| Zeitschrift: | IABSE reports = Rapports AIPC = IVBH Berichte          |
|--------------|--------------------------------------------------------|
| Band:        | 70 (1993)                                              |
|              |                                                        |
| Artikel:     | Seismic evaluation of a brick masonry building of 1895 |
| Autor:       | Kanada, Kazuhiro / Udagawa, Kimio / Shimizu, Toyakazu  |
| DOI:         | https://doi.org/10.5169/seals-53366                    |
|              |                                                        |

## Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

## **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

# Download PDF: 07.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Japan

Japan

Kimio UDAGAWA

Taisei Corporation

Akiyoshi SATO

Ministry of Construction

# Seismic Evaluation of a Brick Masonry Building of 1895

Comportement aux séismes d'un bâtiment en maçonnerie de 1895

Erbebenverhalten eines Backsteingebäudes von 1895

# Kazuhiro KANADA

Taisei Corporation Japan

# Toyakazu SHIMIZU

Ministry of Construction Japan

## 1. Introduction

This papar describes the seismic appraisal of exisiting masonry building and the measures needed to ensure the structural meets modern Tokyo seismic requirements. Fig. 1 shows the first plan.

# 2. Response Analysis of the building

As the structural characteristic in the plan, X and Y directions are different, separate models were created for each direction (see Fig. 2). Each floor was assumed to consists of 5 lumped masses, connected by assumed stiffness for floor slab derived from the test-recorded stiffness value for the wall (see Part 1). Thus vertically, the masses are connected by the brick wall stiffness value based on the shear modulus, and horizontally the masses connected by the floor slab stiffness having both shear and axial components.

The calculation models are shown Fig. 3. By Comparing the buildings dynamic characteristics, the input seismic waves adopted for analysis were EL CENTRO (1940 NS), HACHINOHE (1968 NS), TAFT (1952 EW) and TOKYO (1956 NS).

The fundamental natural frequency of the structure was calculated as 5 Hz (approx.) and the peak value of input acceleration normalized to 200  $\rm cm/s^2$ . The base of the structure's foundation was assumed as fixed against rotation in consideration of the restraint provided by the soil and the soil's damping factor ratio assumed as 7%.

From the analysis, the maximum response anaylsis in the X direction was 561 cm/s<sup>2</sup> (TAFT), representing an amplification factor of 2.81, and in the Y direction was 610 cm/s<sup>2</sup> (HACHINOHE), an amplification of 3.05. (Table 1)

Fig 1 Building Plan (1st Floor)









Table 1 Maximum Response of Mass Points

| Max.  |    |      | TA      | X~di<br>217 195 | rection |      | · · · · · | _    | ПУСИЦ   | Y-di | rection | 200.0 | 1.02    |
|-------|----|------|---------|-----------------|---------|------|-----------|------|---------|------|---------|-------|---------|
| Block | No | DISP | (TIME)  | VEL             | (TIME)  | ACC  | (TIME)    | DISP | (TIME)  |      | (TIME)  | LACC. | (TIME)  |
| DIDOR | 1  | 0 33 | (4 69)  | 1111            | (4 64)  | 406  | (4 60)    | 0 64 | (4 16)  | 16 2 | (4 10)  | 580   | (4 15)  |
| С     | 2  | 0.20 | (4. 69) | 6.6             | (4.64)  | 272  | (4.69)    | 0 46 | (4 16)  | 10 3 | (4 10)  | 462   | (4. 16) |
| ×     | 3  | 0.08 | (4.69)  | 2.5             | (4.64)  | 202. | (3.71)    | 0.15 | (4, 16) | 3 1  | (4, 10) | 278.  | (4, 16) |
|       | 4  | 0.37 | (4.69)  | 12.4            | (4.65)  | 451. | (4.69)    | 0.67 | (4, 16) | 14.9 | (4.10)  | 610.  | (4.15)  |
| В     | 5  | 0.25 | (4.69)  | 8.0             | (4. 65) | 319. | (4.69)    | 0.43 | (4.16)  | 9.6  | (4.10)  | 438.  | (4.15)  |
|       | 6  | 0.09 | (4.69)  | 2.9             | (4.65)  | 205. | (6.55)    | 0.18 | (4.16)  | 4.0  | (4.10)  | 295.  | (4.18)  |
|       | 7  | 0.47 | (4.70)  | 15.7            | (4.65)  | 561. | (4.69)    | 0.50 | (4.16)  | 11.1 | (4.10)  | 490.  | (4.15)  |
| A     | 8  | 0.31 | (4.70)  | 10.1            | (4.65)  | 386. | (4.69)    | 0.34 | (4.16)  | 7.5  | (4.10)  | 389.  | (4.15)  |
|       | 9  | 0.10 | (4.70)  | 3.3             | (4.65)  | 214. | (6.56)    | 0.13 | (4.16)  | 2.7  | (4.10)  | 265.  | (4.15)  |
|       | 10 | 0.40 | (4.69)  | 13.4            | (4.65)  | 484. | (4. 69)   | 0.63 | (4.16)  | 14.1 | (4.10)  | 587.  | (4. 15) |
| B'    | 11 | 0.26 | (4.69)  | 8.6             | (4.65)  | 339. | (4.69)    | 0.40 | (4.16)  | 8.9  | (4.10)  | 417.  | (4.15)  |
|       | 12 | 0.10 | (4.69)  | 3.1             | (4.65)  | 210. | (6.55)    | 0.17 | (4.16)  | 3.7  | (4.10)  | 286.  | (4.16)  |
| [     | 13 | 0.47 | (4. 70) | 15.7            | (4.65)  | 558. | (4.69)    | 0.47 | (4.16)  | 10.4 | (4.10)  | 472.  | (4.15)  |
| A'    | 14 | 0.31 | (4.70)  | 10.1            | (4.65)  | 387. | (4.69)    | 0.29 | (4.16)  | 6.4  | (4.10)  | 355.  | (4.15)  |
|       | 15 | 0.11 | (4.69)  | 3.3             | (4.65)  | 216. | (6.55)    | 0.11 | (4.16)  | 2.3  | (4.09)  | 253.  | (4.15)  |

# 3. Structual Assessment from Results of Response Analysis

Masonry allowable stresses are obtained directly from testing and divided by a safety factor of 1.5 for short term (seismic) conditions. (Table 2)

Maximum responses shear forces and average shear stresses, based on the  $200_{\rm cm}/{\rm s}^2$  input acceleration, are shown in Table 3.

Areas exceeding the allowable stress are also indicated (mark \*).

The stresses from the maximum response forces in the slab are in all cases less than allowable stresses.

From the results discussed, it was desided to reinforce those walls which were shown to be over stressed, by constructing reinforced concrete strengthning walls · connected by shear stud bolts to the existing walls. The maximum shear stress in the upgraded wall, which in all cases are less than the allowable stresses.

Regarding out-of-plane direction (perpendicular to masonry walls), shear forces based on the maximum response acceleration of inplane direction are adopted as the external forces to check the wall bending bearing capacity (Fig.4). By means of this calculation, at thin walls such as 380mm THK.,510mm THK. steel plates (3.2mm THK.) are installed at both sides of the wall surface to strenghthen flexural capacity.

#### 4 . Conclusion

From the response analysis, it was shown the the natural period of the structure is 0.2 seconds as compared to 0.33 seconds for the surrounding soil. This large difference would appear to partly explain why the building didn't suffer any severe damage when struck by the Kanto earthquake.

Thus, structural stability is maintained for an input level up to  $200 \text{ cm/s}^2$  at the ground surface. Further, if the ultimate strength is assumed to be equivalent to the material strength obtained from testing and some of the walls are upgraded as described above, the structure should withstand ground surface accelerations up to  $300-400 \text{ cm/s}^2$ .

above, the structure should withstand ground surface accelerations up to  $300-400_{\rm cm}/{\rm s}^2$ . Despite the building's 100 years of age, it can be seen that this famous old building can remain in their masonry building for many years to come. This study also illustrates how masonry (or indeed other materials) can be engineered to create seicmic resistant structures.

#### Table 2 Allowable Stress (MPa)

|         | a more this believes but a                          |                                                                                             |  |  |  |  |
|---------|-----------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|--|
|         | Testing Value                                       | Short Term                                                                                  |  |  |  |  |
| ession  | 6.0                                                 | 4.0                                                                                         |  |  |  |  |
| ng      | 0.15                                                | 0.10                                                                                        |  |  |  |  |
| 0 n     | 0.15                                                | 0.10                                                                                        |  |  |  |  |
| 3rd fl. | 0.30                                                | 0.20                                                                                        |  |  |  |  |
| 2nd fl. | 0.35                                                | 0.23                                                                                        |  |  |  |  |
| lst fl. | 0.40                                                | 0.27                                                                                        |  |  |  |  |
|         | ession<br>ng<br>on<br>3rd fl.<br>2nd fl.<br>1st fl. | Testing Value   ession 6.0   ng 0.15   on 0.15   3rd fl. 0.30   2nd fl. 0.35   1st fl. 0.40 |  |  |  |  |

Table 3 Maximum Shear Stresses in Wall

| e phear brieso                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 (MPa) [                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                            |
| 0.20                                                                                                                                                                                                                                                       |
| 0, 0, 01                                                                                                                                                                                                                                                   |
| 0.21                                                                                                                                                                                                                                                       |
| 0.20                                                                                                                                                                                                                                                       |
| 0 0.31                                                                                                                                                                                                                                                     |
| 0,27                                                                                                                                                                                                                                                       |
| 50 0.16                                                                                                                                                                                                                                                    |
| 0.24                                                                                                                                                                                                                                                       |
| 0.25                                                                                                                                                                                                                                                       |
| 0 0.18                                                                                                                                                                                                                                                     |
| 0.25                                                                                                                                                                                                                                                       |
| 0.27                                                                                                                                                                                                                                                       |
| 10 0.17                                                                                                                                                                                                                                                    |
| 30 0.20                                                                                                                                                                                                                                                    |
| 30 0.22                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                            |
| e Shear Stress                                                                                                                                                                                                                                             |
| ce Shear Stress<br>(MPa )                                                                                                                                                                                                                                  |
| ce Shear Stress<br>(MPa)<br>00 0.18                                                                                                                                                                                                                        |
| ce Shear Stress<br>(MPa)<br>00 0.18<br>70 0.30                                                                                                                                                                                                             |
| ce Shear Stress<br>(MPa)<br>00 0.18<br>70 0.30<br>30 0.28                                                                                                                                                                                                  |
| Ce Shear Stress   (MPa) 0 0.18   70 0.30 30   30 0.28 0.20                                                                                                                                                                                                 |
| Ce Shear Stress   (MPa) 0.18   70 0.30   80 0.28   10 0.20   30 0.25                                                                                                                                                                                       |
| Shear Stress<br>(MPa )   00 0.18   70 0.30   30 0.28   10 0.20   30 0.25   30 0.25                                                                                                                                                                         |
| Shear Stress<br>(MPa)   00 0.18   70 0.30   30 0.28   10 0.20   30 0.25   30 0.24   10 0.24                                                                                                                                                                |
| Stear Stress   00 0.18   70 0.30   80 0.28   10 0.20   30 0.25   80 0.24   10 0.34                                                                                                                                                                         |
| See Shear Stress   (MPa) 0 18   00 0.18 0   010 0.30 0.28   010 0.28 0   020 0.25 0   030 0.24 0   040 0.37 0   040 0.34 0                                                                                                                                 |
| Shear Stress<br>(MPa )   00 0.18   01 0.30   02 0.20   03 0.20   04 0.25   05 0.24   06 0.27   07 0.34   08 0.44                                                                                                                                           |
| See Shear Stress   (MPa) 0 0.18   70 0.18 0.30   80 0.28 0.28   90 0.28 0.25   90 0.24 0.24   90 0.24 0.24   90 0.24 0.24   90 0.32 0.24                                                                                                                   |
| Shear Stress<br>(MPa )   00 0.18   01 0.030   02 0.20   030 0.20   040 0.20   050 0.24   060 0.34   070 0.34   080 0.24   090 0.34   090 0.38                                                                                                              |
| Shear Stress<br>(MPa)   0 0.18   10 0.30   10 0.28   10 0.20   10 0.24   10 0.24   10 0.24   10 0.24   10 0.24   10 0.24   10 0.24   10 0.34   10 0.28   10 0.28   10 0.28   10 0.28   10 0.28   10 0.28   10 0.28   10 0.28   10 0.28   10 0.28   10 0.28 |
| Shear Stress   (MPa) 0.18   70 0.18   70 0.30   80 0.28   90 0.21   90 0.22   90 0.24   90 0.34   90 0.32   90 0.32   90 0.32   90 0.38   90 0.38   90 0.43                                                                                                |
|                                                                                                                                                                                                                                                            |



Fig 4 Bending Diagram Perpendicular to Wall