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Limit Analysis of Block Masonry Shell Structures
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SUMMARY
The paper presents the limit-state analysis of three-dimensional masonry structures with
special interest focusing on domes. A lower bound approach using linear programming
techniques has been developed and improved with respect to the 'simplex method'
formulation. The duality theorem and an algorithm have been applied to handle three-
dimensional mechanisms resulting from sliding and rotating, or both, at the blocks
interface. The results are compared with those obtained from experimental work carried
out on a masonry dome model in order to study the crack pattern.

RÉSUMÉ
Ce document décrit l'analyse limite de structures tridimensionnelles en maçonnerie, en
particulier des dômes. On a développé une méthode statique avec des techniques de
programmation linéaire qui a été améliorée concernant la formulation du 'simplex
method'. Le théorème de la dualité et un algorithme ont été adoptés pour traiter les
mécanismes tridimensionnels résultant de combinaisons de glissements et rotations à
l'interface des blocs. Les résultats ont été comparés avec ceux d'essais réalisés sur un
modèle de dôme, afin d'étudier le modèle de rupture de ce type de structure.

ZUSAMMENFASSUNG
Dieser Beitrag beschreibt die Grenzwertanalyse dreidimensionaler Mauerwerkstrukturen,

insbesondere Kuppeln. Eine statische Methode wurde mit linearer
Programmierungstechnik entwickelt und in bezug auf die Formulierung der Simplex-Methode
verbessert. Unter Verwendung des Dualitätstheorems wurde ein Algorithmus entwickelt,
um die dreidimensionalen Mechanismen zu behandeln, die durch Gleiten und Rotation
oder beides kombiniert an der Innenflächen der Quadersteine entstehen. Die
gewonnenen Erkenntnisse werden mit denjenigen aus Experimenten an einem
Gewölbemodell verglichen, um das Bruchverhalten dieser Strukturen zu untersuchen.
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1. INTRODUCTION
The limit-state analysis method was first applied to the collapse analysis of masonry structures
by Heyman [1] [2], The scheme for the material consist of rigid blocks and joints incapable of
carrying tension stress, with friction coefficients high enough to prevent sliding. Subsequently
Livesley [3] developed a numerical procedure for the analysis of plane single span arches with
in-plane loading, which he recently extended to multi-span arch structures, considering both
hinging and sliding [4].
The more recent applications directly involved in the masonry dome analysis have followed two
different approaches: the one mentioned above and the finite-element method, which considers
the structure in either its uncracked or cracked state. The works of Bridle-Hughes [5] are based
on the first approach and propose an energy method in which the arch geometry and stiffness
are modified according to the fracture evolution; Oppenehim et al. [6] also deals with an
analytical approach that leads to a closed form solution of the fundamental differential
equilibrium equations in the case of axisymmetric loads under the assumption of zero hoop
stress. This greatly simplifies the problem reducing it to a monodimensional case. The
assumption is correct for the lower part of the dome, but not for the upper part, this being more
extensive as the ratio between rise and span of the dome is bigger, therefore it can be assumed
to be within the lower bound of the possible solutions.
The necessity of the solution of a full three-dimensional problem is first assessed by Melbourne
[7] in 1991. He isolates the barrel vaults that constitute the structure of masonry bridges in
order to define through a number of experimental test the collapse mechanism due to variable
restraint conditions along the abutments and non symmetric loads.
The limit-state analysis therefore appears as a fundamental tool for the assessment of the safety
levels of such structures, and in the following sections a fully three-dimensional analytical
method is presented.

2. DEFINITION OF CONSTITUTIVE LAWS

The Coulomb failure criteria is assumed to rule the mechanical behaviour of a structure of
material whose tensile imaginary strength is due to friction. The criteria states that there will be
sliding in every point of the material where the applied shear (t) overcomes the friction strength
(defined by the coeff. p. and cohesion c0). It also states that the two sides of the sliding surface
will separate if compressive stress (a) is not applied on the surface:

t < c0 +pct (1)

In the block-work masonry sliding movements can occur at the joint surfaces only, and
therefore the sliding layers are a known of the problem; other possible mechanisms are rotations
around axes parallel or orthogonal to the sliding surface, or around an edge or a vertex of the
block, or a superposition of any of these primary mechanisms.
The choice of whether the contact surfaces should be thought slightly convex or concave (i.e. 1

point or 4 points contact in space; 1 or 2 in the plane), does not affects the collapse load factor
in two-dimensional problems, but is fundamental when the kinematic chain and the applied
action that produces it are not in the same plane. The hypothesis of a convex surface (a simple
contact point) that is usually assumed in two-dimensional problems, no longer applies here;
actually with this type of surface the collapse load factor will be always zero, unless it is
somehow coupled with an additional torsional constraint. It is therefore evident that in those
cases the contact should be realised on a concave surface, that can eventually degenerate in a
line or a point. The least number of nodes are then 3, if the surface is flat, and 4 in the case that
a finite curvature is present. In each of these points orthogonal and tangential stresses develop,
the tangential ones oriented in any direction but retaining equilibrium.
Because in real structures blocks are quadrangular parallelepipeds and the contact surfaces will
not in general be flat, the present formulation is written for a 4 contact points with normal to
the surface not necessarily parallels.
For structures with simple curvature Livesley [4] showed how the elimination of one of the
contact points only slightly reduces the collapse load factor while it does not affect the
mechanism, so that the contact surface can be well enough approximated by a plane. The same
cannot be said for double curvature structures, as will be shown later, this involving a strong
constraint for the collapse thrust surfaces.
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Taking the centre of gravity as origin of the coordinates, in the case of contact along only one
direction and assuming the block has not curvature of its own, the equilibrium equations and the
constraint expressions for a single block, are as follows

where r is a vector whose elements are s, t, q (generalised stresses),
H is a matrix of linear geometrical relations,
p is the vector of dead and live loads

In the case of a single block the matrix H is a 6 x 12 (3 generalised stress components for each
contact point) for one contact surface only, 6 x 24 if the contact surfaces are two
The constraints in (2), which are quadratic, represents a conical limit surfaces with vertex q 0
and circular section on the plane s-t

3 OUTLINES OF THE PROPOSED METHOD

To be able to formulate an algorithm in linear programming terms the constraints (2) have to be
linearised, i e the conic surface has to be approximated by a pyramid Different approximating
polygonals on the plane s-t are proposed in literature, from a minimum of 3 edges to a maximum
of 12 In the present case an 8 edges polygonal has been chosen, obtained by introducing two
auxiliary variables, u and v, in order to define the two directions at an angle of 45° with respect
to s and t, and 8 new constrained variables co, (while s, t, u, v are unconstrained), one for each
orientation of the four primary directions
With the introduction of these new variables, the dimension of the global system becomes 46 x 52 for
each contact surface The system has 6 redundant variables
The position of the optimisation problem takes then the canonic form

max (A, : A p + w H r -rL < r~, r+< r^, } (3)
The linear programming algorithm used works extracting the maximum rank sub-matrix of the
system, choosing the variable to be maximised in relation with the correspondent known vector
and the active constraints, computing the increment in the load factor associated with the
maximisation of the variable, and then operating a substitution between the column of this
variable and one, appropriately chosen, external of the present sub-matrix
The first problem that arises in a limit-state analysis approach is the fact that the normality rule
does not apply when sliding is involved, because the generalised stress limit surface and the
generalised strain limit surface do not coincide the first one is a cone and the limit value of the
shear linearly depends on the normal stress, while the corresponding sliding of the associate
mechanism will take place without any change in volume Alternatively applying the normality
rule to the conical limit surface, the generalised strain vector spl, assumed to be normal to it, will
show a component along the q direction that implies separation of the facing nodes, but this is not
possible ifq ^ 0
The numerical methods and their optimising strategies can be different according to the object and
size of the analytical problem It is worthwhile noting that the adopted algorithm, a series of Gauss-
Jordan reductions, with forward and backward substitutions, has the advantage of operating only on
the meaningful portion of the matrix (all the equations but only the primary variables, so that the
matrix to be stored is a 46 x 12 instead of 46 x 52 for each block) and of exploiting the dual nature
of the problem so as to obtain from the same solution the collapse load factor and the associated
mechanism The back substitution is actually carried out at the end of the forward process to obtain
the sliding displacement component, associated with the variables s, t, u, v that are unconstrained, as
independent from q and therefore observing the normality rule

4 APPLICATION TO SHELLS AND DOMES

Two versions, applicable to structure of double curvature will be proposed the first aims to
define the collapse of the material medium from a local approach, the second is intended to

H r p
(2)

i= 1,4
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define the collapse load factor on a global scale. In the former the equations are written for the
individual block constituting the masonry work. Each block is in contact with 6 adjacent ones
and, if each interface is defined by 4 contact points, the number of generalised primary stresses
will be 6 x 4 x 3 72. Some of the points (vertices of the block), being common to two normal
surfaces, can be regarded as a single one with six applied generalised stress components, fig. 1.

The middle points, related with the staggering, can be thought as common to the considered
block and the two above and below, fig. 2, so to have a single node. In this way the increment
in matrix dimension is only due to the increased number of stresses in each node, while the
bandwidth of the matrix is considerably increased according to the complex contact scheme.
Therefore the coefficient matrix H of the equilibrium equations takes a three-diagonal form,
while the limit constraints duplicate to take into account the friction constraint onto the parallel
surface of the block as well as onto the meridian ones.
As far as the equilibrium equations are concerned, dimensions of each block matrix are 6 x 24,
plus 80 equations for the auxiliary constraints. As it can be seen, the size of the problem
quickly increases even if a limited number of elements are treated (i.e. hundreds in order to
simulate a part of a real structure), CPU time growing with the power of 2 of the matrix
dimension.
In order to reduce the problem dimensions, a simplification can be introduced by extending the
shear reciprocity rule (t12 t21) to the plastic field; it is worthwhile noticing that this assumption
provides approximated values, on the conservative side, of the collapse load factor X.

If no external load is applied to the block, the equilibrium equation along the direction tangent
to a generic parallel becomes :

^ (3)
ôcp 33

being R, and R2 the two local radii of curvature, (p and 0 the spherical coordinates. If q2 0 then
also *21 because of the friction relation, and locally approximating the surface with a sphere:

t12 (R2 cos cp - Rj cos cp) + 0 (4)
3(p

The first element is 0 and thus the variation.of tl2 along the meridian.
The simplification t12 t21 therefore reduces of 1 the number of variables. The other assumption is

that, the flexural stiffness along the parallel being much greater than the one along the meridian,
generalised stress s normal to the surface will develop only on the parallel faces of the element (of
normal q,) while their variation along the meridian line is equilibrated by the normal component of q2.
This reduces the number of generalised stresses for each node to 4 and only one conical surface is
needed for the constraints, checking the t variable as function of the lesser between q, and q2, so that
the block matrix is 46 x 16.
This formulation has been used to study the local behaviour and collapse mechanism of 1/8 of the
experimental dome for an outward horizontal displacement. The result has also been compared with
the one obtained for a spherical dome (fig. 3).
It is evident that the present formulation is not only unsuitable for analysing global mechanisms but is
also unnecessary at the global scale. Therefore a slightly different algorithm has been prepared that
derives from the observation of the most common structural layout and associated failure patterns of
domes. The shell may be divided into not less than 8 slices with straight sliding surfaces along a
discrete number of meridian and parallel curves, fig. 4. The meridian surfaces represent the meridian
cracks, while the parallels are the lines where an hinge along the meridian arch is most likely to
occur.
In this way the entire structure can be modelled with a small number of macro-elements. For each
one of these the equilibrium equations must take into account the relation between q, and q2 due to
the finite double curvature of the element and the discontinuity conditions at the sliding interfaces.
Equilibrium equations are as follows.

2rtR2q,(sin(p)2 + 27tR2s • sincp • coscp yJ 27tR2sincp • dtp
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R2q,(sincp) + Rjq^sincp) +
d(R2s • sincp)

<3(p
yR2R,sincp • coscp (5)

d(R2q,sin(p)
d<p

R,q2(coscp) - R2t sin<p yR2R, (sincp)2

While the discontinuity condition for a material (with <p polar coordinate in the vertical plane
and a n/2 - <p) are

The equilibrium differential equations can not straight be integrated and linearised in the general
form Once a curve has been chosen to approximate the real curve that generate the dome,
however, is then possible to define an analytical expression for R, and R2 and therefore the
equation that represents the curve can be written in the Hessian normal form choosing (p as the
parameter Substituting these in the system (5) and applying the hypothesis of a uniform stress state
in the block when the ultimate state is reached, leads now to linearised equations The method has
been applied to structure whose approximating curve are sections of circles, cycloids and ellipses.
Load factor and collapse mechanism, for a given c„ and p, depend on several parameter as radius,
variable thickness, ratio between rise and span of the generating curve, and relative position of the
discontinuity surfaces
As it can be seen from fig. 5, where the relation between the load factor and one of these parameters
has been drawn, normalising the load factor value with respect to the dead load value, the relation is
not monotone but reaches in general a maximum for a certain value and then decrease exponentially
for the others This depends on the fact that the geometrical parameters are not independent
Other peculiar characteristic of dome structure is the fact that, the behaviour being mainly ruled by
the shear strength, the mechanism shows an antisymmetric pattern even if the action is symmetric
More in general once the first crack has open the symmetry is lost and the final collapse mechanism
evolves toward an highly non symmetric pattern

[(qi -q2)sina] n 1, 2

(6)

T._
(qi -q2)cosa

fig. 1 - Coordinate system and
generalised nodal stresses
for a block
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fig.2-A 90° sector of a

spherical dome subjected to
horizontal outward action on
the second row

fig. 3 - Collapse mechanism
for a 45° sector of the
experimental dome (X 0.55)
and of a spherical dome (X
0.325) for outward horizontal
sliding of the base

fig.4 - Global collapse
mechanism for a spherical
dome with hinges positioned at
45° and 80° for the settlement
of one basis.
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5. CONCLUSIONS

The analytical method described above is part of a Ph.D. research program which also

investigates the behaviour of masonry domes affected by foundation movements, through
laboratory testing. For this purpose a model dome (fig. S has been built in the Laboratory of
the Cambridge University Engineering Department, U.K. [8], One of the most interesting tests
involves the sliding out of one or two of the sectors of the base ring which simulate the lower
structure. The change in shape of the dome and the relative movement between blocks are
recorded by means of special transducers. Results show that the damping behaviour for elastic
shells still applies, even if the thickness cannot be thought of as significantly smaller than the
radius (fig. 7). Therefore the crack pattern only develops in a region close to the point of
application of the action. When the action is further increased, the crack pattern tends to extend
and flow in the one caused by an upper load, simulating the lantern effect, and a series of local
hinging mecanisms take place at the single block level (fig. 8). The load factor has been deduced
from the decrease in the level of bearing capacity of the dome (for the upper imposed load)
when the base is moved out. The values and shape of the mechanism show good correspondence
with the results obtained by the analytical model in fig. 4.
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fig-5 -
Load factor variation
for different dimension
of the base blocks
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fig.6- The model dome is
realised with 380 small concret

blocks casted in situ. To
simulate the friction
caractéristiques of the stone
sandpaper has been interposed
between surfaces.

fig. 7 - Crack pattern for
outward horizontal sliding of
the base
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