Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte
Band: 72 (1995)

Rubrik: Session 3: Standards processing and code-related support

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

221

Session 3

Standards Processing and Code-Related Support
Traitement des normes et applications relatives aux normes
Normenverarbeitung und normenbezogene Unterstiitzung

Leere Seite
Blank page
Page vide

A 223

Towards a Standard-Independent Design Process
Vers une normalisation du processus de la conception
Der normunabhéngige Konstruktionsprozess

James H. GARRETT, Jr. Mochammad MEHRAFZA
Assoc. Prof. Research Assist.
Carnegie Mellon University University of Karlsruhe
Pittsburgh, PA, USA Karlsruhe, Germany
Christophe MEINECKE Raimer J. SCHERER
Research Assist. Technical Univ. Dresden
University of Karlsruhe : Dresden, Germany

Karlsruhe, Germany

SUMMARY

The design process for most engineered products involves the use of knowledge found in
product-specific design standards. As a result, creating formal models of these standards
and processes has been an active goal of computer-aided engineering. This paper first
reviews an early approach to formalising the use of design standards during the design of
structural component cross sections and then describes two more recent approaches
applied to more difficult detailed design problems for reinforced concrete columns and
beams. The last section of this paper discusses the advantages and disadvantages of
these three approaches.

RESUME

L'élaboration du processus de la conception de la majorité des produits requiert l'utilisa-
tion d'une connaissance contenue dans les normes de calcul spécifiques au produit. Un
des principaux objectifs de la conception assistée par ordinateur est la création de
modeles formels de ces normes et de procédures permettant leur mise en application.
Cet article passe en revue une premiére approche visant la formalisation de I'organisa-
tion des normes de calcul dans le cas du dimensionnement d'une section d'un élément
porteur. L'article expose ensuite deux approches récentes appliquées a un domaine plus
complexe, celui du dimensionnement des poteaux et des poutres en béton. L'article pré-
sente enfin les avantages et les désavantages de chacune des trois approches. .

ZUSAMMENFASSUNG

Der Konstruktionsprozess der meisten Ingenieurprodukte wird durch Wissen beeinflusst,
das aus den produktspezifischen Normen abgeleitet werden kann. Die Entwicklung
sowohl formaler Modelle fir die Abbildung des Normwissens als auch expliziter Prozesse
fir deren Nutzung ist damit ein wesentiiches Ziel der Forschungsaktivititen auf dem
Gebiet des 'Computer Aided Engineering'. In diesem Beitrag wird zunachst ein friiher
Formalisierungsansatz fir die Nutzung des Normwissens bei der Konstruktion von
Bauteilquerschnitten beschrieben. Weiterhin werden zwei Systeme jingeren Datums fur
die detaillierte Bewehrungsfiihrung in Stahlbetonstitzen bzw. Balken vorgestelit. Im
letzten Abschnitt werden die Vor- und Nachteile der drei unterschiedlichen Ansétze dis-
kutiert.

224 TOWARDS A STANDARD-INDEPENDENT DESIGN PROCESS

1. Introduction

The design process for most engineered products, such as load—bearing structures, involves the use of knowl-
edge found in product-specific design standards, such as structural safety codes. These design standards, also
referred to as codes or specifications, may define limitations on product attributes, prescribe design processes, or
define limitations on product performances with respect to safety, reliability, usability, constructability, etc. As
a result, creating formal models of these standards and processes for applying them has been an active goal of
computer—aided engineering.

Initial research led to systems in which the information provided in the provisions of a standard were hard-coded
into design synthesis procedures; the provisions of a standard were represented as lines of code interleaved with
the design synthesis and process control knowledge. Early research in standards modeling proposed the use of
declarative languages for describing the relationships between design data and requirements described in stan-
dard provisions. More recent research activity has focussed on automating the process of evaluating a synthe-
sized design for conformance to such declaratively modeled standards. Early attempts led to systems that sepa-
rated standards from design procedures, but that only checked designs for standard conformance after these de-
signs have been created. Creating computer—-aided design systems that make use of such standard models more
proactively during the process of synthesizing a design (i.e., a standard—independent design process) has also
been a research objective.

This paper first reviews an early design system that uses design standard models to determine the parameters of
structural component cross—sections and then describes two more recent approaches applied to more difficult
detailed design synthesis problems for reinforced concrete columns and beams. The last sections of this paper
discuss the advantages and disadvantages of these three approaches and present some conclusions.

2. An Early Approach—SPEX

One of the earlier such attempts to formalize the use of design standards in the design process was the SPEX
system developed by Garrett and Fenves [2]. SPEX uses a standard—independent approach for sizing and propor-
tioning structural member cross—sections. The system reasons with the model of a design standard, represented
as a set of decision tables and functions that each define how to derive a data item value, 10 generate a set of
constraints on asetof basic dataitems that represent the attributes of adesign to be determined. These constraints
are then given to a numeric optimization system to solve for an optimal set of basic data item values (see Fig. 1).

- - - Control Flow
—» Data Flow

(Ciser Inpurt—

Design
Standard
Moadel

SPEX Design Modules

Figure 1 — SPEX Approach to Structural Component Design

SPEX is described as being a standard—independent design process in that both the process of generating the set
of constraints from the standard and the process for finding the optimal solution of these constraints is generic and

% J.H. GARRETT, Jr. - M. MEHRAFZA - C. MEINECKE -R.J. SCHERER 225

thus not specific to the design standard being used. The results of the process are certainly dependent on the
standard being used, but not the process. The design process in SPEX basically consists of the following steps:
(1) the type of structural component being designed, the set of behavior limitations of that component on which to
focus the design process, the design context (e.g., loads and support conditions), and the design objectives (in
terms of a basic set of design attributes called basic data items) are specified by the user; (2) SPEX then finds the
requirements in the standard that correspond to the design focus; (3) SPEX then generates a set of constraints
from the identified requirements by backward—-chaining through the decision tables and functions until only ba-
sic data items are referenced (all decision table conditions and functions in the backward chain form the
constraint set); SPEX then sends this set of constraints off to a constraint solver and finds a set of values for the set
of basic data items referenced in the constraints. Thus, it is assumed that both the objective function and all de-
rived data item definitions in the model of the standard are expressed in terms of the basic data items (design
attributes) of the object being designed.

3. More Recent Approaches—KEXPS and KOORDS

More recently, this issue of standard usage in detailed design has been investigated by Meinecke and Scherer in
the development of KEXPS, a system for assisting in the design of reinforced concrete members, and by Mehraf-
za and Scherer in the development of KOORDS, a system for assisting in the design of reinforced concrete
frames.

The problem of designing the reinforcement bar layouts for beams, columns, and their connections has many
more parameters, mostly geometrical, than do the cross—section design problems that Garrett and Fenves ad-
dressed in SPEX. In addition, the EUROCODE 2 [1] for Reinforced Concrete Structural Members contains only
afew provisions that relate to the detailed placement of the bars, while there are many more provisions relating to
the required area of steel, depth of steel, and other more abstract design parameters. There are, however, several
manuals that accompany the EUROCODES with additional design knowledge. As a result, Meinecke, Mehraf-
za, and Scherer had to develop approaches to their respective design problems that incorporated knowledge not
found in a standard with the requirements that are found in EUROCODE 2. The next two sections describe each
of these approaches in more detail.

3.1. KEXPS—A System for Design of Reinforcement Layout for Concrete Members

KEXPS consists of two separate components: a design process model and a product model (see Fig. 2). The
fundamental design idea of KEXPS is to solve a design problem by generating and evaluating different design
alternatives. Each of these aliernatives is represented in the object—oriented product model as a hypothesis meth-
od. These methods generate the different design alternatives. KEXPS has been verified and fully implemented
for the design of the longitudinal and transverse reinforcement of concrete columns,

For reinforced concrete columns, there are a limited number of widely accepted cross—sectional layouts for the
reinforcement bars. As such, the design process usually proceeds from selection of basic layout altematives to a
detailed design of that layout for the specific loading context. While these layouts are not specified within the
standard, they do greatly influence the details and the practicality of the resulting design. Also, the number and
location of various parameters that need to be checked for conformance to a design standard will vary with each
of these alternative layouts. Thus, in KEXPS, the representation and checking of EUROCODE 2 was organized
around these layout alternatives.

The design process for a reinforced concrete column is performed in KEXPS in four major modules, as shownin
Fig. 2: hypothesis, analysis, evaluation, and system selection [7]. First, the hypothesis module proposes several
different bar layout design alternatives from a set of standardized layouts for concrete columns. These standard
layouts are described in the manuals that accompany EUROCODE 2, such as [5]. Each fundamental altemative
fayout is represented as a hypothesis method. Before the alternatives are worked out in detail, a fundamental
mechanical review takes place and mechanical behavior constraints are checked. These methods are comple-

226 TOWARDS A STANDARD-INDEPENDENT DESIGN PROCESS

- - - Control Flow

Design Process Model Product Model

Hypothesis Process Moduld /@\
' part—of

i Footing || Column || Frame joint|| Beam || Corbel
Analysis Process Module part-of
L
T Longitudinal Const. Long, ; :
Y Concrete body Reinforcemert Reinforceme%t Links/Ties

Evaluation Process Module

™

Y

— [
System Selection Module | l | I

Figure 2 — KEXPS Approach to Structural Component Design

mented by refinement methods that develop the fundamental layout towards a specific design aspect (e.g. mini-
muim of steel area). Together, the hypothesis methods assign values to various attributes such as bar spacing, bar
sizes, edge distances.

The analysis module checks the generated design alternatives against standard requirements which are not con-
sidered in the hypothesis module. These requirements are represented as rules that evaluate the attributes of the
altemative column reinforcement layouts. The evaluation module uses additional non-standard-related criteria,
such as ease of construction, cost or bonding, to evaluate the various design alternatives that were found to con-
tform to the standard requirements. The results from the evaluation module for the remaining alternative bar lay-
outs are compared using a fixed formula to select the best altemnative. Finally, the selection module gives the user
the opportunity to view and select a layout from the remaining alternatives by using the commercial CAD--Sys-
tem UNICAD (Hochtief AG [4]).

3.2. KOORDS—A System for Synthesis of Reinforcement Layouts for Reinforced Concrete Frames

KEXPS is able to take great advantage of the limited number of acceptable layouts for reinforced concrete col-
umns in organizing and using the requirements from EUROCODE 2. However, the design of the reinforcement
layout for beams is more complicated than for columns because the layout of the bars for a beam framing into two
columns may have very complicated layouts that do not easily breakdown into a small number of standardized
layouts. Instead of following a SPEX or KEXPS approach, where the template of parameters is first selected and
then the parameters are computed, KOORDS builds up, i.e., synthesizes, the reinforcement bar layout using a
generative system. KOORDS must thus deal with a large number of possible design contexts and must deter-
mine which standard requirements apply to which contexts. Both the design process and design product models
areimplemented in a full object—oriented environment. The design process in KOORDS involves: generation of
reasonable solution altematives, verification of altematives, evaluation of alternatives and selection of the opti-
mal alternative. The optimization of reinforcement layout is based on concepts developed by Mehrafza and
Scherer [6].

The synthesis process in KOORDS integrates complicated geometric reasoning with domain and heuristic
knowledge for generating layouts. The heuristic knowledge for locating pieces of reinforcement bar refers to
standard—derived limiting values (e.g., bar spacing) that are assumed to be defined in any standard for reinforced

J.H. GARRETT, Jr. - M. MEHRAFZA - C. MEINECKE -R.J. SCHERER 227

— Data Flow

Design Ohject Model of the Design Standard

Methods 2 Limitation Values

Derived Data Items

Attributes
JAVAY, /A RVARLER RN
"'jD Basic Data Items

Figure 3 — KOORDS Approach to Structural Component Design

concrete beams (see Fig. 3). If a standard does not provide a definition for such a limiting value, a default value is
used (and hence becomes aheuristic and not a requirement). Thus, in this way the design knowledge is integrated
with the formal models of design standards through this interface of anticipated limiting values. The standard is
thus represented as an object-oriented model similar to that described in [3], with the top level data items not a set
of requirements, but rather a set of limiting values defined in terms of a network of other data items.

Object classes for the various components of the layout have slots for these limiting values that are sent a message
when the limiting values are needed during the synthesis process. When a limiting value is requested, the method
associated with that slot is evaluated, which causes other data items in the standard model to be evaluated. Even-
tually basic data items are reached, which are mapped back to the object requesting the limiting value. These data
items are referred to as mappings. A new standard canthus be added to this system by creating a set of definitions
for limiting values, definitions of supporting data items, and the basic data item mappings.

4. Discussion

In this section, the advantages and disadvantages of SPEX, KEXPS and KOORDS are discussed, with special
attention paid to the separation of the standard knowledge from other design knowledge.

SPEX was originally described as a standard—-independent member desi gnprocess, because SPEX symbolically
reasons with a formally modeled design standard and generates a set of constraints which are then solved generi-
cally by a standard—independent optimization process (2]. However, SPEX can be more precisely defined as a
system for standard—independent proportioning (a kind of design process) of structural component cross—sec-
tions. It performs no synthesis task in the sense that synthesis is the combining some objects to build a meaning-
ful and more complex object which provides some specific functions. SPEX does not reason with arbitrary
collections of related objects, but rather assumes a fixed set of interrelated objects to exist as the basis of both the
product model and the standard model. Because SPEX is based on the assumption that the product model used by
the design process is the same as that used in the standard model, the design process employed by SPEX is not
truly standard—independent.

The approach taken in SPEX works well for design problems in which: (1) an appropriate cross—section type can
be a priori determined for a given design problem, (2) each of these types can be described in terms of basic data
items found in the standard, and (3) the standards provide ample constraints on these basic data items describing
the cross—section. As a result of these limitations, the SPEX approach for standard independent member design
cannot be directly applied for more complicated design contexts, such as the design of reinforcement layout fora
concrete column or beam. SPEX could be used to determine some of the more high-level decisions, such as the
depth of a concrete beam or the amount of tensile and compressive steel. However, to use SPEX forlayout of the

228 TOWARDS A STANDARD-INDEPENDENT DESIGN PROCESS

reinforcement, the layout would have to be parameterized so that all parameters are unique variables and the re-
quirements would have to be expressed in terms of these variables, making the solution very problem—specific.
This limitation exists because SPEX makes the assumption that the data model (i.e., the set of basic data items)
used in the standard is exactly the same as the data model used to describe the resulting design.

Even if a complex reinforcement layout could be parameterized, the objectives and constraints would also have
to be expressed in terms of the large set of parameters to make the problem amenable to a SPEX-based approach.
Some specific limits, such as flange buckling for steel structural members and bar spacing for reinforced concrete
structural members, are expressed in terms of detailed parameters. However, standards do not normally express
most requirements in terms of such detailed design parameters. Rather, standards normally express limitations
in terms of high—~level performance measures (e.g., crushing stress) or sizing parameters (e.g., area and depth of
reinforcing steel). As such, even if a more detailed design problem such as reinforcement layout could be para-
meterized, the objectives and constraints derived from the design standard would mostly be in terms of more
abstract design attributes. Additional knowledge describing the relationships between those abstract design at-
tributes and the detailed design attributes would be necessary to solve this problem using a SPEX—based ap-
proach. Defining this knowledge in terms of equality constraints would likely be very difficult if not impossible
for a complicated bar layout for a reinforced concrete beam. Thus, detailed design problems, such as reinforce-
ment bar layout, cannot be realistically solved by a SPEX—based approach.

Like SPEX, the design approach employed in KEXPS is a standard—independent design approach. The design
process invokes the hypothesis methods associated with the alternative templates, and then analyzes, cvaluates
and selects among these generated alternatives (i.e., using a generate and test approach). Both the hypothesis
methods of the product model and the analysis rules are dependent on the constraints and criteria defined withina
standard. KEXPS is able to handle more difficult detailed design problems than SPEX, but only after all design
alternatives are q priori enumerated as templates and the appropriate design standard knowledge is represented
for each alternative template.

KEXPS is able to get around the need for a large, complicated set of parameters for describing all alternatives (a
problem with SPEX) by using an object-oriented approach to represent each design alternative as a template
object. In KEXPS, standard provisions that are appropriate for an alternative are represented as either hypothesis
methods or analysis rules associated with that alternative’s template object. KEXPS thus organizes the represen-
tation of the standard around a product model. Forthe column design problem, the productmodel is a small group
of the column reinforcement ayout templates, asillustrated in Fig. 2. The product model contains all domain and
standard—specific knowledge, which is required for the design process, while the process model comprises only
generic design process knowledge and is thus standard-independent. Thus, when a new standard is to be used,
only the product model must be modified, not the design process. However, KEXPS divides the standard infor-
mation a priori into that used during design and that checked after the design has been created. Inother words,
there is no redundancy of representation of the standard between hypothesis methods and analysis rules. This
fixed, a priori division of standard information makes it difficult to use the model of the standard in processes
other than the KEXPS design process. Forexample, if attempting to check designs generated by systems other
than KEXPS, some requirements may go unchecked orunconsidered during design. Also, by building the rep-
resentation of the standard directly into the product model, KEXPS is built upon the same exact assumption as
was SPEX — the data models for the product and the standard model are one in the same.

In KOORDS, the standard is declaratively modeled and then used both during the design optimization process
and in the post-design standard conformance checking process. In this respect, KOORDS is similar to SPEX in
keeping the standard knowledge separated from other design knowledge, thus allowing for independent creation
of the standard model(s). The standard model in KOORDS is very similar to that used in SPEX except for one
major difference. In KOORDS, the standard is modeled as a set of limiting values, where these limiting values
are referred to in the design methods of the objects being designed (e.g., minimum-bar—spacing for reinforced
concrete member design). In SPEX, the standard is modeled as a set of requirements representing various behav-

J.H. GARRETT, Jr. - M. MEHRAFZA - C. MEINECKE -R.J. SCHERER 229

ior limitations. SPEX reasons with the standard model by identifying the relevant requirements for the behavior
limitations specified by the designer on which to focus. KOORDS starts by evaluating the design methods in an
object and requesting the limiting values its needs from the standard model. The standard model computes the
values using data for the existing design situation provided by the requesting design object and returns these
values. Thus, for KOORDS, the parts of the standard model to use indesigning an object are fixed for that object
to be those limiting values referred to in its design methods. In contrast, SPEX provides more flexibility for a
designer to specify the requirements on which to focus when designing an object; the user may issue a design
focus statement that will greatly influence what part of the standard is considered during design of that compo-
nent,

KOORDS is different from SPEX in the way that it then processes the information it gets from the standard mod-
el. In KOORDS, the optimization process is packaged in methods which apply to the special objectives and
constraints of each class of design object while the SPEX optimization process is based on a generic optimization
approach. Each object in KOORDS is responsible for all processes which should be performed on itself, includ-
ing determining optimal proportions. Therefore a reinforcement group in a beam uses a specialized method, dif-
ferent from that used for a reinforcement group in a column, to optimize its proportions. Because the scope of the
KOORDS system, in contrast to SPEX , is creating objects, relating them to each other and proportioning them in
order to satisfy the design requirements, it is able to handle a complicated assembly of bar pieces, which SPEX
cannot,

KOORDS thus maintains the intentions of the SPEX system (i.e., to make use of a separately modeled design
standard within a standard--independent design process) and overcomes the limitations of the SPEX approach
(i.e., lack of astructured product design data model). The standard independent nature of the design procedure in
KOORDS comes not from the usage of a generalized optimization procedure, but rather from the definition of a
standard—independent interface consisting of a set of limiting values assumed to be defined in all design stan-
dards for the design of reinforced concrete beams.

5. Conclusions

Thus, with KEXPS and KOORDS, we have illustrated how this concept of a standard—-independent design pro-
cess, a concept earlier illustrated in SPEX but for limited types of problems, can be made more robust and able to
handle muchmore complicated, detailed design processes, specifically the layout of reinforcement for reinforce-
ment concrete columns and beams. While SPEX maintained standard—independence by using a domain—inde-
pendent optimization procedure, it was limited to solving problems defined by a set of scalar parameters and
constraints defined in the standard over those parameters (e.g., steel and reinforced concrete cross—sections, but
not entire components). KEXPS and KOORDS illustrated that it is possible to still maintain standard—indepen-
dence when solving more difficult detailed design problems by using a domain—specific, but still standard—inde-
pendent, design process. KEXPS models the standard within its product model requiring that the product model
be changed if the standard being used is changed. In KOORDS, the specific standard being used in the design
process is accessed through a standardized set of limiting values assumed to be defined by all standards applica-
ble to the given design domain. Thus, by using this interface, KOORDS keeps the standard model separated from
its design objects making it possible to change from one design standard to another without having to modify the
design methods. In both KEXPS and KOORDS, the optimal design methods are defined for and stored with the
individual design objects, making it much easier than in SPEX to incorporate specific design methods and knowl-
edge .

230 TOWARDS A STANDARD-INDEPENDENT DESIGN PROCESS

6. Acknowledgements

The first author thanks the Alexander von Humboldt Foundation and Camegie Mellon University for providing
the opportunity to spend time visiting and interacting with the latter three authors at Universitit Karlsruhe. This
interaction led-to the discussions contained in this paper. The latter three authors thank the DFG (German Re-
search Foundation) for the financial support provided under Contract No. DFG Sche 223/3—1, by the "CAD/
CAM Forschungsschwerpunkt” sponsored by the state of Baden—Wuerthemberg and by the European Council
with the ESPRIT III Project No. 6609 COMBI.

7. References

1

.EUROCODE 2 Deutsches Institut fiir Normung ¢. V., Design of Reinforced Concrete Structures, Beuth Ver-

lag, Berlin, 1992,

. GARRETT, IR.,]. H. and FENVES, S.]. “A Knowledge—-Based Standard Processor for Structural Compo-

nent Design.” Engineering with Computers, 2(4), 219-238, 1987.

.GARRETT, JR.,J. H. and HAKIM, M. M. “Object—Oriented Model of Engineering Design Standards.” Jour-

nal of Computing in Civil Engineering, 6(3), 323-347, 1992.

. HOCHTIEF AG, UNICAD Programmierhandbuch, in German, Frankfurt/Main, 1991.
. KORDINA, K. : Bemessungshilfsmittel zu Eurocode 2 Teil 1, Planung von Stahlbeton—und Spannbetontrag-

werken, DAfStb, Heft 425, (Design with Eurocode 2: reinforced and prestressed concrete structures) in Ger-
man, Verlag Ernst & Sohn, Berlin, 1992.

. MEHRAFZA, M. J. AND SCHERER, R. J. “Regelbasierte Formulierung von Variantenelementen in der

Stahlbetondetaillierung,” Dortmunder Expertensystemtage "91, Verlag TUF Reihnland, page 274-287, 1991.

. MEINECKE, C. AND SCHERER, R. J. “Blackboard—Based Expert System for the Design of Reinforcement

Layout.” in Proceedings of Management of Information for Construction, MIT-C, Singapore, 1989.

///‘ 231

MiniCode Generator:
A Practical Research Application for Standards Processing

Générateur de minicodes:
recherche pratique pour le traitement des normes

Ein "Bauvorschriften-Generator"
fir die praxisbezogene Normenverarbeitung

Dana Vanier has degrees in engi-
neering, building science and
architecture. For the past 15 years
he has been a researcher at the
National Research Council,
Canada. He works currently on
investigating information technol-
ogy for the construction industry.
His research includes electronic
technical information and electro-
nic building codes.

Dana J. VANIER

Senior Research Officer
National Research Council
Ottawa, ON, Canada

SUMMARY

MiniCode Generation permits users to extract project-specific building codes based on a
user-assisted selection of building attributes. A rule-based pre-processor queries the user
for details on the construction type, building size, and occupancies, as well as features
such as sprinklers, fire alarms, and combustibility rating. The MiniCode Engine then ex-
tracts the relevant provisions from the building code in less than 2 seconds on a standard
personal computer. The user is then free to browse the resulting MiniCode or modify the
attributes and generate a new MiniCode.

RESUME

Le générateur de minicodes permet au concepteur de consulter une norme de construc-
tion d'aprés un ensemble de caractéristiques du batiment. Un pré-processeur demande a
['utilisateur des précisions concernant le type de construction, les dimensions et l'usage
du batiment, ainsi que certaines particularités, telles que la présence d'extinction auto-
matique a eau, le systéme avertisseur d'incendie ou la classe de combustibilité. Le sy-
steme extrait alors de la norme de construction, en moins de 2 secondes, les dispositions
applicables, et cela a l'aide d'un ordinateur personnel conventionnel. L'utilisateur peut
dés lors parcourir le minicode ainsi obtenu ou changer les caractéristiques de départ
pour en obtenir un autre.

ZUSAMMENFASSUNG

Dem Planer wird die Méglichkeit geboten, projektbezogene Bauvorschriften durch benut-
zergesteuerte Eingabe von Gebaude-Kenndaten abzurufen. Ein regelgestitzter Vor-
verarbeitungsrechner erfragt vom Benutzer Einzelheiten tUber Bauart, Abmessungen,
Hohe und Nutzungsart des Gebaudes sowie Uber spezielle Bauelemente wie Sprinkler-
anlage, Brandmelder und Brennbarkeitsklasse. Das Computersystem wahlt dann Uber
einen Standard-PC in weniger als 2 Sekunden die einschlagigen Bestimmungen aus den
Bauvorschriften aus. Der Benutzer kann in dem auf diese Weise zusammengestellten
Bauvorschriftenauszug beliebig recherchieren oder die Ausgangskenndaten &ndern und
dadurch einen neuen Vorschriftenauszug erstellen.

232 MINICODE GENERATOR: A PRATICAL RESEARCH APPLICATION FOR STANDARDS PROCESSING

i. INTRODUCTION

Many research papers describe projects using expert systems, databases, neural networks and other
information technologies to process building standards. The facts indicate that, in spite of the
theoretical discussions of the advantages of such systems, there are few applications for building code
users [1] This could be attributed to the difficulty in creating knowledge bases for complex technical
and legal documents, to the relative inexperience of building code writing bodies in the area of KBES,
to the uniqueness of each and every building code or standard, and to the slow-growing marketplace
for Information Technology (IT) tools [1]. The term "building code” in this paper means building
code or standard and "electronic code" identifies an IT too!l providing access to building codes.

It is the view of the author that research endeavours in this field need not apply the most advanced
information technologies, some research can use existing and stable techniques and still create
innovative, useful applications. The MiniCode Generator [2, 3] is one research project that can have
a significant impact on the building code user community. This paper describes past research
activities, the current status of the project and future considerations and possibilities for the MimiCode
technique at the Institute for Research in Construction (IRC).

1.1 Past Research

The MiniCode Generator was developed in conjunction with a number of code writing bodies to meet
their individual needs [3]. Each partner in the research consortium had expressed an interest to
include the MiniCode attributes and features as a search option in their proprietary electronic codes.
The first phase of the MiniCode project is now complete and this product has been delivered to the
research consortium for testing, over forty copies of the software are in use across Canada.

The first phase concentrated on the needs of building plan examiners, - those municipal or regional
authorities responsible for building plan verification prior to the issuance of building permits. The
MiniCode Generator identifies significant building attributes or features, such as occupancy of the
building or height of the building, it contains attribute tags for each of the building code provisions,
and it generates abridged versions of building codes based on the associated attributes.

1.2 Current status

The Plan Examiner MiniCode consists of three discrete software components. (1) The National
Building Code of Canada [4] Building Classifier is an expert system preprocessor that assists the
users to classify their building; (2) the MiniCode Engine culls the 4000 tagged provisions of the
National Building Code of Canada (NBCC) using the Classification Description provided by the
user, and (3) the MiniCode Viewer enables the user to browse the resulting document in a hypertext
environment, and to record the state compliancy of a building for the resulting provisions. The
MiniCode Generator works with Windows™ 3.1 or the Macintosh™ operating system,

The NBCC Building Classifier is a set of 20 classification trees using a rule-based expert system to
assist the user classify the building. For example, knowing the building is used for residential
occupancy and is less than 4 storeys in building height and is less than 600 square metres in area, the
NBCC Building Classifier informs the user that this type of building must conform to the NBCC
provisions dealing with small buildings. Some classification trees are obviously more complex,
consisting of dozens of interrelated rules. In addition, any number of approximately 50 building
features such as noncombustible construction, wood shingles, or sprinklers can be selected and,
depending on this selection, the relevant provisions are included or excluded. The output of the
NBCC Building Classifier is called the Classification Description.

The MiniCode Engine consists of a bitmap of the attribute tags for provisions of the building code and
a parsing engine. The Building Code Bitmap contains the provision number and the applicable
attribute for each tagged provision. This static file is searched and compared with the Classification
Description provided by the user. Generating of the MiniCode is transparent to the user and take
approximately 2 seconds to create a MiniCode on a 50 MHertz, 486 personal computer [2]. The
exclusion principle, whereby only irrelevant provisions are excluded from the MiniCode, forms the

D.J. VANIER 233

basis for the search mechanism. The exclusion principle assists the speed of the search and reduces
liability for the user and the software developer alike. The MiniCode Engine's output is a sparse
description of the classification attributes along with a listing of the provisions for the MiniCode. This
file can be saved in ASCII format or can be printed.

The MiniCode Viewer is a WinHELP™ application that reads the file generated by the MiniCode
Engine and allows the user to view a listing of the provision numbers and headings for the resulting
sparse building code. Double-clicking the appropriate provision number or heading displays the full
text of that regulation. Although the MiniCode Viewer can only access provisions that appear in the
MiniCode, the hypertext environment of WinHELP™ permits the user to view all linked references
and all defined terms, interactively. ’

2. THE DESIGNER MINICODE GENERATOR

The next anticipated phase of the MiniCode project builds on the past experience and creates a more
robust Generator to address the needs of building designers. This extension encompasses a different
set of problems and opportunities. For example, the plan examiner already knows if a building is
sprinklered: the sprinklers are shown on the drawings. A designer, on the other hand, wants to
know if the building must be sprinklered or the advantages of sprinklering when it is not mandatory.

The steps required to develop the Designer MiniCode are included in this paper. These steps should
serve as examples for others intending similar MiniCode projects with their building codes.

2.1 Prerequisites

The prerequisites for starting a similar project include an in-depth knowledge of the building code or
direct access to a building code expert. In our case, an engineer with 35 years of code writing
experience was contracted to perform this function. Encoding the MiniCode Engine also requires
someone with "C" programming skills, but this skill set is readily available in both the academic and
industrial communities. Access to an expert system shell to encode the classification rules is essential,
as is familiarity with WinHELP™. The remainder of the tasks can be handled by a knowledge
engineer familiar with building codes and architectural engineering.

The task are broken to four discrete areas. The NBCC Building Classifier contains the rule base and
creates the Classification Description. The Document Tagging provides the Building Code Bitmaps.
The MiniCode Engine compares the Classification Description to the Building Code Bitmaps and
creates the sparse list of the MiniCode provisions. And finally, the MiniCode Viewer allows the user
to browse the MiniCode and record the state of compliancy of a building for each provision.

2.2 NBCC Building Classifier

The initial selection of which attributes or features are included for classification is somewhat
subjective, and dependant on building code document and the knowledge of the domain expert. It is
recommended to start with a small number of classification attributes, twenty is a workable number,
and with a limited number of features, approximately 50 are easy to maintain. The numbers can
always be increased as and when required.

Generally the building attributes relate to different types of buildings or to a faceted classification for
the building type. Faceted classification involves attributes such as major occupancy where the
building may be any one of a selection of values such as Al, A2, A3, A4, Bl or B2. Building
features, on the other hand, are normally a type of construction or component that is contained in the
building. These include items such as elevators or favourable soil conditions. An additional
distinction between the two is that building attributes require detailed classification trees to assist the
user, whereas features may not. In some instances features can be suppressed if they are not
applicable for a type of building. This, in itself, is a simple logic rule: if the building is a residence
then do not display potential features such as escalator or electrical vault in that dialog box.

234 MINICODE GENERATOR: A PRATICAL RESEARCH APPLICATION FOR STANDARDS PROCESSING

The classification attributes and features for the NBCC MiniCode include the following:

Building Attributes: Major occupancies, subsidiary occupancies, building height, firewall,
building area, standpipe and hose, occupant load, number of facing streets, interconnected
floor space, high building, sprinklers, noncombustible, fire alarm, barrier-free access, etc.

Building Features: Stucco, wood shingles, house, dwelling units, garage, carport,
elevator, escalator, electrical vault, air-supported structure, farm building, etc.

Detailed classification trees must be developed for each building attribute, these are developed in
conjunction with the building code expert. Examples of a classification tree for small buildings and
the associated rule base are shown in Figs. 1 and 2, respectively.

This building is for assembly,
institutional, or high hazard
industrial occcupancy

Y N This building area is greater
than 600 square metres
Y N l_ The building height
is greater than 3 storeys
Y N
This is NOT a small building This is a small building

Fig. 1 Classification Tree for Small Buildings

Part9:-p90cc(All),p9area(All),pOstoreys(All).
"Small Buildings (Part 9) must meet occupancy AND area AND storey height

requirements"’
p90cc(c):-MO(c). pYarea(600):-setarea(b600).
p90cc(d):-MO(d). "600 square metres or less is a valid area’
p90cc(e):-MO(e).
p90cc(£2):-MO(f2). p9storeys(1):-NumberofStoreys(1).
p90cc(£3):-MO(f3). pYstoreys(2):-NumberofStoreys(2).
"C, D, E, F2, or F3 are valid occupancies" pYstoreys(3):-NumberofStoreys(3).

"1, 2, or 3 are valid storeys heights"

Fig. 2 Rule base for Classification Tree for Small Buildings

In some instances these classification trees should be augmented with additional rules that are above
and beyond the scope of the building code. For example, if the building is only one storey in building
height there is no need to query the user about whether or not the building is a high building.

Entering the classification trees and the validation of the rules requires considerable attention to detail.
Typically one day of work is required for the building code expert to establish classification trees for
each building attribute. An additional day is required for each attribute to encode this information and
to validate the rule base. In total, this could entail four person-weeks of work.

2.3 Document Taggin

The tagging of the building code document can commence once the building attributes and features
have been identified, and the tagging can be done in parallel to the encoding of the rule base.

D.J. VANIER 235

For the original Plan Examiner MiniCode the tagging was done manually on sheets prepared for the
operation, and transcribed to the electronic format. For the Designer MiniCode the existing tagging
must be updated to include additional building attributes and features. Typically the information could
be entered in the format shown in Fig. 3

Provision Major No. High Bldg. Part Sprk. Occ. Fac. Fire Fire Features

Number Occ. Stry. Bldg. Area 3 Load Str. Alr. Wall
1.1.1.1. |C,D

1.1.1.2. GT2

1.1.1.3. C+D T EQ2

1.1.1.4. F Farm
1.1.1.5. |EXB2 1 T

1.1.1.5. [JEX B2 [GT6 2 T

1.1.2.1 C LE3 GT1

Fig. 3 Tabular Layout for Data Entry of Document Tagging

The building code expert enters the building attribute information in the proper columns, each row
contains information for one provision. Keep in mind that multiple rows can be required for the same
provision, as with provision 1.1.1.5. Features are entered in the last column in free text format. Any
input mechanism can be used to record this information. In the original MiniCode, a word processor
with tabular cells provided a user-friendly interface. This file can be easily exported to any format
such as tab delimited ASCII or Rich Text Format (RTF) and can be parsed to the proper format for the
MiniCode Engine. The parsing entails decoding the shorthand data entry required for the format
presented above. For example "LE3" means less than or equal to 3 storeys in building height. This
would be parsed into three tags for provision 1.1.2.1.: a tag is required for one, two or three storey
buildings. Other shorthand notation includes "C,D,E" meaning C or D or E major occupancy, "C+D"
for C and D major occupancies, "EX C" for all major occupancies except C, "EQ2" meaning equals 2,
and "GT2" meaning greater than 2. The resulting file is called the Building Code Bitmap.

The Document Tagging is a time-consuming, labour-intensive task. Depending on the complexity of
the building code and the knowledge level of the individuals involved, the time required to tag the
document can average at 3 minutes per provision. In the case of the NBCC with 4000 provisions this
equals over 5 person-weeks of work. Although this may seem to be a.considerable amount of time,
remember it is probably the first attempt to classify and structure the information contained in that
building code. The writing of the parser may require a day or two.

2.4 MiniCode Engine

The MiniCode Engine is described in detail in Cornick and Thomas [2]. Basically, the Engine
compares the Classification Description to the Building Code Bitmap and excludes those provisions
that do not met the criteria.

The output from the MiniCode Engine includes the classification of the building along with the list of
the remaining building code provisions, as shown in Fig. 4.

Project Name: TABSE Demo Major Occupancies: C
Minor Occupancies: none Number of Storeys: 1
Fire Wall: Not present Fire Alarm: Not present
Building Area: 500 Building Code: Part 9

1.1 111 1111 112 1121 1130 1131 1132, ..
Fig. 4 MiniCode Listing

As mentioned earlier, the MiniCode generation takes approximately 2 seconds on a standard personal
computer. In actual fact there are 183 bits required to encode the information in the Building Code

236 MINICODE GENERATOR: A PRATICAL RESEARCH APPLICATION FOR STANDARDS PROCESSING ////‘

Bitmaps; so the Engine compares 4000 x 183 bits to extract each MiniCode. The writing of the
Engine may involve a day or two.

2.5 MiniCode Viewer

The MiniCode Viewer reads the output of the MiniCode Engine and presents these to the user in the
form shown in Fig. 5.

General

Administration
Administration

Scope
Definitions of Words and Phrases
@ Abbreviations

Application

Climatic Data

Plans, Specifications and Calculations

¥ Materials, Appliances, Systems and Equipment

Fig. 5 MiniCode Viewer

The toggle boxes to the left of the Fig. 5 allow the user to record the status of compliancy for each of
the building code provisions in the MiniCode. These toggles include an check mark, question mark,
an x, or a flag, as shown in Fig. 5. The arrow immediately to the right allows the user to expand the
contents as shown in Fig. 5.

The NBCC Document Viewer uses WinHELP™ to view a hypertext version of the building code.
Fig. 6 demonstrates some of the possibilities of the environment. This viewer is similar to other
hypertext environments available on personal computers [5, 1]. There are many tools now available
to assist software developers create WinHELP™ applications. It is difficult to estimate the time
required to develop such a tool, but less than 2 person-weeks were required for the NBCC Viewer.

5.2.1. Fire Separations arounc ce Rooms

(1) Exceptas provided in Article 3527 fuelfired apn

_______ == shall be
locatedina s separated from the remainder of the building by

R e
R

s are more than 2 < 3 in _building
and

“

(b) 1 hin fuildings otherthan as described in Clause (a).

Fig. 6 NBCC Document Viewer

D.J. VANIER 237

3. DISCUSSION

The purpose of this paper is to describe a product resulting from research into the generation of sparse
building codes, and to encourage other researchers to develop similar tools. There are numerous
advantages to this type of technology for researchers, software developers and users involved with
building codes.

3.1 Researchers

Although this paper may resemble a cookbook for creating an electronic code software product, there
is significant research required to identify the building attributes and features for individual building
codes. In addition, there is knowledge engineering required to decipher the classification trees for the
NBCC Building Classifier. This cannot normally be handled by a building code expert, as the expert
understands the document too thoroughly and may not be able to relate the information to strict
"if_then_else" rules. The researcher, cum knowledge engineer, must direct the activities of the expert
to create a clean, concise, and accurate representation of the classification process.

On completion of any new NBCC Building Classifier, the code writing body must also be part of the
feedback loop. If a specific building attribute cannot be accurately classified in the rule base by the
knowledge engineer and building code expert, this normally implies that it is difficult for ordinary
users of the building code to understand. This was encountered a few times in the Plan Examiner
MiniCode when it was impossible to decipher when a specific provision could be excluded, or when it
couldn't.

Unanswered problems still exist for the researcher. For example, how deep and how broad can the
building attributes and features become? Can the MiniCode classification be extended to hundreds of
features, or will a limitation be reached at 256 bits or 2 Kbits in the Bitmap?

3.2 Software Developers

Profit is the driving force in the development of software products, and there are few available
electronic code tools. Typically the potential client for software developers is a code writing body, as
most building code users desire some stamp of approval from the jurisdictional authority [6]. Code
writing bodies are then the logical initiator for these software products because they have a vested
interest and they have the expertise on staff to validate the rule base and create the tags for the
provisions. To defend this position, the code writing bodies have been selling their products for
decades and they provide updates, errata, supplemental instructions and other services: a software
product is almost identical. It is strongly recommended that electronic products be part of the product
offerings from code writing bodies [7]. It will not be long before most similar information is
available electronically, and before users start demanding that type of service and product.

3.3 Building Code Users

The users are the main beneficiaries of electronic codes. Building codes are complex documents [8],
and have remained so for decades. As construction techniques become more complex and as
construction regulations increase because of increased liability and risk, free-trade, new products,
etc., there is an ever-increasing need to assist the users in this building code quagmire [8].

The MiniCode Generator is one of the few attempts to codify the information in building codes [9,
10, 11, 12]. The technique offers advantages to novice and experienced users alike. For example,
the NBCC Building Classifier serves as a tutorial for many of the factors concerning building
classification. Help messages are available at every step in the classification tasks to explain the
signification of specific selections, as shown in Fig. 7.

Novice users can learn as they browse, whereas experienced users can quickly gloss over the
supporting literature and concentrate on data entry. Without sounding too much like promotional
literature, using the NBCC Building Classifier is like having a building code expert as a colleague.

238 MINICODE GENERATOR: A PRATICAL RESEARCH APPLICATION FOR STANDARDS PROCESSING //A

Generating sparse building codes in seconds reduces the amount of work for the plan examiner and
the building designer alike. MiniCodes considerably reduce the amount of information to peruse, in
some case MiniCodes are 20 % of the original document length. This is an added benefit to the users:
they are guaranteed that the excluded provisions are not applicable, and need not be reviewed.

{ Numbe

This entry establishes the complete starey calculation for your building. If
you have mezzanines, interstiial service spaces, rooftop enclosures or
spaces undertiers of seats in arenas. they may or may not be counted as
storeys. fyou are unsure of these provisions, please follow the "Not sure”
ior Building Height in Storeys systematically

Fig. 7 NBCC Building Classifier Help System

The WinHELP™ version of the MiniCode Viewer is a simple-to-use, effective, browsing interface to
building codes. It provides hot-links to related provisions and interactive defined terms.

3.4 Problems

Although the MiniCode Generator appears to be a robust, useable tool, the author feels that the
significant contribution to the community is the development and structuring of the building code
information for the NBCC Building Classifier. The generation of MiniCodes is interesting as a
concept; however, even if the building code is reduced considerably, even 20 % of the 400 pages of
the NBCC is a formidable building code.

The Document Tagging is labour-intensive, requiring a high level of expertise from the building code
expert. In addition, there is need for constant validation of the data entry in the Document Tagging.
For example, although one provision definitely applies to sprinklered buildings, the provision may
identify a solution that is of interest to designers contemplating no sprinklers. Therefore the sprinkler
tag should not appear for that provision.

Updates to building codes may be a problem. That is, changes to a building code have to be reviewed
and retagged, and the NBCC Building Classifier may have to be restructured. However, experience
has shown at IRC that changes to the NBCC, with respect to the classification tags, do not occur in
significant numbers to warrant concern. In some instances changes in building codes may even alter
the rule base: the current debate in Canada concerning sprinklers for all buildings would alter the
NBCC Building Classifier significantly.

The NBCC is a model code for Canada that is modified by three provincial counterparts to suit
regional requirements [4]. As such, the MiniCode technology can be easily transferred to these
documents. However, it is extremely difficult to transfer the NBCC MiniCode application to other
National codes. It would be equally difficult to transfer this application directly to other Canadian
codes such as the National Fire Code of Canada.

3.5 Future Extensions

Although the Plan Examiner is still under Beta review, the current users have been very specific in
their demands for future extensions. As a result, a number of modifications have been suggested: the
Designer MiniCode could include "What if?" analysis and subject index comparisons.

D.J. VANIER 239

These two features basically work on the same principle: the user can generate a number of
MiniCodes and then compare any two at a time. In the "What if?" scenario the user might compare a
two storey with a three storey variation. The "logical difference" between these alternatives would
identify additional provisions that have to be investigated.

The subject index comparison can also be a valuable tool for designers: (1) create a MiniCode for a
standard three storey townhouse; (2) create a MiniCode of provisions dealing with basements, and
(3) the logical difference is a listing of all provisions for basements in three storey townhouses. This
can have numerous applications for designers such as finding provisions dealing with sprinklers for
commercial buildings, identifying mezzanine provisions for low-rise residential construction, or
locating all provisions about fire alarms and two storey offices under 2000 square metres

Additional functionality in the Designer MiniCode could include validation of input by the user, the
ability to append user-specified notation, the addition of more building attributes and features, and
increased depth in the classification of building attributes. The first two of these features must be
explained. The validation of input addresses potential erroneous or trade-off decisions by the
designer. For example, a building may not require sprinklers; however, the designer may decide that
sprinklers may permit combustible construction, a cheaper construction type. The NBCC Building
Classifier informs the user that sprinklers are not mandatory, but still recognizes that all sprinkler
provisions cannot be excluded. On the other hand, if novice users select this option incorrectly, they
are informed of their error. The user-specified notation permits national, regional or local agencies to
append additional notes or interpretations to specific provisions. For example, the Fire Commissioner
of Canada might have a specific ruling on NBCC Section 1.1. In this case a special icon would
appear in the NBCC Viewer beside that provision. This feature has been implemented for one
government agency, as shown with the [FC] icon in the upper portion of Fig. 5. To access the
relevant literature, the user clicks on the [FC] icon.

Other future extensions include interfaces to any version of electronic code, such as the provincial
building codes. In the case of the NBCC MiniCode Generator, it could be linked to commercial
packages currently available or to future products such as the upcoming Compact Disk (CD) version
of the NBCC [13]. There is also the obvious possibility of including Building Code Bitmaps for
provincial building codes in one MiniCode Generator, thus allowing users to select the appropriate
provincial MiniCode.

4. CONCLUSIONS

The MiniCode Generator described in the paper is a simple implementation of existing technologies.
The paper details a sequence of steps in the development of an information technology tool for
building designers. These steps can be used by code writing bodies or software developers to create
their own versions of the MiniCode Generator for their national or regional building codes.

The general goal of researchers in the area of electronic codes, or at least the envisioned panacea, is an
interface to Computer Aided Design (CAD) systems [14, 1]. This is only possible through the proper
classification and structuring of building code information. The MiniCode Generator is a step in the
right direction, but falls short of the CAD interface envisioned by designers. Future developments
such as detailed classification systems [1] could provide additional steps towards this goal. In any
case, the classification or structuring of building code information can only assist the user community
in the long term. '

This paper describes the second stage [3] in the development of tools to assist architects, engineerings
and building officials access building codes. The Beta trials generally indicate that users are pleased
with the tool and its capabilities. However, the users have indicated the need for more functionality.
More research is envisioned for the creation of the Designers MiniCode.

240 MINICODE GENERATOR: A PRATICAL RESEARCH APPLICATION FOR STANDARDS PROCESSING 4

REFERENCES

1. VANIER, DJ, A Parsimonious Classification System to Extract Project-Specific Building Codes,
PhD Thesis, Université de Montréal, Montréal, Québec, October 1994,

2. CORNICK SM, and THOMAS JR, HyperCode, MiniCode and ExperCode: Evolution of a
Code Users Environment, Paper presented at Management of Informatzon Technology for
Construction, eds. Krishan S. Mathur, Martin P. Betts, and Kwok Wai Tham, Singapore,
(n. pag.), August 1993.

3. VANIER DJ, Minicode Generation: A Methodology to Extract Generic Building Codes, CAAD
Futures '93: Proceedings of the Fifth International Conference on Computer-Aided Design
Futures, 7-10 July, Pittsburg, PA, pp. 225-239, 1993.

4. NBCC, Associate Committee on the National Building Code, National Building Code of Carada,
10th ed., National Research Council Canada, Ottawa, Ontario, 1990.

5. YABUKIN, and LAW K, Hyperdocument Model for Design Standards Documentation, Journal
of Computing in Civil Engineering, Vol 7, No. 2, pp. 218-237, 1993.

6. Market Study, Institute for Research in Construction, CD-ROM Market Study: Characteristics
of the Market for Methods of High Density Electronic Storage and Delivery of Code and
Standards Information, by Opinion Search, Inc., National Research Council Canada, Ottawa,
Ontario, 27 p., 1993.

7. VANIER DJ, THOMAS JR, and WORLING JL, Standards Processing 2000, In Proceedings of
ASCE First Congress on Computing in Civil Engineering, Washington, DC, 20-22 June 1994,

8. FENVES SJ, RANKIN K, and TEJUJA HK, The Structure of Building Specifications, NBS
Building Science Series, No. 90, Center for Building Technology, National Bureau of
Standards, Washington, DC, 77 p., 1976.

9. CRONEMBOLD JR, and LAW KH, Automated Processing of Design Standards, Journal of
Computing in Civil Engineering, Vol. 2, No. 3, pp. 255-273, 1988.

10. GARRETT JH Jr., Object-Oriented Representation of Design Standards, In Proceedings of
International Association of Bridge and Structural Engineering (IABSE) Colloguium, Bergamo
1989, TABSE-AIPC-1VBH, ETH-Honggerberg, Zurich, pp. 373-382, 1989.

11. DE WAARD, M, Computer Aided Conformance Checking, Self Published Ph.D Thesis, Melis
Stokezijde 11, 2543 CA, The Hague, The Netherlands, 203 p., 1992.

12. SHARPE R, OAKES S, HASELDEN P, and DAVIDSON I, Automation of the Building Code
of Australia, Proceeding of the Third World Congress of Building Officials, New Orleans, LA,
Session 5, 1-6 May (n. pag.), 1993.

13. VANIER DJ, MELLON BS, WORLING JL, and THOMAS JR, Management of Construction
Information Technology, In Proceedings of Management of Information Technology for
Construction, eds. Krishan S. Mathur, Martin P. Betts, and Kwok Wai Tham, Smgapore, ,
pp. 75-84, August 1993.

14. DYM CL, HENCHEY RP, DELIS EA, and GORNICK S, A Knowledge-Based System for
Automated Architectural Code Checking, Computer-Aided Design Journal, Vol. 20, No. 3,
pp. 137-145, 1988.

241

Representation and Processing of Structural Design Codes

Représentation et élaboration des normes de construction en génie civil

Darstellung und Verarbeitung von Normen des Bauwesens

Vlasis K. KOUMOUSIS
Assoc. Prof.

Nat.Techn. Univ. Athens
Athens, Greece

Vlasis Koumousis graduated
in civil engineering at NTUA in
1975, and received his M.Sc.
and Ph.D in applied mecha-
nics from Polytechnic
University of New York in
1976 and 1980 respectively.
He has worked as consultant
and currently is an associate

Panos G. GEORGIOU
Ph.D. Student
Nat.Techn. Univ. Athens
Athens, Greece

Panos Georgiou graduated in
civil engineering at NTUA in
1988 and currently is working
on his doctoral thesis. His re-
search is involved with tech-
nical code based optimal de-

- sign of multi-storey buildings.

He has also worked in con-
sulting firms designing rein-
forced concrete buildings.

Charis J. GANTES
Assist. Prof.

Nat.Techn. Univ. Athens
Athens, Greece

Charis Gantes graduated in
civil engineering at NTUA in
1985, and received his M.Sc.
in Civil and Ph.D in structural
engineering from MIT in 1988
and 1991 respectively. Since
1994 he is assistant professor
at NTUA. His research in-
terests are in computer-aided
structural design.

professor at NTUA.

SUMMARY

A logical scheme is presented for the representation and processing of structural design
codes. The subdivision of codes into several distinct, strongly interrelated parts, and the
frequent cross-references between different codes make it difficult to grasp the structure
and the domain of applicability of different provisions. The declarative nature of the code
provisions and the sequence of their demands can be implemented directly in logic pro-
gramming. Moreover, the search for solutions can be performed with the sequentiai back-
tracking algorithm of Prolog language, while the design space can be formed using seve-
ral relational databases accommodated in Prolog. The proposed scheme is illustrated
with the design of a steel roof using Eurocode 3.

RESUME

Un schéma logique est proposé pour la représentation et I'utilisation de normes de con-
struction en génie civil. La subdivision de ces normes en plusieurs chapitres, trés inter-
dépendants, et les fréquentes corrélations entre ces normes rendent difficile la compré-
hension de la structure et le domaine d'application des différentes régles. La nature
descriptive des regles et la succession des prescriptions peuvent étre mises en oeuvre
directement par un logiciel. La recherche de solutions peut étre réalisée en utilisant les
algorithmes écrits en langage Prolog. Le schéma proposé illustre le projet d'une toiture
métallique utilisant I'Eurocode 3. ,

ZUSAMMENFASSUNG

Beschrieben wird ein logisches Schema fir die Darstellung und Verarbeitung von
Normen des Bauwesens. Durch die Unterteilung der Normen in verschiedene, miteinan-
der verbundene Teile und wegen der vielen Querverweise zwischen verschiedenen
Normen ist es sehr schwer, die Struktur und den Bereich der Anwendbarkeit einzelner
Bestimmungen zu verstehen. Der deklarative Charakter der Bestimmungen und die
Reihenfolge ihrer Forderungen konnen aber direkt logisch programmiert werden.
Insbesondere kann die Suche nach Lésungen mit der Programmiersprache Prolog
durchgefihrt werden, wéhrend das Lésungsgebiet unter Benutzung verschiedener rela-
tionaler Datenbanken auch in Prolog formuliert werden kann. Das vorgeschlagene
Schema wird far den Entwurf eines Stahldaches mit Eurocode 3 erlautert.

242 REPRESENTATION AND PROCESSING OF STRUCTURAL DESIGN CODES

1. INTRODUCTION

This work summarizes the general philosophy that governs modern structural codes, and outlines the
major steps towards the computerized representation of codes together with their incorporation in
automated structural design software. The complex structure of design codes and the frequent cross-
references in them make it difficult for the users to follow the line of reasoning and establish the
interconnection between interrelated specifications. A similar situation exists also within an
integrated computer system that contains analysis and design modules. Generally, codes contain both
qualitative information and algorithmic procedures to perform various conformance checks, or the
design of specific members. Therefore, different means are used to represent these two distinct types
of information. A general scheme based on logic programming is presented for the interpretation of
the algorithmic requirements imposed by structural codes, as a part of a structural optimization
process. This approach is illustrated with specific clauses that describe some of the requirements of
"Eurocode No. 3" [1] for the design of steel structures.

2. GENERAL PHILOSOPHY OF STRUCTURAL CODES

As opposed to older structural codes, that were based on the allowable stress concept, most of
today's codes follow the principles of ultimate limit state design [2]. This means that the structure
can exhibit plastic deformations under extreme loading conditions. Moreover, the structure must be
designed for specific limit states defined in the code. These limit states are the ultimate limit states,
that ensure non-collapse of the structure, or other forms of fatlure, and the serviceability limit states,
that provide a control on the damageability of the structure. Besides the limit states, important
features of the codes are the partial coefficients, that replace the overall safety factor of the allowable
stress design philosophy. There are the partial coefficients for the loads and partial coefficients for
the materials used in the structure. Partial coefficients are important in all the conformance checks
required by a code. Such checks follow a specific safety format that usually takes the following form:

Sdst (l)

where S, refers to the design value of the actions, that are needed for a particular conformance
check, and R is the design value of the corresponding resistance. Relation (1) can be used either in
explicit, or implicit form to calculate a geometric or other parameter of a component of a structure.
The design values represent deterministic estimates of the stochastic functions that describe the
actions and resistances, and are expressed in terms of their corresponding nominal or characteristic
values S, and R, in relations of the type:

Se=7¢S.. Ry=R_ /7y, (2)
where v, is the partial coefficient for the action, and vy, the partial coefficient for the material.

The reliability of the produced designs must be proven on the basis of the structural codes that apply
for each case. Reliability analysis studies are important to validate structural design codes ([3], [4]).
From the existing structural codes very few have been checked for consistency [25].

3. CODE REPRESENTATION

The information contained in a code is traditionally addressed to the designer, who needs to have
complete control of the code, so as to fully interact with it during the process of designing a
structure. Today, codes constitute also important parts of integrated computer systems, where,
depending on the form of their representation, they interact with other software modules towards the
integrated design of structures.

V.K. KOUMOUSIS - P.G. GEORGIOU - C.J. GANTES 243

Current integrated systems that perform the analysis and design of structures contain a set of
routines to carry out the necessary checks, or calculate the required quantities. These are linked to
the analysis module to perform the so-called “one shot analysis”. The outcome of such an analysis is
a conformance check with the algorithmic part of the code. This is the “hard-coding” approach and is
the most widely used in existing automated structural design software packages.

To adapt their orientation to the current needs, modern codes tend to provide information in an
algorithmic way. Thus, besides the traditional format that expressed the information in the form of
design graphs and tables, more and more flow charts and algorithms, that were used to produce
these graphs and tables, accompany modern codes.

Several efforts on the computerized representation of codes in general, and structural codes in
particular, are reported in the bibliography ([5]-[14], [20]-[22]). Pertinent investigations started in
the late sixties by Professor Steven Fenves [5] and continue until today.

What is interesting today, is the development of integrated design systems that simulate the course of
actions taken by experienced designers. The fundamental difference of current methods lies in their
ability to use parts of the program on an "if needed" basis. With greater computational power
becoming increasingly available, new methods and programming environments make this goal
feasible. The knowledge about a domain can be incorporated into computer systems in the form of
knowledge based expert systems (KBES) that, when properly structured, can manipulate a
knowledge base using the inference engine to prove a list of goals and subgoals. All the forms of
knowledge representation, used in Al applications, have been utilized to interpret design codes.
Among these, the most popular are the production systems or rule based systems, the use of frames.
which are being replaced by object oriented programming, and other forms of semantics such as
decision-tables, information networks and organisation systems.

The decision tables, proposed by S. Fenves, as an extension to tabular decision logic, provide a
systematic way to represent and process the requirements of design codes. Moreover, the data and
the application rules can be logically channelled in the form of a network of decision tables. Special
pre-processors have been developed to manipulate the decision tables and to incorporate them into
analysis programs [11].

Information networks are a collection of nodes and branches, where each node represents a data item
and each branch represents a relation between two nodes. The provisions of a code are represented
in the form of a graph which results after parsing the provision. The leaves of the graph represent the
basic data, while the items at higher levels represent evaluated data.

Various systems have also been proposed that correspond to various forms of Database Management
Systems (DBMS), and aim at offering environments for multi-purpose access systems in integrated
design. Among these, the object oriented DBMS systems seem to be the most popular [9], [21]

To render the "if needed"” character of a code representation in a way that corresponds to the design
of structures, appropriate design strategies must be employed. These may be either under the full
control of the designer, leading to interactive design systems [14], or may be computerized design
strategies that simulate the design process on the basis of decomposition, structural optimization,
numerical experimentation etc., to attain a list of design goals. The development of ad-hoc design
strategies, and heuristic or general design theories, presents considerable difficulties due to their
synthetic nature. The existing design strategies tend to simulate the course of actions taken by
designers, or address the problems of conceptual design and preliminary design of structures.

Moreover, the system must be in a position to reveal the appropriate list of conformance checks that
are needed for the design of a particular component on the basis of its type, state of stress, its
particular features and the type of analysis. In addition, hypertext system technologies may be used in

244 REPRESENTATION AND PROCESSING OF STRUCTURAL DESIGN CODES

a productive way to enhance the usability of such systems, especially regarding the descriptive parts
of a code [18].

In another direction, new tools and methods need to be developed to assist design standards writing
organizations in checking the completeness, uniqueness, i.e. absence of redundancy and contradiction
and correctness of the codes [7].

4. LOGICAL SCHEMES FOR THE REPRESENTATION AND PROCESSING OF DESIGN
STANDARDS

The representation and processing of structural design codes can be performed also in a way that
follows the intrinsic logic of the code, and transforms code clauses into formal logic using logic
programming. This approach has been applied extensively in the form of rule based systems for
descriptive codes, such as architectural codes [10], but its potential can be extended to cover also the
algorithmic parts of codes [22], [23]

A logic program is a set of rules that define relations between data structures, while computation, in
the context of logic programming, means to prove that a goal statement (rule) is true using the other
defined rules. This process is constructive and provides the values for the goal variables, which
constitute the results of the computation [15]. The implementation of logic programming in Prolog is
performed by using a control mechanism based on sequential search with backtracking on a
restricted class of logical theories, namely Horn clause theories. Prolog can be viewed also as a
relational database programming language, which manipulates and alters the database information,
that describes a particular domain.

The main advantage of a Prolog representation of the code requirements, is that the structure of the
language is such that it sequentially demands the truth of the predicates of a rule. Generically, this
enables the implementation of a sequence of requirements in one predicate by combining descriptive,
i.e. declarative, and procedural predicates Rules in Prolog may have several definitions, thus the
appropriate rule is matched and processed on a "if needed" basis.

As a result, using Prolog as the means of expressing the design philosophy of the code, clarity and
modularity are preserved as main characteristics This implies that a separate module must exist that
defines the partial safety factors for the actions and the material properties. Another module must
define the loading cases and the load combinations that apply to different types of structures that
correspond to the ultimate limit states. Yet another module must define all the resistances covered by
the ultimate limit states of the code, together with the domain of their application. Finally, another
module must control the serviceability limit state checks. These correspond to the standard modules
that exist in every code. In addition, there may exist other modules that contain the particular
information of the code that refers to the specific material, the detailing of the structural components,
the connections, and the rules of good design practice that the code recommends. This information is
tailor-made and corresponds to the particular structure of the specific code. These separate modules
can be maintained easily by incorporating changes in the standards, and can be placed in parallel with
the relevant parts of other codes in integrated systems that accommodate different design codes.

Feijo et. al. ([17],[18]), Jain, Law et. al. [22], and Rasdorf and Lakmazaheri[23] presented alternate
models for the representation of design codes based on first-order logic and their incorporation into
design automation systems. Feijo et. al. suggested also a formal link with hypertext systems, in which
data is stored in a network of nodes connected by links. Rasdorf and Lakmazaheri put the emphasis
on the axiomatic formulation of the organizational submodel and the representation and processing
submodel of the code, which can be interrogated via theorem proving.

V.K. KOUMOUSIS - P.G. GEORGIOU - C.J. GANTES 245

After building the separate modules, dominant part of the entire process becomes the control of the
information flow. This is based on the sequential backtracking algorithm which is the searching
mechanism of Prolog Language. Backtracking can be considered as a searching technique of all
possible solutions in a systematic manner. Its description in procedural terms is as follows:

Having a predicate that depends on a list of n variables [x,,x,,..,x,] that participate in a particular
check and are stated according to the safety format of the code. This list must satisfy a requirement
or property P [x,.x,,...x,]. In general, we assume that x; can take values from a set X;. The
assumption is, that all choices in a set X are linearly ordered. Once the values of x,,x,,...,x, | are
fixed, we select the smallest value x, among the set X,, which leads to a feasible list which satisfies
P, [%,X,,...X_1.X). The subset of X, which represents feasible choices for x, is denoted by S,. Since
X, is ordered, all choices in S, are also ordered. With these assumptions the general backtracking
algorithm can be stated as follows [24], where S, is formed simultaneously by checking the feasibility
of x,.

We start by examining S, (k=1.2,....n) sequentially.

Step 1. If S, is not empty, set x, to be the smallest value in S, which has not been tried previously. If
k<n, increase k by 1 and repeat the step. If k=n, record the list as a feasible list. If we want all
feasible solutions, decrease k by 1 and repeat this step. Otherwise stop.

Step 2. If S, is empty and k=1, no more feasible lists exist, and therefore stop. If S, is empty and
k>1, decrease k by | and return to step 1.

During the design process, following a backtracking algorithm, usually we associate a cost with a
particular list which satisfies a relationship of the following form:

cost of [x,,X,,...X,_,] <= cost of [X,,X;....%;.1» X,] for all x, (3)

During searching we do not branch from a node whose cost is higher than the minimum cost solution
found so far. Of course, the bound is updated if a better solution is found. For a maximization
problem we do exactly the opposite. We do not branch from a node whose value is less than the
value of the maximum value solution. This corresponds to a branch and bound algorithm that usually
prunes the search.

In processing code requirements, usually we have to satisfy a conjunction or disjunction of more than
one demands on the structure. This can be accomplished using a sequential backtracking algorithm,
which is based on the structure of a Horn clause, and has the following form:

P,, n>0 (4)

The important feature of Horn clauses is that they can be read both declaratively, saying that A is
true if P, and P, and... and P, is true, and procedurally, saying that to solve problem A, one can solve
subproblems P, and P, and ... and P,. In order to establish whether A is true, a Prolog program
attempts to prove that P, and P, ... and P, are true, starting from left to right. It uses the internal
unification routines of the language as a form of a bi-directional pattern matching. It assigns values
to the variables of the rule P, in order to prove that it is true and subsequently moves to P, leaving a
marker in between to remember that up to that point the truth of clause A has been established.
Hence, the program, by invoking the internal unification routines which sequentially search for the
right values of the variables, establishes the truth of P, and P, and ... P_, and thus the truth of A,
binding in the mean time the feasible list of design variables. All rules are of the form given in relation
(4) where A is referred to as the head of the rule and the conjunction of P, and P, and ... P as the
body of the rule. Every subrule P, i1s a predicate or categorim which is either true or false.

In order to restrict backtracking and thus reduce unnecessary search, the predicate "cut", or
symbolically "!", is used which in effect deletes the markers for backtracking up to that point and

246 REPRESENTATION AND PROCESSING OF STRUCTURAL DESIGN CODES

thus works as a barrier that doesn't allow backtracking to previous subgoals. The predicate "fail" of
Prolog is one that makes the rule to fail and thus causes backtracking.

Following the sequential backtracking algorithm, binding of the list of variables takes place and
affects the subsequent search. This issue is very critical and must be handled with care during the
development of the system, in relation with the structure of the databases used. As discussed
before in the procedural description of the backtracking algorithm, the feasible sets must be
ordered. Therefore, if the database is built in increasing order with respect of the design
objective, and the user has selected a number of different types of sections, a number of
alternative solutions will be deduced. The existing conflict can be resolved either on the basis of
secondary criteria, i.e. list of preferences in profiles, or other technological constraints, or by
retaining all the solutions.

The logic approach has been used in the design of steel roofs using Eurocode 3 [19], where also the
analysis is based on a logical program. The conformance checks used for the ultimate limit states
correspond to tension, compression, bending, and bending with shear checks.

The code requirements can always be posed in the form of Horn clauses as for example the
compression requirements of Eurocode 3. Compression members are designed according to the
requirements of paragraph 5.4.4 and 5.5.1 of Eurocode 3 for buckling resistance. The relevant part
in Prolog is as follows:

compression_requirements(Type,Cnt, Min Length,larea):-
section(Type,Name,Height, Width, Thickness, Area, Weight,Jx,),
chosen_section(_, , ,WeightOld),
Cnt * Area >= larea,
Cnt * Weight < WeightOld,
Tmp = Jx/ Area,
Radius_of gyration=sqrt(Tmp),
buckling_curve axis(Type,Height, Width, Thickness,Curve.),
imperfection_factor(Curve, Alfa),
Lamda=Length/Radius_of gyration,
Lamdal=pi*(sqrt(modulus_of elasticity/yield stress)),
Lamda2=(Lamda/Lamdal)*sqrt(Alfa),
F=0.5*(1+Alfa*(Lamda2-0.2)+Lamda2*Lamda2),
X=1/(F+sqrt(F*F-Lamda2*[.amda2)),
NcRd=Cnt * Area * yield stress,
NbRd=X*NcRd,
abs(Min) <= NbRd,
CntArea = Cnt * Area,
CntWeight = Cnt * Weight,
save_chosen_section(Type,Name,CntArea, CntWeight)_fail.

ﬂ V.K. KOUMOUSIS - P.G. GEORGIOU - C.J. GANTES 247

The names of the variables are chosen close to the names of the quantities in the code to facilitate
understanding of the relations. The entire process works by interrogating the database "section" with
the attributes of all the profiles. This relational database, that Prolog language accommodates, is
used in the searching of a new section as compared to a previous one. After the comparison of a pair
of sections, the process selects the best section and fails at the end to force searching of the entire
database for the particular group of members. The descriptive part in this provision corresponds to
the selection of a buckling curve according to the type of section, hollow, welded rolled, etc. and the
thickness to height ratios listed in Table 5.6 of the code. Therefore, the above predicate does not
only perform the relevant conformance check but is used to select the optimal section within a
specific type of profile.

Thus, a conformance check based on the provisions of a code and the selection of the optimal
section with respect of a design objective, are rather straightforward for a given member. The
important issue though is the identification of the required list of conformance checks for a member
or a list of members. This issue was first addressed by S. Fenves introducing the decision tables
which can be implemented efficiently in Prolog. The main difficulty faced in this respect is the vague
information contained in a code that rarely specifies the domain of application of particular checks
especially under exceptional environmental conditions. The list of actions and relevant conformance
checks that are referred to a specific component form the design list for the component. In this work
this list is fixed, but can result from the consistency checks of the code as a separate task.

The conformance checks can be applied to an already analysed structure of given dimensions, layout
member sizes and loads. The way of incorporating the code provisions to the design process is a
more general problem and relates to the strategy used in altering the structural configuration. This
can be addressed in the context of structural optimization methods incorporating the constraints
imposed by the codes of practice. In a logical approach, these can be stated in the form of a sequence
of demands imposed on the design. These demands can be expressed directly in the form of Horn
clauses given in relation (4).

The area of the so-called technical code based structural optimization is seeking to define the
optimal design of a structure with respect to a single or multi criterion objective, subject to the
constraints imposed by the selected code. In this context, the identification of the list of active
constraints-provisions that correspond to particular conformance checks has a particular
importance. It can be used as an active set to evaluate the sensitivities of the design with respect
of the design variables and thus, depending on the form of optimization problem, alter the lay-
out, shape or sizing of the components of the structure. Moreover, for a number of iterations it
can be used to limit the design process to local modifications and therefore accelerate the entire
design process. Therefore, code requirements can be interpreted not only as barriers on the
design, but also as boundaries reflecting important information about the response of the
structure. The identification of the active constraints can be performed easily in Prolog.

The proposed general scheme has been used for the design of a roof of an industrial building or
warehouse using plane trusses and continuous purlins [19].

Although the system described above can be transported to other applications developed within the
same design philosophy, is not totally independent from the remaining modules of the entire system.
A more formal representation scheme, as for example the one based on the object oriented paradigm
presented by Garrett et. al. [21] can stand as an independent module. In that case, a quite
cumbersome interface must be built to provide information needed for the optimization process. A
similar situation exists in structural optimization programmes. Some of which use a separate module
to calculate sensitivities and others use a combined approach. The differences are in the software
development but affect also the computation time of the system, the combined one being faster.

248

REPRESENTATION AND PROCESSING OF STRUCTURAL DESIGN CODES

5. SUMMARY AND CONCLUSIONS

A general scheme based on logic programming is employed in the representation of code provisions.
The control of the flow of information, that is the dominant part of the conformance checks and the
design procedure of a structure, is based on the sequential backtracking algorithm used in Prolog as
a searching algorithm. The design space of a particular problem is formed as the product of the
relational databases of the members of a structure and the constraints. Even though logic
programming has been used extensively in code representation and processing the unified scheme
presented addresses the overall problem within the structural optimization perspective of structural
design.

REFERENCES

(1]

(2]

[3]

[5]

[6]

[7)

[8]

[9]

[10]

[11]

[12]

[13]

EUROCODE NO 3: "Design of Steel Structures," Part 1, General Rules and Rules for
Buildings, Final Draft, issued to Liaison Engineers, February 1989,

JOINT COMMITTEE ON STRUCTURAL SAFETY, CEB - CECM - CIB - FIP - IABSE -
TASS - RILEM: “General Principles on Reliability for Structural Design”, International
Association for Bridge and Structural Engineering (IABSE), 1981.

HWANG, HHM., USHIBA, H., and SHINOZUCA. M., "Reliability Analysis of Code-
Designed Structures under Natural Hazards", Technical Report NCEER-88-0008, 1988.

HWANG, HH.M., and HSU, H-M_, "A Study of Reliability-Based Criteria for Seismic Design
of Reinforced Concrete Frame Buildings", NCEER-91-0023, 1991.

FENVES, S1., "Tabular Decision Logic for Structural Design", ASCE Journal of Structural
Division, Vol. 92, No. ST6, December, pp. 473-490, 1966.

HARRIS, J R, and WRIGHT, R N. "Organization of Building Standards: Systematic
Techniques for Scope and Arrangement”, Building Science Series NBS BSS 136, National
Bureau of Standards, Washington, D.C., 1980.

FENVES, S.J., and WRIGHT, R.N.. "The Representation and Uses of Design Specifications",
NBS Technical Note 940, 1977.

GARRETT, JR.J H., and FENVES, S.J., "Knowledge-Based Standard-Independent Member
Design", ASCE J. of Structural Engineering, Vol. 115, No. 6, pp. 1396-1411, 1989.

RASDORF, W.J., and WANG, T.E., "Generic Design Standards Processing in an Expert
System Environment", ASCE Journal of Computing in Civil Engineering, Vol 2, pp 68-87,
1988,

ROSENMAN, M A, and GERO, J.S., "Design Codes as Expert Systems", Computer-Aided
Design, 17(9), pp. 399-409, 1986.

CRONEMBOLD, IR, and LAW, K.H | "Automated Processing of Design Standards", ASCE
Journal of Computing in Civil Engineering, Vol. 2, pp. 255-273, 1988.

TOPPING, B.H.V., and KUMAR, B., “Knowledge Representation and Processing for
Structural Engineering Design Codes", Engineering Applications of Al, Vol. 2, No. 3, pp. 214-
228, 1989.

BEDARD, C., and GOWRI, K., "Automatic Building Design Process with KBES", ASCE J.
of Computing in Civil Engineering, Vol. 4, No. 2, April, pp. 69-83, 1990

V.K. KOUMQUSIS - P.G. GEORGIOU - C.J. GANTES 249

[14]

(15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

TYSON, T.R., "Effective Automation for Structural Design", ASCE Journal of Computing in
Civil Engineering, Vol. 5, No. 2, April, pp. 132-140, 1991.

BRATKO, I, "PROLOG Programming for Artificial Intelligence", 2nd Edition, Addison-
Wesley Publishing Co., 1990.

STERLING, L. and SHAPIRO, E., "The Art of Prolog: Advanced Programming Techniques",
MIT Press, Cambridge, Massachusetts, 1986.

FEIJO, B., DOWLING, P.J.,, and SMITH, D.L., "Incorporation of Steel Design Codes into
Design Automation Systems", Expert Systems in Civil Engineering, IABSE Colloquium,
Bergamo, 1989.

FENIJO, B., KRAUSE, W.G., SMITH, D L, and DOWLING, P.J,, "A Hypertext Model for
Steel Design Codes", J. of Constructional Steel Research, Vol. 28, 167-186, 1994,

KOUMOUSIS, VK., and GEORGIOU, P.G, "An Expert System for Steel Roof Design",
Structural Engineering Review, Vol. 5, No. 2, pp. 169-181, 1993.

GARRETT, JR, J. H and S.J FENVES, "A Knowledge-Based Standard Processor for
Structural Component Design", Engineering with Computers, 2(4) pp. 219-238, 1987.

GARRETT, JR. H and M. MAHER HAKIM, "An Object-Oriented Model of Engineering
Design Standards”, Journal of Computing in Civil Engineering, 6(3), pp. 323-347, 1992.

JAIN D., K. H LAW and H. KRAWINKLER, "On Processing Standards with Predicate
Calculus”, Proc. of the Sixth Conference on Computing in Civil Engineering, ASCE, Atlanta,
GA, 1989,

RASDORF, W.J. and S. LAKMAZAHERI, “lLogic-Based Approach for Modelling
Organization of Design Standards”, ASCE Journal of Computing in Civil Engineering, 4(2),
pp. 102-123, 1990.

HU T. C., "Combinatorial Algorithms", Addison-Wesley Pub., pp. 138-151, 1982.

FENVES, S.GARRETT, J HAKIM, M. “Representation and Processing of Design
Standards: A Bifurcation between Research and Practice”, 1994 ASCE Structures Congress,
Atlanta, GA.

Leere Seite
Blank page
Page vide

	Session 3: Standards processing and code-related support
	Towards a standard-independent design process
	MiniCode generator: a practical research application for standards processing
	Representation and processing of structural design codes

