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Modelling of the Oedometer Test by Neural Networks
Modélisation d'un essai oedométrique avec réseaux de neurones
Modellierung von Oedometerversuchen mit neuronalen Netzen
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SUMMARY

Constitutive modelling of non-linear material such as soil is a very difficult task. The deve-
lopment of artificial intelligence offers a new possibility in this field. A feed-forward neural
network used in predicting the oedometer loading curve was trained by 40 oedometer
curves obtained from tests made on marshland soil. The neural network was tested on 6
oedometer curves which were not included in the learning process. The oedometer cur-
ves and the clay parameter were evaluated. Good agreement between measured and
predicted values was obtained, which implies that the neural networks can serve as an
effective constitutive model as well as predicting sample behaviour.

RESUME

Il est tres difficile d'établir la relation entre contraintes et déformations pour des matériaux
non linéaires, tels que les sols. Le développement de l'intelligence artificielle offre, avec
les réseaux neuronaux, une nouvelle possibilité dans le domaine des modéles constitu-
tifs. Les prévisions de la courbe oedométrique ont été établies avec un chargement, basé
sur apprentissage, de 40 essais oedométriques du sol du Marais de Ljubljana. Les résul-
tats ont été verifies avec 6 essais, non incorporés dans le processus de I'apprentissage.
La bonne concordance entre les résultats expérimentaux et calculés permet d'utiliser le
réseau neuronal comme modele constitutif pour prévoir le comportement de I'échantillon.

ZUSAMMENFASSUNG A

Das Aufstellen konstitutiver Beziehungen ist fur nichtlineare Materialien, z.B. Erdstoffe,
keine einfache Aufgabe. Die Entwicklung der klnstlichen Intelligenz bietet als eine neue
Moglichkeit den Gebrauch neuronaler Netze. Das Lernen von 40 Oedometerversuchen
mit Erdstoffen aus dem Moor von Ljubljana ergab die Resultate fir die Verdichtungs-
kurve. Das neuronale Netz wurde mit 6 Oedometerversuchen, die nicht in den Lern-
prozess eingeschlossen waren, geprift. Die Verdichtungskurven und die Parameter des
Cam-Clay-Models wurden verglichen. Die Ubereinstimmung der Messungen mit den Vor-
aussagen des neuronalen Netzes zeigt, dass es als ein konstitutives Modell dienen kann,
und die Voraussage des Erdprobenverhaltens ermdglicht.
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1. INTRODUCTION

Oedometer tests are widely used for the determination of the compressibility character-
istics of soils. For this reason a large amount of test data is available. We believe that the
development of artificial intelligence enables us to convert these old files to active
knowledge by using neural networks. Some results of the first part of our study on the use
of artificial neural networks as a knowledge-based constitutive model for uniaxial soil
behaviour are presented in the paper.

2. DATA BASE

During the last thirty years extensive in-situ and laboratory testing of Ljubljana marshland
soils has been performed, mainly for the purpose of road and highway construction in very
difficult soil conditions. Ljubljana marshland subsoil typically consists of two very soft silty
and clayey layers underlain by stiffer silts or clays including sand and/or gravel. From the
constructional point of view, the upper, up to 9 m thick, normally consolidated silty soil
layer of very high compressibility (MH) is the most critical. The results of 46 oedometer
tests made on samples of this silty soil were available. In addition to the oedometer curve
c'—e (o' is the effective vertical stress, e is the void ratio), for each sample the following
characteristics are known: initial void ratio, ey, natural water content, wy, liquid limit, w;,
plastic limit, wp, plasticity index, /p, consistency index, I, specific weight, v, and depth
z from which the sample was taken. The extreme and the average values of these
characteristics are shown in Tab. 1. Consistency characteristics of soil samples are
presented in the plasticity chart (Fig. 1).

Parameter Minimum Maximum Average

€0 1.191 4.989 2.66
wy [%] 68.2 206.3 100.8
wy [%] 55.0 155.9 92.1
wp [%] 37.0 82.6 48.9
Ip [%] 11.4 81.0 43.2
Ic -2.97 0.47 -0.40
v [kN/m’] 12.8 15.9 14.5
z [m] 1.25 8.15 3.9

Table 1 The extreme and the average values of soil characteristics.

Oedometer curves, characterized by z, wy, w; and wp, are given by 5 to 7 pairs of test
stress o' and corresponding void ratio e (Fig. 2). Most samples were tested in the stress
range from 0 to 160 kPa. The maximum stress applied to any of the 46 samples was 300
kPa. Based on the collected data the table of data was formed as an input to the neural
network training algorithm. Each row of the table corresponds to one point of one
particular oedometer curve and represents an input-output pair. The following data were
provided for each input-output pair:

z depth from which the sample was taken,
wy  hatural water content,
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natural water content,

liquid limit,

plastic limit and

testing effective vertical stress

as input parameters and

e

corresponding void ratio as the output parameter.
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Fig. 1 Consistency characteristics of sampies in plasticity chart.

Parameters 7p, I~ and y were not included in the data base since they may be evaluated
from the natural water content and consistency limits by the following equations:

IP=WL—WP

WL — %o
Icz—l—
P

(7’s+7'weOSr) (1+w0)7wsr (1+W0)7w

= = ~

1+eg (S, rw/7s+W0) (7w/7s+w0)

where 7, v, §, are the specific weight of solid particles, the specific weight of water, and
the degree of saturation, respectively. The degree of saturation S, for the studied material
is approximately equal to one.

The geological stress o,= Ig y({)d{ was substituted by the depth of sample z, since the

estimation of the depth is considerably more accurate than the estimation of o}, due to the

unknown exact distribution of y. This substitution was feasible because the samples of
the treated soil were taken from the upper layer and because the water table is practically
at the surface, which makes the distribution of y similar for all boreholes.
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Fig. 2 Oedometer curves used in this study.

The available data were split into two parts. Forty cedometer tests, represented by 203
input-output pairs, were used as training data set. The remaining six oedometer tests
were selected to test the performance of trained neural networks.

The preliminary calculations had shown that predicted oedometer compression lines did
not follow the well known behaviour of soil sample in uniaxial compression conditions. For
stresses greater than the pre-consolidation pressure the compression line is usually a
straight line (if plotted in the logarithmic scale). The oedometer compression lines
predicted by the neural network did not exhibit such behaviour. Their plots in the
logarithmic scale were curved from zero to the final stresses (Fig. 3). To improve the solu-
tion, a number of additional data points were linearly interpolated between the measured
values in the straight part of cedometer compression lines. This extended data base
consisting of 408 input-output pairs was used for the training of neural networks.
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Fig. 3 Observed and preliminary determined oedometer compression lines.
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3. NEURAL NETWORKS

An approximation of an unknown mapping f(X) of several variables is sought. There are
two possible ways, how to solve the problem:

— Traditionally the problem is solved in two steps. Firstly, an approximation function
2(X,C) is chosen. Subsequently, unknown parameters C are evaluated by the least
squares method.

- Alternatively, the neural network may be used to approximate the unknown mapping.
For this purpose a feed-forward neural network is usually used.

The general characteristics of neural networks which naturally act as associative memory,
are able to generalize, and are highly fault tolerant, imply that the alternative is often
better than the traditional method. Moreover, if there are many independent variables, the
choice of the approximation function is a very difficult task. As a result, several authors
(111, [3)., [5]. [8] [10], [12]) reported on their successful use of neural networks in the
approximation of functions. It has been proven that any continuous mapping can be
approximated by a network with at least cne hidden layer [4], [6].

In our research the feed-forward neural network was used. One or several hidden layers
contained different number of neurons. A typical neural network is shown in Fig. 4. The
activation function was chosen to be a sigmoidal with no bias term

1

1+e

sig(x) =

—X

In training procedure a classical back-propagation algorithm was used [11]. In order to
improve the efficiency of learning, the adaptive step size algorithm [7] or simulated
annealing may be used [9], [13]. To avoid a possible over-learning for some experimental
points, the experiments for which the error was lower than a specified fraction of allowed
error were excluded from the learning.

OUTPUT LAYER

L. ] NEURAL NETWORK

Fig. 4 Feed forward neural network
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4. RESULTS

Neural networks of different size were tested. The number of hidden layers was taken to
be 1, 2 and 3. Although the networks having two or three hidden layers learned the
mapping rapidly, the preferred number of hidden layer is one. Networks with two and three
hidden layers lacked the ability to generalize. Therefore, only the networks with one
hidden layer and different number of neurons were used.

Firstly, the network was trained using 408 training input-output pairs. After the networks
had been trained, the success of the training was tested. using a set of testing data. One
of the oedometer curves was eliminated from the testing set, since the error was notably
larger than in the other five cedometer curves. It was later found that this had occurred
because of an evident experimental error. Maximum and average normalized errors in
predicting the void ratio are shown in Tab. 2. Considering the accuracy that is usually met
in geotechnical engineering, the errors are relatively small. However, the results were
considerably improved if the augmented learning was performed. When using the basic
learning, the oedometer curve was predicted from z, w,, w; and wp only. Additional data
could be obtained from the classification tests, i.e. ¢;, which represents the void ratio at
the beginning of the test (c'=0). Therefore, the training of the network using this
additional input-output pair (z, wg, wy, wp, 6'=0 and ¢;) may proceed. The performance
of the neural network trained by the augmented training was better. The maximum error
decreased in most cases from about 30% to a little more than 10%. Similarly, the average
error decreased from more than 10% to less than 5%.

No. of Basic learning Augmented learning

neurones | Aep . [%] | Ae [%] | Aemax[%] Ae[%]
30 31.1 13.9 11.0 3.6
35 20.9 8.9 12.5 4.3
40 36.3 15.8 15.8 : 4.8
45 31.2 14.4 12.6 42
50 381 16.9 10.5 3.9
60 39.4 16.7 13.0 5.7
75 333 13.2 22.0 3.8

Table 2 The maximum and the average error in void ratio prediction on a testing set.

The analysis of the soil behaviour including in-elasticity and consolidation is often per-
formed by the finite element method. One of the most successful material models is the
Cam-Clay model. One of the parameters (1) of the model is the slope of the normal
compression line in the (Inc':e) plane.

Parameter A was evaluated from the actual testing curves and the curves obtained by
neural networks. The normalized errors are larger than in the case of void ratio. However,
it appears that the largest errors correspond to extremely small values of A. Thus, the
absolute error of A is relatively small. The normalized errors of A for different number of
neurons in the hidden layer are shown in Fig. 5. Bars represent the maximum and lines
the average error values. In this case the error of A does not exceed 12.0% and the
average error is 6.5% for the network with 35 neurones in the hidden layer.
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Fig. 5 Normalized errors of A.

The overall performance of the neural network was optimal if the number of neurons in the
hidden layer was 35. The actual oedometer curves and those obtained by the neural
network with 35 neurons in the hidden layer are shown in Fig. 6. It is evident that in the
case of the oedometer curve which was excluded from the testing set the discrepancy
occurs because of an experimental error. Hence, the neural network may also be used as
a warning unit embodied in the testing device. When the difference between the expected
(neural network) and the measured values of void ratio is too large, the warning ought to
be issued.

5. CONCLUSIONS

The neural networks were trained to approximate the oedometer curves obtained from the
database of 46 laboratory experiments. Forty of them were employed as a training set,
while the remaining six made up the testing set. The basic and the augmented training
were performed.

The results have shown that the prediction of the void ratio is very reliable. The errors
were generally lower than 15% for the basic training and lower than 5% for the
augmented training. The error was larger in the case when the Cam-Clay parameter A
was predicted. However, if A is to be used in a constitutive model, all available data
(including testing data set) should be used in the training procedure.

One possible source of the error stems from the fact that the experiments had been
performed by three different laboratories. Every laboratory has its own characteristics,
and due to those differences the errors, which have to be eliminated, occur. Some of the
gross errors of the measurement have aiready been found and eliminated by the neural
networks.

The data concerning the unloading part of the oedometer tests were not as complete as
those for loading. After the data are obtained, the network will be trained for that part, too.
It is our goal to use a neural network as a constitutive model, replacing the explicit
models, such as Cam-Clay, used in FEM codes today.



MODELLING OF THE OEDOMETER TEST BY NEURAL NETWQORKS

280
: N
[ s basic training ]
[ -—-- augmented training
1 Lol Loa I
] ul 1
1 1 10 100
O !
T T )
- ]
1 2l FETETI |
1 1 10 1600
g
ACKNOWLEDGEMENT

i~
-~
e

Experimental e

error

N\
s

100200,

10

Fig. 6 Oedometer curves of the testing set.

100

The experimental data for this research work were obtained from the records of three
Slovenian soil mechanics iaboratories: Geological Institute of Ljubljana, Institute of
Materials and Structures and Department of Civil Engineering and Surveying. Their
contribution is gratefully acknowledged. The authors wish to thank Mrs. Ana Gaberc,
M.Sc., for the selection of suitable cedometer test results and for numerous helpful
discussions regarding the details of oedometer testing and the presentation of test results.



J. LOGAR - G. TURK 281

The research was partially sponsored by the Ministry of Science and Technology of the
Republic of Slovenia.

REFERENCES

1.

10.

11.

12.

13.

G. CAMMARATA, S. CAVALIERI, A. FICHERA, L. MARLETTA, Neural Networks
versus Regression Techniques for Noise Prediction in Urban Areas. WCNN ‘93, Vol.
1, pp. 237-240, 1993.

M. CAUDILL, C. BUTLER, Naturally Intelligent Systerris. The MIT Press, Cambridge,
MA, 1991.

. FLOOD, N. KARTAM, Neural Networks in Civil Engineering. |l Systems and
Application, Journal of Computing in Civil Engineering. ASCE, Vol. 8, No. 2, 149-162,
1994.

K.-I. FUNAHASHI, On the Approximate Realisation of Continuous Mappings by Neural
Networks. Neural Networks, Vol. 2, pp. 183-192, 1989.

J. GHABOUSSI, J.H. GARRETT JR., X. WU, Knowledge-Based Modelling of Material
Behaviour with Neural Networks. Journal of Engineering Mechanics, ASCE, Vol. 117,
No. 1, pp. 132-153, 1990.

K. HORNIK, M. STINCHCOMBE, H. WHITE, Multilayer Feed-forward Networks are
Universal Approximators. Neural Networks, Vol. 2, pp. 359-366, 1989.

J. JANAKIRAMAN, V. HONAVAR, Adaptive Learning Rate for Increasing Learning
Speed in Backpropagation Networks. WCNN ‘93, Vol. 4, pp. 378-381, 1993.

T. POGGIO, F. GIROSI, Networks for Approximation and Learning. Proceedings of
the IEEE, Vol. 78, No. 9, pp. 1481-1497, 1990.

W.H. PRESS, S.A. TEUKOLSKY, W.T. VETTERLING, B.P. FLANNERY, Numerical
Recipes. Cambridge University Press, Cambridge, MA, 1992.

JL. ROGERS, Simulating Structural Analysis with Neural Network. Journal of
Computing in Civil Engineering, ASCE, Vol. 8, No. 2, 252-265, 1994.

D. E. RUMELHART, J.L. MCCLELLAND, Parallel Distributed Processing, Vol. 1:
Foundations. The MIT Press, Cambridge, MA, 1986.

Z.P. SZEWCZYK, P. HAJELA, Damage Detection in Structures Based on Feature-
Sensitive Neural Networks. Journal of Computing in Civil Engineering, ASCE, Vol. 8,
No. 2, 163-178, 1994.

YIP, Y.H. PAO, A Fast Universal Training Algorithm for Neural Networks. WCNN ‘93,
Vol. 3, pp. 614-621, 1993.



Leere Seite
Blank page
Page vide



	Modelling of the oedometer test by neural networks

