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Representation and Processing of Structural Design Codes

Représentation et élaboration des normes de construction en génie civil

Darstellung und Verarbeitung von Normen des Bauwesens

Vlasis K. KOUMOUSIS
Assoc. Prof.

Nat.Techn. Univ. Athens
Athens, Greece

Vlasis Koumousis graduated
in civil engineering at NTUA in
1975, and received his M.Sc.
and Ph.D in applied mecha-
nics from Polytechnic
University of New York in
1976 and 1980 respectively.
He has worked as consultant
and currently is an associate

Panos G. GEORGIOU
Ph.D. Student
Nat.Techn. Univ. Athens
Athens, Greece

Panos Georgiou graduated in
civil engineering at NTUA in
1988 and currently is working
on his doctoral thesis. His re-
search is involved with tech-
nical code based optimal de-

- sign of multi-storey buildings.

He has also worked in con-
sulting firms designing rein-
forced concrete buildings.

Charis J. GANTES
Assist. Prof.

Nat.Techn. Univ. Athens
Athens, Greece

Charis Gantes graduated in
civil engineering at NTUA in
1985, and received his M.Sc.
in Civil and Ph.D in structural
engineering from MIT in 1988
and 1991 respectively. Since
1994 he is assistant professor
at NTUA. His research in-
terests are in computer-aided
structural design.

professor at NTUA.

SUMMARY

A logical scheme is presented for the representation and processing of structural design
codes. The subdivision of codes into several distinct, strongly interrelated parts, and the
frequent cross-references between different codes make it difficult to grasp the structure
and the domain of applicability of different provisions. The declarative nature of the code
provisions and the sequence of their demands can be implemented directly in logic pro-
gramming. Moreover, the search for solutions can be performed with the sequentiai back-
tracking algorithm of Prolog language, while the design space can be formed using seve-
ral relational databases accommodated in Prolog. The proposed scheme is illustrated
with the design of a steel roof using Eurocode 3.

RESUME

Un schéma logique est proposé pour la représentation et I'utilisation de normes de con-
struction en génie civil. La subdivision de ces normes en plusieurs chapitres, trés inter-
dépendants, et les fréquentes corrélations entre ces normes rendent difficile la compré-
hension de la structure et le domaine d'application des différentes régles. La nature
descriptive des regles et la succession des prescriptions peuvent étre mises en oeuvre
directement par un logiciel. La recherche de solutions peut étre réalisée en utilisant les
algorithmes écrits en langage Prolog. Le schéma proposé illustre le projet d'une toiture
métallique utilisant I'Eurocode 3. ,

ZUSAMMENFASSUNG

Beschrieben wird ein logisches Schema fir die Darstellung und Verarbeitung von
Normen des Bauwesens. Durch die Unterteilung der Normen in verschiedene, miteinan-
der verbundene Teile und wegen der vielen Querverweise zwischen verschiedenen
Normen ist es sehr schwer, die Struktur und den Bereich der Anwendbarkeit einzelner
Bestimmungen zu verstehen. Der deklarative Charakter der Bestimmungen und die
Reihenfolge ihrer Forderungen konnen aber direkt logisch programmiert werden.
Insbesondere kann die Suche nach Lésungen mit der Programmiersprache Prolog
durchgefihrt werden, wéhrend das Lésungsgebiet unter Benutzung verschiedener rela-
tionaler Datenbanken auch in Prolog formuliert werden kann. Das vorgeschlagene
Schema wird far den Entwurf eines Stahldaches mit Eurocode 3 erlautert.
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1. INTRODUCTION

This work summarizes the general philosophy that governs modern structural codes, and outlines the
major steps towards the computerized representation of codes together with their incorporation in
automated structural design software. The complex structure of design codes and the frequent cross-
references in them make it difficult for the users to follow the line of reasoning and establish the
interconnection between interrelated specifications. A similar situation exists also within an
integrated computer system that contains analysis and design modules. Generally, codes contain both
qualitative information and algorithmic procedures to perform various conformance checks, or the
design of specific members. Therefore, different means are used to represent these two distinct types
of information. A general scheme based on logic programming is presented for the interpretation of
the algorithmic requirements imposed by structural codes, as a part of a structural optimization
process. This approach is illustrated with specific clauses that describe some of the requirements of
"Eurocode No. 3" [1] for the design of steel structures.

2. GENERAL PHILOSOPHY OF STRUCTURAL CODES

As opposed to older structural codes, that were based on the allowable stress concept, most of
today's codes follow the principles of ultimate limit state design [2]. This means that the structure
can exhibit plastic deformations under extreme loading conditions. Moreover, the structure must be
designed for specific limit states defined in the code. These limit states are the ultimate limit states,
that ensure non-collapse of the structure, or other forms of fatlure, and the serviceability limit states,
that provide a control on the damageability of the structure. Besides the limit states, important
features of the codes are the partial coefficients, that replace the overall safety factor of the allowable
stress design philosophy. There are the partial coefficients for the loads and partial coefficients for
the materials used in the structure. Partial coefficients are important in all the conformance checks
required by a code. Such checks follow a specific safety format that usually takes the following form:

Sdst (l)

where S, refers to the design value of the actions, that are needed for a particular conformance
check, and R is the design value of the corresponding resistance. Relation (1) can be used either in
explicit, or implicit form to calculate a geometric or other parameter of a component of a structure.
The design values represent deterministic estimates of the stochastic functions that describe the
actions and resistances, and are expressed in terms of their corresponding nominal or characteristic
values S, and R, in relations of the type:

Se=7¢S.. Ry=R_ /7y, (2)
where v, is the partial coefficient for the action, and vy, the partial coefficient for the material.

The reliability of the produced designs must be proven on the basis of the structural codes that apply
for each case. Reliability analysis studies are important to validate structural design codes ([3], [4]).
From the existing structural codes very few have been checked for consistency [25].

3. CODE REPRESENTATION

The information contained in a code is traditionally addressed to the designer, who needs to have
complete control of the code, so as to fully interact with it during the process of designing a
structure. Today, codes constitute also important parts of integrated computer systems, where,
depending on the form of their representation, they interact with other software modules towards the
integrated design of structures.
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Current integrated systems that perform the analysis and design of structures contain a set of
routines to carry out the necessary checks, or calculate the required quantities. These are linked to
the analysis module to perform the so-called “one shot analysis”. The outcome of such an analysis is
a conformance check with the algorithmic part of the code. This is the “hard-coding” approach and is
the most widely used in existing automated structural design software packages.

To adapt their orientation to the current needs, modern codes tend to provide information in an
algorithmic way. Thus, besides the traditional format that expressed the information in the form of
design graphs and tables, more and more flow charts and algorithms, that were used to produce
these graphs and tables, accompany modern codes.

Several efforts on the computerized representation of codes in general, and structural codes in
particular, are reported in the bibliography ([5]-[14], [20]-[22]). Pertinent investigations started in
the late sixties by Professor Steven Fenves [5] and continue until today.

What is interesting today, is the development of integrated design systems that simulate the course of
actions taken by experienced designers. The fundamental difference of current methods lies in their
ability to use parts of the program on an "if needed" basis. With greater computational power
becoming increasingly available, new methods and programming environments make this goal
feasible. The knowledge about a domain can be incorporated into computer systems in the form of
knowledge based expert systems (KBES) that, when properly structured, can manipulate a
knowledge base using the inference engine to prove a list of goals and subgoals. All the forms of
knowledge representation, used in Al applications, have been utilized to interpret design codes.
Among these, the most popular are the production systems or rule based systems, the use of frames.
which are being replaced by object oriented programming, and other forms of semantics such as
decision-tables, information networks and organisation systems.

The decision tables, proposed by S. Fenves, as an extension to tabular decision logic, provide a
systematic way to represent and process the requirements of design codes. Moreover, the data and
the application rules can be logically channelled in the form of a network of decision tables. Special
pre-processors have been developed to manipulate the decision tables and to incorporate them into
analysis programs [11].

Information networks are a collection of nodes and branches, where each node represents a data item
and each branch represents a relation between two nodes. The provisions of a code are represented
in the form of a graph which results after parsing the provision. The leaves of the graph represent the
basic data, while the items at higher levels represent evaluated data.

Various systems have also been proposed that correspond to various forms of Database Management
Systems (DBMS), and aim at offering environments for multi-purpose access systems in integrated
design. Among these, the object oriented DBMS systems seem to be the most popular [9], [21]

To render the "if needed"” character of a code representation in a way that corresponds to the design
of structures, appropriate design strategies must be employed. These may be either under the full
control of the designer, leading to interactive design systems [14], or may be computerized design
strategies that simulate the design process on the basis of decomposition, structural optimization,
numerical experimentation etc., to attain a list of design goals. The development of ad-hoc design
strategies, and heuristic or general design theories, presents considerable difficulties due to their
synthetic nature. The existing design strategies tend to simulate the course of actions taken by
designers, or address the problems of conceptual design and preliminary design of structures.

Moreover, the system must be in a position to reveal the appropriate list of conformance checks that
are needed for the design of a particular component on the basis of its type, state of stress, its
particular features and the type of analysis. In addition, hypertext system technologies may be used in
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a productive way to enhance the usability of such systems, especially regarding the descriptive parts
of a code [18].

In another direction, new tools and methods need to be developed to assist design standards writing
organizations in checking the completeness, uniqueness, i.e. absence of redundancy and contradiction
and correctness of the codes [7].

4. LOGICAL SCHEMES FOR THE REPRESENTATION AND PROCESSING OF DESIGN
STANDARDS

The representation and processing of structural design codes can be performed also in a way that
follows the intrinsic logic of the code, and transforms code clauses into formal logic using logic
programming. This approach has been applied extensively in the form of rule based systems for
descriptive codes, such as architectural codes [10], but its potential can be extended to cover also the
algorithmic parts of codes [22], [23]

A logic program is a set of rules that define relations between data structures, while computation, in
the context of logic programming, means to prove that a goal statement (rule) is true using the other
defined rules. This process is constructive and provides the values for the goal variables, which
constitute the results of the computation [15]. The implementation of logic programming in Prolog is
performed by using a control mechanism based on sequential search with backtracking on a
restricted class of logical theories, namely Horn clause theories. Prolog can be viewed also as a
relational database programming language, which manipulates and alters the database information,
that describes a particular domain.

The main advantage of a Prolog representation of the code requirements, is that the structure of the
language is such that it sequentially demands the truth of the predicates of a rule. Generically, this
enables the implementation of a sequence of requirements in one predicate by combining descriptive,
i.e. declarative, and procedural predicates Rules in Prolog may have several definitions, thus the
appropriate rule is matched and processed on a "if needed" basis.

As a result, using Prolog as the means of expressing the design philosophy of the code, clarity and
modularity are preserved as main characteristics This implies that a separate module must exist that
defines the partial safety factors for the actions and the material properties. Another module must
define the loading cases and the load combinations that apply to different types of structures that
correspond to the ultimate limit states. Yet another module must define all the resistances covered by
the ultimate limit states of the code, together with the domain of their application. Finally, another
module must control the serviceability limit state checks. These correspond to the standard modules
that exist in every code. In addition, there may exist other modules that contain the particular
information of the code that refers to the specific material, the detailing of the structural components,
the connections, and the rules of good design practice that the code recommends. This information is
tailor-made and corresponds to the particular structure of the specific code. These separate modules
can be maintained easily by incorporating changes in the standards, and can be placed in parallel with
the relevant parts of other codes in integrated systems that accommodate different design codes.

Feijo et. al. ([17],[18]), Jain, Law et. al. [22], and Rasdorf and Lakmazaheri[23] presented alternate
models for the representation of design codes based on first-order logic and their incorporation into
design automation systems. Feijo et. al. suggested also a formal link with hypertext systems, in which
data is stored in a network of nodes connected by links. Rasdorf and Lakmazaheri put the emphasis
on the axiomatic formulation of the organizational submodel and the representation and processing
submodel of the code, which can be interrogated via theorem proving.
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After building the separate modules, dominant part of the entire process becomes the control of the
information flow. This is based on the sequential backtracking algorithm which is the searching
mechanism of Prolog Language. Backtracking can be considered as a searching technique of all
possible solutions in a systematic manner. Its description in procedural terms is as follows:

Having a predicate that depends on a list of n variables [x,,x,,..,x,] that participate in a particular
check and are stated according to the safety format of the code. This list must satisfy a requirement
or property P [x,.x,,...x,]. In general, we assume that x; can take values from a set X;. The
assumption is, that all choices in a set X are linearly ordered. Once the values of x,,x,,...,x, | are
fixed, we select the smallest value x, among the set X,, which leads to a feasible list which satisfies
P, [%,X,,...X_1.X). The subset of X, which represents feasible choices for x, is denoted by S,. Since
X, is ordered, all choices in S, are also ordered. With these assumptions the general backtracking
algorithm can be stated as follows [24], where S, is formed simultaneously by checking the feasibility
of x,.

We start by examining S, (k=1.2,....n) sequentially.

Step 1. If S, is not empty, set x, to be the smallest value in S, which has not been tried previously. If
k<n, increase k by 1 and repeat the step. If k=n, record the list as a feasible list. If we want all
feasible solutions, decrease k by 1 and repeat this step. Otherwise stop.

Step 2. If S, is empty and k=1, no more feasible lists exist, and therefore stop. If S, is empty and
k>1, decrease k by | and return to step 1.

During the design process, following a backtracking algorithm, usually we associate a cost with a
particular list which satisfies a relationship of the following form:

cost of [x,,X,,...X,_,] <= cost of [X,,X;....%;.1» X, ] for all x, (3)

During searching we do not branch from a node whose cost is higher than the minimum cost solution
found so far. Of course, the bound is updated if a better solution is found. For a maximization
problem we do exactly the opposite. We do not branch from a node whose value is less than the
value of the maximum value solution. This corresponds to a branch and bound algorithm that usually
prunes the search.

In processing code requirements, usually we have to satisfy a conjunction or disjunction of more than
one demands on the structure. This can be accomplished using a sequential backtracking algorithm,
which is based on the structure of a Horn clause, and has the following form:

P,, n>0 (4)

The important feature of Horn clauses is that they can be read both declaratively, saying that A is
true if P, and P, and... and P, is true, and procedurally, saying that to solve problem A, one can solve
subproblems P, and P, and ... and P,. In order to establish whether A is true, a Prolog program
attempts to prove that P, and P, ... and P, are true, starting from left to right. It uses the internal
unification routines of the language as a form of a bi-directional pattern matching. It assigns values
to the variables of the rule P, in order to prove that it is true and subsequently moves to P, leaving a
marker in between to remember that up to that point the truth of clause A has been established.
Hence, the program, by invoking the internal unification routines which sequentially search for the
right values of the variables, establishes the truth of P, and P, and ... P_, and thus the truth of A,
binding in the mean time the feasible list of design variables. All rules are of the form given in relation
(4) where A is referred to as the head of the rule and the conjunction of P, and P, and ... P as the
body of the rule. Every subrule P, i1s a predicate or categorim which is either true or false.

In order to restrict backtracking and thus reduce unnecessary search, the predicate "cut", or
symbolically "!", is used which in effect deletes the markers for backtracking up to that point and
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thus works as a barrier that doesn't allow backtracking to previous subgoals. The predicate "fail" of
Prolog is one that makes the rule to fail and thus causes backtracking.

Following the sequential backtracking algorithm, binding of the list of variables takes place and
affects the subsequent search. This issue is very critical and must be handled with care during the
development of the system, in relation with the structure of the databases used. As discussed
before in the procedural description of the backtracking algorithm, the feasible sets must be
ordered. Therefore, if the database is built in increasing order with respect of the design
objective, and the user has selected a number of different types of sections, a number of
alternative solutions will be deduced. The existing conflict can be resolved either on the basis of
secondary criteria, i.e. list of preferences in profiles, or other technological constraints, or by
retaining all the solutions.

The logic approach has been used in the design of steel roofs using Eurocode 3 [19], where also the
analysis is based on a logical program. The conformance checks used for the ultimate limit states
correspond to tension, compression, bending, and bending with shear checks.

The code requirements can always be posed in the form of Horn clauses as for example the
compression requirements of Eurocode 3. Compression members are designed according to the
requirements of paragraph 5.4.4 and 5.5.1 of Eurocode 3 for buckling resistance. The relevant part
in Prolog is as follows:

compression_requirements(Type,Cnt, Min Length,larea):-
section(Type,Name,Height, Width, Thickness, Area, Weight,Jx, ),
chosen_section(_, , ,WeightOld),
Cnt * Area >= larea,
Cnt * Weight < WeightOld,
Tmp = Jx/ Area,
Radius_of gyration=sqrt(Tmp),
buckling_curve axis(Type,Height, Width, Thickness,Curve. ),
imperfection_factor(Curve, Alfa),
Lamda=Length/Radius_of gyration,
Lamdal=pi*(sqrt(modulus_of elasticity/yield stress) ),
Lamda2=(Lamda/Lamdal)*sqrt(Alfa),
F=0.5*(1+Alfa*(Lamda2-0.2)+Lamda2*Lamda2),
X=1/(F+sqrt(F*F-Lamda2*[.amda2)),
NcRd=Cnt * Area * yield stress,
NbRd=X*NcRd,
abs(Min) <= NbRd,
CntArea = Cnt * Area,
CntWeight = Cnt * Weight,
save_chosen_section(Type,Name,CntArea, CntWeight)_fail.
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The names of the variables are chosen close to the names of the quantities in the code to facilitate
understanding of the relations. The entire process works by interrogating the database "section" with
the attributes of all the profiles. This relational database, that Prolog language accommodates, is
used in the searching of a new section as compared to a previous one. After the comparison of a pair
of sections, the process selects the best section and fails at the end to force searching of the entire
database for the particular group of members. The descriptive part in this provision corresponds to
the selection of a buckling curve according to the type of section, hollow, welded rolled, etc. and the
thickness to height ratios listed in Table 5.6 of the code. Therefore, the above predicate does not
only perform the relevant conformance check but is used to select the optimal section within a
specific type of profile.

Thus, a conformance check based on the provisions of a code and the selection of the optimal
section with respect of a design objective, are rather straightforward for a given member. The
important issue though is the identification of the required list of conformance checks for a member
or a list of members. This issue was first addressed by S. Fenves introducing the decision tables
which can be implemented efficiently in Prolog. The main difficulty faced in this respect is the vague
information contained in a code that rarely specifies the domain of application of particular checks
especially under exceptional environmental conditions. The list of actions and relevant conformance
checks that are referred to a specific component form the design list for the component. In this work
this list is fixed, but can result from the consistency checks of the code as a separate task.

The conformance checks can be applied to an already analysed structure of given dimensions, layout
member sizes and loads. The way of incorporating the code provisions to the design process is a
more general problem and relates to the strategy used in altering the structural configuration. This
can be addressed in the context of structural optimization methods incorporating the constraints
imposed by the codes of practice. In a logical approach, these can be stated in the form of a sequence
of demands imposed on the design. These demands can be expressed directly in the form of Horn
clauses given in relation (4).

The area of the so-called technical code based structural optimization is seeking to define the
optimal design of a structure with respect to a single or multi criterion objective, subject to the
constraints imposed by the selected code. In this context, the identification of the list of active
constraints-provisions that correspond to particular conformance checks has a particular
importance. It can be used as an active set to evaluate the sensitivities of the design with respect
of the design variables and thus, depending on the form of optimization problem, alter the lay-
out, shape or sizing of the components of the structure. Moreover, for a number of iterations it
can be used to limit the design process to local modifications and therefore accelerate the entire
design process. Therefore, code requirements can be interpreted not only as barriers on the
design, but also as boundaries reflecting important information about the response of the
structure. The identification of the active constraints can be performed easily in Prolog.

The proposed general scheme has been used for the design of a roof of an industrial building or
warehouse using plane trusses and continuous purlins [19].

Although the system described above can be transported to other applications developed within the
same design philosophy, is not totally independent from the remaining modules of the entire system.
A more formal representation scheme, as for example the one based on the object oriented paradigm
presented by Garrett et. al. [21] can stand as an independent module. In that case, a quite
cumbersome interface must be built to provide information needed for the optimization process. A
similar situation exists in structural optimization programmes. Some of which use a separate module
to calculate sensitivities and others use a combined approach. The differences are in the software
development but affect also the computation time of the system, the combined one being faster.
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5. SUMMARY AND CONCLUSIONS

A general scheme based on logic programming is employed in the representation of code provisions.
The control of the flow of information, that is the dominant part of the conformance checks and the
design procedure of a structure, is based on the sequential backtracking algorithm used in Prolog as
a searching algorithm. The design space of a particular problem is formed as the product of the
relational databases of the members of a structure and the constraints. Even though logic
programming has been used extensively in code representation and processing the unified scheme
presented addresses the overall problem within the structural optimization perspective of structural
design.
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