)

Artikel: Representation of concurrency in object-oriented design models
Autor: Bretschneider, Dirk / Hartmann, Dietrich
DOI: https://doi.org/10.5169/seals-54647

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-54647
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

A

37

Representation of Concurrency in Object-Oriented Design Models
Convergences dans les modeles de projet orientés-objets
Zur Darstellung von Nebenlaufigkeiten in objektorientierten Entwurfsmodellen

Dirk BRETSCHNEIDER
Civil Eng.

Ruhr University
Bochum, Germany

D. Bretschneider gra-
duated in 1992, has
worked on information

Dietrich HARTMANN
Prof.

Ruhr University
Bochum, Germany

D. Hartmann was Prof.
for Struct. Mechanics &
Optimisation at the

technologies for tunnel Univ. of Dortmund,
rehabilitation. Since 1982-1987. Since 1987,
1994, he is involved in he is Prof. for

research on computer-
aided structural steel
design. His research
concerns realisation of
concurrency aspects in
object-oriented engi-
neering design sy-
stems.

Computational Eng. at
the Univ. of Bochum.
His research fields are
intelligent computation
in CAE, in particular,
object-oriented techni-
ques, structural opti-
misation and parallel

computing.

SUMMARY

The complexity of engineering design and construction processes is appropriately mana-
ged by applying object-oriented modelling techniques. The consideration of concurrency
aspects, inherent to design processes, significantly improves the temporal behaviour
and, thus, the acceptance of computer systems based on such techniques. A notation for
the explicit representation of concurrency in object-oriented engineering processes is in-
troduced. Subsequently, the power and expressivity of the notation is demonstrated by
the description of concurrency phenomena in the process "design and code verification of
steel structures according to the German Standard DIN 18800".

RESUME

L'étude du projet et de I'exécution en génie civil sont des processus complexes, qui
peuvent étre maitrisés a l'aide de techniques basées sur les modéles orientés-objets. La
considération systématique des convergences permet d'améliorer considérablement la
rapidité et l'acceptation, par l'usager, d'un modéle informatique orienté-objet. La puis-
sance et la facilité d'emploi est illustrée dans le cas de la norme 'projet de calcul et con-
tréle pour les constructions métalliques selon la norme allemande DIN 18800'.

ZUSAMMENFASSUNG

Die Komplexitat ingenieurmassiger Entwurfs- und Konstruktionsprozesse wird sehr gut
mit Methoden der objektorientierten Modellierung bewaltigt. Durch eine systematische
Berlcksichtigung inharenter Nebenlaufigkeiten in den modellierten Ingenieurprozessen
kann sowohl das Laufzeitverhalten als auch die Akzeptanz eines objektorientierten
Computersystems entscheidend verbessert werden. Es wird eine Notation zur expliziten
Darstellung von Nebenldufigkeiten in objektorientierten Ingenieuranwendungen vorge-
stellt. Die Machtigkeit und Ausdrucksstarke dieser Notation wird anhand der
Beschreibung von Nebenlaufigkeiten in einer typischen Ingenieuranwendung ("Nachweis
und Bemessung von Stahlhochbauten nach DIN 18800") demonstriert.

38 REPRESENTATION OF CONCURRENCY IN OBJECT-ORIENTED DESIGN MODELS

1. INTRODUCTION

The process from planning and design to construction of structures implies a plentitude of cognitive
and procedural activities each associated with a high degree of complexity. For this reason, a consi-
stent integration of these acitivities into an appropriate computer system is very much desirable and
benificial. At present, there are various CIM—research projects in civil engineering, funded by the
European Union, dealing with integration in computational engineering. Bv way of example, in the
EUREKA project CIMsteel [1] a computer integrated system applicabie to the European constructio-
nal steelwork industry is deveioped. In particular, the entire constructional lifecycle from design to
manufacturing is taken into account. In the ESPRIT project COMBI [2] emphasis is on the application
of advanced information technology methods in order to establish a computer integrated environ-
ment for cooperative” design work. In a further ESPRIT project entitied ATLAS [3] a generic platform
for the incorporation of existing "large—scale engineering” application tools is created, also know-
ledge base representations for a computer integrated design system are examined.

From ongoing research at the ICE!, it turns out that object—orientation is the key technique for future
solutions in the CIM—area [4]. The object—oriented paradigm offers an exceptionally suitable plat-
form for the representation of cognitive as well as procedural phenomena within engineering discipli-
nes. Furthermore, it enables programmers to overcome severe difficulties occuring in conventional

(procedural) computer science paradigms:

- The object—oriented model of a real—world engineering problem is more natural than the proce-
dural one. This facilitates communication between programmers and application domain experts
and provides “better” computer systems.

— The object—oriented approach leads to a much more "reliable” solution than procedural methods
because the real—world problem is modeled using visisble and persistent entities of the natural
problem domain (the objects with certain characteristics and specific behavicr) instead of thinking
in abstract and ephemeral procedures.

— Due to concepts like "information hiding” and "encapsulation” the application of object—oriented
techniques ensures excellent software reusability compared to conventional solutions and, thus,
improves the possibility of future adaptions to state of the art in engineering.

2. BACKGROUND AND PROBLEM DEFINITION

In a present research project, carried out at the ICE and funded by the DFG?Z, the individual tasks wit-
hin structural steel design and construction, such as preliminary design, structural analysis, design
and code verification as well as structural detailing, are modeled by applying the object—oriented
paradigm. Subsequently, the above four tasks are integrated into a holistic computer system based
upon a central object—oriented database management system (OODBMS) in order to support engi-
neers during the entire design as well as construction process. Consequently, the computer system
consists of four distinct modules, each one representing one of the four tasks mentioned. All modules
are implemented in C+ + under the operating system UNIX. The graphical user interface of the com-
puter sytemn is based on OSF/Motif, while ONTOS [5] is applied as OODBMS.

In order to manage the complexity of the individual stages in the planning, design and construction
process , and to ensure a reasonabie response time of the computer system during execution it is
obvious that a concurrent (parallel or distributed)® model is a must. This is a direct consequence of
the requirements for integration and holism. Concurrency considerations are a key issue in the deve-
lopment of modern and innovative computer aided engineering systems if the natural way, in which an
organized, systematic team work of engineering design experts takés place, is to be modeled: Similar
to the human team work a team of computers concurrently performs distributed tasks of the enginee-
ring design process. The description and subsequent implementation of concurrency, therefore, is
essential for modern and innovative computer aided engineering systems.

In the following an abstract notation for the representation of concurrency phenomena in engineering
design processes is introduced. The notation serves (1) to illustrate basic process sequences as well
1. ICE = Institute for Computational Engineering, Ruhr—University Bochum
2. DFG = Deutsche Forschungsgemeinschaft (German Research Foundation)
3. The terms "parailelism” and "concurrency” will be used as synonyms throughout the paper.

D. BRETSCHNEIDER - D. HARTMANN 39

as dependencies between single design activities and (2) to detect inherent concurrency aspects —
and through this — establishing a framework for a subsequent implementation.

3. CONCURRENCY

Concurrency, as a generic solution concept, is a multi—layered phenomenon. From a programming
point of view, four distinct levels of concurrency may be distinguished. Commonly, the following levels
of concurrency can be identified: the intra—instruction level (focusing on concurrent operations in
individual statements), the inter—instruction level (considering concurrency between program state-
ments), the program—level (concerned with concurrent partial processes within a pragram) and the
job—level (determining concurrent tasks from an overall system view).

A further source of concurrency lies in the various fashions in which instruction streams and data
streams consisting of single or multiple items may be processed. Following the classification by Flynn
[6] SIMD#- and MIMD®—hardware architectures may be applied for a computer realization. Recent
research in computer technology, however, makes evident that the MIMD—paradigm in association
with a message— passing mechanism offers the most powerful and general parallelization platform in
engineering disciplines. Therefore, the MIMD —concurrency concept is taken into consideration for
concurrent object—oriented modeling within the ICE group, exclusively, and with specific regard to
the four parallelization levels in programs mentioned above.

4. OBJECT-ORIENTED MODELING (OOM)

To capture the details of concurrency in engineering applications an abstract notation for its object—
oriented representation is an absolute must. An adequate notation has already been introduced by
Rumbaugh et al [7]. This notation is based upon an object—-oriented analysis (OQOA) resulting in a
total of three distinct submodels that are interrelated with each other (see Fig.1). Concurrency aspects
are particularily represented within the dynamic model that usually follows the establishment of an
object model but precedes the definition of the functional model.

Object model : Static structure of a real-world system

¢ Objects
¢ Associations

Dynamic model : Control aspects and dynamic behavior

e States S

« Transitions / Events E

Functional model : Data flow and data transformations
e Processes

e Data

Fig. 1: Submodels of the object—oriented analysis

Since the interactions between the above three submodels are significant for concurrency they are
briefly elucidated in the following chapter.

4.1 OOA-submodels

The representation of a real—world problem interms of objects makes necessary a thorough analysis
of the problem domain. To manage the inherent complexity of the real—world problem it is common
4. SIMD = Single Instruction / Multiple Data
5. MIMD = Muitiple Instruction / Muitiple Data

40 REPRESENTATION OF CONCURRENCY IN OBJECT-ORIENTED DESIGN MODELS

practise to decompose the original problem into surveyable portions and to consider only specified
aspects of the entire problem in an orthogonal manner.

The object—oriented modeling follows this approach and primarily starts with the objects of the pro-
blem domain. This leads to the object model that represents the static structure of the problem by
means of its characteristic entities and quantities (objects) as well as the relationships between them
(associations). Each object created and defined has specific properties (attributes) and contains spe-
cific information on its behavior in terms of operational statements (methods). The object model,
mathematically expressed, forms an indirected graph where object classes are represented by
means of nodes and relations by edges or lines.

Secondly, the dynamic model is established with a direct reference to the object model. The dynamic
model describes the temporal and, therefare, dynamic behavior as well as the contro! aspects of the
problem solution. It is graphically defined through object state diagrams which are directed graphs.
The nodes of the graphs are equivalent to states of a specified object while transitions between states
are depicted in terms of arrows. Transitions may either be caused by events or happen automatically.

Third, a functional model is created. This model describes the data flow and transformations from
object sources to object targets during the execution of the object—oriented computer system. In
general, the functional model consists of various data flow diagrams each being a directed graph
where nodes correspond with processes and lines (arrows) with data flows.

4.2 Representation of concurrency

As pointed out in the preceding chapter, two fundamental representation concepts are applied within
the dynamic model: (object) states and transitions (between states). A state can be understood as an
abstract description-of a single object with regard to its attribute values and relationships to other
objects. A state is valid over a period of time. Commonly, an object, therefore, has multiple states
duringits lifetime. The states are linked by transitions that have no duration overtime. Both, states and
transitions of an object are incorporated in the object’s state diagram. The entire state diagrams of the
different objects form the dynamic model of the system.

For the design of steel structures two characteristic features can be determined:
— most states represent sequences of specified computations , called operations in the following,

— transitions are primarily prescribed by the design process, and, therefore, happen automatically;
only a minority of transitions is caused by explicit events created from direct user interactions.

Consequently, a key paint is the detection of concurrency within the above operations. This problem
is generally dealt with by Bernstein [8]: Considering two operations each cne associated with indivi-
dual input data and output data, both can only be carried out in paraliel when the three conditions
shown in Fig. 2 are simultanously satisfied.

OUT (05) M IN (Oy)

AIN©) M OUT©O) = {}

A OUT(O4) m OUT(Op) = {}
{ } = empty set
0O, M = intersectional set
Fig. 2: Bernstein rules A = logical AND

Inherent to the object—oriented modeling are concurrencies due to aggregation. Aggregation is an
abstraction principle most frequently used in object—oriented models of engineering disciplines. By

D. BRETSCHNEIDER - D. HARTMANN 41

way of example, the decompaosition of a structure into single structural components along with a
part—whole relationship represents an aggregation (see Fig. 4 in the following chapter). With respect
to operations, also aggregate operations can be identified comprising several operations of one sin-
gle object (Fig. 3).

4 \
Generalized operation of
- one single object 5 0=04VO0,
Oz
—/
@)
0, Aggregated operation of
seoee multiple operations
0, of one single object ;7 0= 07A0,
N
(A0
| {B(Oy)| | Aggregated operation A
: |l of multiple operations ; A(O) = B(O4) AC(Op)
| C(0y2) of multiple objects
) B C
— ‘ merge Synchronization of concur-
orl

rent operations

Fig. 3: Advanced concepts of the notation

Furthermore, an aggregate operation may be defined for not one but many objects. To prevent confu-
sion in this case, the states have to be precisely identified by a state—name in harmony with the name
of the involved object. In addition, the concept of a "generalized state” as well as two synchronization
mechanisms for concurrent operations have been defined to provide additional elements for the nota-
tion (Fig. 3).

5. DESIGN OF STEEL STRUCTURES ACCORDING TO DIN 18800°

5.1 Object model

As mentioned above, the dynamic model encompasses multiple state diagrams, each of which is des-
cribing a network of states and transitions between these states for individual object classes. Within
the dynamic model, solely classes with significant dynamic behavior patterns are considered. The
corresponding classes are grey marked in the object class model of the application considered (see
Fig. 4).

In the scope of this paper, exclusively, the dynamic model for "design and code verification of steel
structures according to DIN 18800~ [9] is examined. Design and code verification according to a given
standard is a characteristic activity in the engineering design process and can be a time—consuming
process depending on the size of the structure and the number of loading cases. As a consequence,
the detection and realization of concurrency significantly improves the temporal behavior and effecti-
veness of a computer aided “"design and code verification assistant” required to cope with future
needs.
6. DIN 18800 = German design code for steel structures [8]

42 REPRESENTATION OF CONCURRENCY IN OBJECT-ORIENTED DESIGN MODELS

The dynamic model for "design and code verification” will be clarified through a specific example,
where a three dimensional structure is considered that consists of two plane frames connected by two

1+

Loading case Structure

> . > —-! 8i
¢ S

Structural component

? Frame

Beam

J

Q

e beam

0+ 1+

Load

N/
Stress—resultant
components

2+
Checking position.

Fig. 4: Partial object model of the engineering application "Design and code verification”

bars perpendicular to the frame planes (Fig 5). The overall structure is represented through an aggre-
gation of four structural parts called "structural components”. Each of the structural components con-
tains one or more beams. Usually, a beam has three checking positions where the local feasibility of
stresses due to given loads is checked according to DIN 188007.

St= {Sc1, Sca. Sca, Sca}

<

[1 I I

Sc1 = {Bm1, Bm2, ..- Bus}

Scz = {Bmyz, Bmes: Bmo}

/

Sca = {Bmio}

~

Sca = {Bm11}

i

Bwm1 = {Cp1, Cpa, Cpa}

Bme = {Cp1s: Cp17, Cp1g}

i

Bm11 = {Cp31, Cpa2, Cpaa}

l

Ce1

Cp2

Cps

I

]

Cpi1g

Cri7

Cpid

|

|

Cpat

Cpa2

Cpag

Fig. 5: Partial object instance model for the example considered

The object instance diagram in Fig. 5 used to represent concurrency follows the object class diagram
in Fig. 4 when interrelating objects "Structure”, "Structural component”, "Beam” and "Checking posi-
tion”. In addition to the symbolic notation applied in Fig. 5, relationships between objects are expres-
sed in a mathematical way using sets (e.g. St= {Sc1, Sca, Sca, Sca}, indicating that object "Struc-

7. In general, the number of checking positions in a beam is variable and depends on the number of loading cases as well as the shape
and magnitude of different stress—resultant components associated with the loading cases. At present, the design and code verification
only encompassses stability phenomena of single structural components but not of total structures.

D. BRETSCHNEIDER - D. HARTMANN 43

ture” (Sy) contains four objects "Structural component” (S¢), called Scy, Sco, Scz and Sgs. The
relations of the objects "Beam” (Byy) and "Checking position” (Cp) to other objects are represented in
a similar way.). The sets serve as a reference to the object model when concurrency phenomena will
be discussed in distinct state diagrams of the dynamic model, subsequently.

The object instance model in Fig. 5 has a tree—like structure. Following the tree from top to bottom
three levels of concurrency can be identified: (1) concurrency in the structure layer (object Sy), (2)
concurrency in the structural components layer (object Sg) and finally (3) concurrency in the checking
positions layer (object Cg}. All three leveis will be examined separately with respect to potential sour-
ces of concurrency.

5.2 Representation of dynamic behavior and concurren

In the overall structure layer the sequence of the three processes "structural analysis”, "design and
code verification” and "structural detailing” is obvious and demonstrated in Fig. 6. These processes
are represented by states St (Structural Analysis)”, "St(Code verification)” and *St(Structural detai-
ling)” of object "Structure”, respectivly. All three processes can be integrated in the abstract state "St
(Structural design)” of the object "Structure” (see Fig. 6).

/ST (Structural design) \

/ST (Structural analysis)\ { St {Code verification) \

@1 {Code venfncatm)'
S (Code verification)
© —— (j [CoitCk (SAC)D

St (SA® I (Scs (Code vermcatloj V CplCk €8]

\) k@4 (Code verification) J

\ T [CPiLCk (SAC)6 for =1 CpiLCk e ST] T

detailing)

/

Fig. 6: Concurrency in the structure layer (object St)

The state "Sy(Structural analysis)” within state "St (Structural design)” is also an abstract state consi-
sting of three substatesS:

— an initiai state that "Structure” automatically represents when entering the structural analysis ope-
ration (solid circle),

— acomputation state where several activities (indicated by the keyword "do:”) are performed, par-
ticularily the solution of the stiffness equations K-V=P is carried out and leads to the displacements
V and the stress—resultant components Sgq and Sy, of the structure,

— subsequent to the computation state "Structure” automatically enters its final state (bull's eye),
called "S1(SA)®”; the plus sign indicates that the structural analysis (SA) of the entire structure St
has been performed successfully.

Then the state "St(Code verification)” is entered. This state is an aggregate operation of several sub-
operations, each performed by a distinct object: The notationin Fig. 6 specifies that "design and code
verification” of the whole structure St can be performed in parallel for every agggregated structural
component Sc; € St Hence, the state "St(Code verification)” is a "nested state” where substates may
be expanded in separate state diagrams.

8. Only those aspects within state "Sy(Structural analysis)” are pointed out that express dependencies to the state of main interest,
"Sr(Code verification)”. A more detailed consideration of "Sr(Structural analysis)” and "Sy(Structural detailing)” is omilted, because
emphasis is laid on "Sy(Code verification)” within this paper.

44 REPRESENTATION OF CONCURRENCY IN OBJECT-ORIENTED DESIGN MODELS

The state "St(Code verification)” is finished when the stress analysis has been performed at every
checking position Cp; for every load case LCy. According to the verification results state "St(Structural
analysis)” or state "St(Structural detailing)” is entered. This is graphically shown through arrows in
Fig. 6 representing "guarded transitions”. By that object "Structure” is transfered from state "St(Code
verification)” to another state if the individual guard condition shown as a Boolean expression in brak-

kets is true. Thus, if the stress analysis is verified at all checking positions of the structure (indicated by
condition ”[Cp; LCK (SAC) ® ¥ Cp; LCke S1]” in Fig. 6) the structure can be designed in detail. Conse-
quently, the state "Sy(Structural detailing)” is entered. By contrast, in the case that the stress analysis
is not verified at one or more checking positions (indicated by condition ”[Cp; LCK (SAC)© for =1 Cp;

LCke S1]” in Fig. 6), the corresponding parts of the structure have to be changed. This, of course,
makes a re—analyzation of some parts or the entire structure necessary. Thus, state "St(Structural
analysis)” is re—entered again (see Fig. 6).

As mentioned previously besides concurrency in the structure layer there also exists concurrency in

the structural components layer. This is exemplified by expanding the state "S¢1(Code verification)”

that is grey—shaded in Fig. 6. Examining a single structural component, basically three groups of

operations can be parallelized when performing the stress analysis:

— computation of the effective length of all associated beams by determining the buckling factors
(state "Buckling factor (§3)"),

— computation of the allowable stress—resultant components representing yieldin% in the individual
cross section Sy, (state "Allowable plastic stress—resultant components (Sy))"),

— execution of the stress analysis to verify that the collapse load is not exceeded at every checking
position Cp; and for every load case LCy given (state "Stress Analysis against Collapse (SAC)").

7~ Scy (Code verification) | I
Buckling fa;tor ES)) Iy~ 12~ ..] —301—(-3)?9— —_ == —@—— — i \l
*—>» C1

Bum1 (B)® Bmz (B)P - - - By (B)P1
[n1 7 ng 7 «..] \ =T 7.

PO OE0000000000000000000000080CCCRORRTIOLY
Allowable plastic stress—resultant ¢ Stress Analysis against Collapse (SAC)
components (Spj) ®

—— ——— —— — — Ny — = — = N\
(Sc1 (Sp) I : (Sc1 (SAC) '

® - LC1 {Ceday . >
| o | s | @m (Code verification) ‘
| Bum1 (Sp)® | ¢ ' |
| . | : | @pﬂ-C? (Code ver_ification)) |
: .
| % I e | - I
| Bue (Spi) | o | CCmeC" (Code verificatio@ |
N s)

Fig. 7: Concurrency in the structural component layer (e.g. object Sg1)

The concurrency incorporated between these three states is clarified by dotted lines inside state "Sg1
{Code verification)” (see Fig. 7).

9. The german code DIN18800 offers three different possibilities to compare loading and ioading capacity, thus, to verify a structure: ela-
stic —elastic, elastic —plastic, plastic —plastic. The considerations inthis contribution are based on the method elastic —plastic: Loading,
expressedinstress —resulfant components, is based on elastic computations. Loading capacity, expressedin stress —resuftant compo-
nents for plastification in the cross section, is based on plastic computations.

D. BRETSCHNEIDER - D. HARTMANN 45

In addition, the three individual states themselves are again superstates entailing concurrent substa-
tes. These are either substates, describing operations of the same object (e.g. the computation of the
buckling factor "Sc1(B)”) or operations of aggregated objects expressed by rounded boxes with
dashed lines (e.g. the computation of allowable yield stresses "By;(Sp))” expressed in stress—resul-
tant components for every beam associated, or the execution of the stress analysis for the specified
checking position and load case "Cp;j LC* (Code verification)”).

In some cases it is important to ensure that computations inside states are terminated, because the
computation results are required in subsequent states. Thus, final states have to be defined, e.g. the
state By (Sp,)Ga indicating that all allowable yield stresses of beam 1 expressed in stress—resultant
components have been computed (Fig. 7).

[CpitC! (Code verification) .)
"Cpy CT (Safely against collapse) = - \
4 General Stress Analysis {GSA) N

LI L VOIS =GO 175

/
..........‘..‘.'......‘..‘ %
" Stabilty ahalysis - LC1(SAC)®

O FB®
M1 B M1 F;' C FLEXURAL EUCKL'NG)»Q FBe
[case FB] e i

T [case TFB]_'-\@ ORSIONAL-FLEXURAL B. @ TFBS
X ¥ 2 3 R X R X N EREEIEXIEZEIEEZ N N B J

Local Buckling

GLANGE PLATE BUCKLING ® LB®
$@<b sessesece 5
LBS
WEB PLATE BUCKLING
\. L) o

Fig. 8: Concurrency in the checking positions layer (e.g. object Cp1)

[FECVTFEDY LD

[GSAS, FB% TFBSA LB

1St (SA)®h Material A Cross section]

(
@5
0
\ﬁi@‘

Concurrency in the checking positions layers is examined by way of an example, too. Considering the
state "Cp¢ LC1 (Code verification)” this state is expanded as iliustrated in Fig. 8. In this case, the stress
analysis at specified checking positions can be described by means of three substates:

— aninitial state that is finished automatically if structural analySIS results (St (SA)®), material’s and
cross section’s properiies are known,

— a computation state through which safety against collapse with regard to different aspects (e.g.
flexural buckiing, torsional flexural buckling etc.) is determined (state "Cpq LCT (Safety against col-
lapse)”),

— two alternative final states "Cp1-C1(SAC)®” and "Cp{LC{SAC)©” entered automatically depend-
ing on the results of the code verification; the final state affects the process sequence within state
"St(Structural design)” as shown in Fig. 6.

Inside state "Cpq -C1 (Safety against collapse)” several code verification procedures for various cate-
gories of collapse are carried out. In detail these are a general stress analysis (GSA), verification of

46 REPRESENTATION OF CONCURRENCY IN OBJECT-ORIENTED DESIGN MODELS

safety against flexural buckling (FB) and torsional—flexural buckling (TFB) as well as verification of
stability against local buckling, separately for beam’s web and flange plate (LB). All five code verifica-
tions can be examined in paralle!. The concurrent portions are elucidated by dotted lines (see Fig. 8).

The transitions between the initial state and the stress analysis as well as the final states require mea-
sures for synchronization as introduced in chapter 4.2. State "Cp LC* (Safety against collapse)” basi-
cally has three independent substates. if the guard condition at the guarded transition from the initial
state to the stress analysis state "Cp4 LC1 (Safety against collapse)” is satisfied all three substates are
active at the same time. This requires a fork of the control flow. Contrary to this, the transition from the -
stress analysis state to the final state "Cpq L€1 (SAC)®” needs a merge of the control flow because the
code verification at checking position Cpy for loading case LC1 can only be carried out if the
constraints of all distinct code verification procedures are fulfilled. On the other hand, the transition
from the stress analysis state to the final state "Cp LC1 (SAC)©” needs no synchronization because
the violation of one single constraint leads to state "Cpy LC1 (SAC)©".

6. CONCLUSIONS

The abstract notation introduced in this paper provides adequate expressive power along with a high
representation density in describing concurrency of object-oriented models in engineering discipli-
nes. Conceptionally, also parallelisms in the inter —instruction level between single statements can be
captured using the concept of nested states.

In this contribution, particularily, alt candidate categories of concurrency in the specific domain of
“design and code verification of steel structures according to DIN 18800” are demonstrated. In a pro-
totype computer system created at present, however, only portions of the overall concurrency con-
cept are materialized in a coarse—grain solution. The prototype primarily modeis the natural concur-
rency of the team work of engineering design experts with sufficient success (see chapter 2). With
respect to the concurrent implementation basically two categories of hardware have been applied at
the ICE: (1) a highly parallel machine (transputer system) and (2) a heterogenous network of UNIX—
workstations connected by a standard Ethernet. Subsequent to an evaluation of both hardware plat-
forms the coarse—grain implementation model is realized on the workstation cluster applying PVM
[10] as a message passing interface and using C+ + as implementation language.

ACKNOWLEDGEMENTS

The authors would like to thank the DFG, Bonn, for funding this research work since 1992. The sup-
port by the DFG enabled the ICE research group to scrutinize a new and soph|st:cated field of
research within object—oriented modeling.

REFERENCES

1] CIMSTEEL, Computer Integrated Manufacturing for Constructional Steelwork, information Brochure
on the EUREKA 130 research project, Taylor Woodrow Construction Holding Ltd., 1994

2] SCHERER et al., Architecture of an Object—Oriented Product Model Prototype for Integrated Building

Design, Contribution to the 5th Int. Conference on Computing in Civil and Building Engineering, Ana-
heim, CA, USA, June 1993

3] GARAS et al., Presentation of the EU ESPRIT research project "ATLAS”, Session EP2 of the 1st Euro-
pean Conference on Product and Process Modeling in the Building Industry, Dresden, DE, Oct. 1994

(4] HARTMANN et al., Object—Oriented Modeling of Structural Systems, Contribution to the 5th Int. Con-
ference on Computing in Civil and Building Engineering, Anaheim, CA, USA, June 1993

[5] ONTOS DB 2.2 Reference Manual, Vol. 1 "Class and Function Libraries”, ONTOS Inc., 1992

[6] FLYNN, Some Computer Organizations and their Effectiveness, IEEE Transactions, Vol. C—22, 1972,

pp. 948—-960
(7] RUMBAUGH et al., Object—Oriented Modeling and Design, Prentice—Hall Int. Inc., 1991
[8] BERNSTEIN, Program Analysis for Parallel Processing, [EEE Transactions, Vol. EC~15, Oct. 1966

{91 - DIN 18800 "Stahlbauten”, Teile 1 und 2, Ausgabe November 1990

[10] GEIST et al., PYM 3 — Parallel Virtual Machine User’s Guide and Reference Manual, Technical Report
ORNL/TM—12187, Oak Ridge National Laboratory, USA, 1993

	Representation of concurrency in object-oriented design models

