Zeitschrift:	IABSE reports = Rapports AIPC = IVBH Berichte
Band:	69 (1993)
Artikel:	Habitability under horizontal vibration of low rise buildings
Autor:	Nakata, Shinji / Tamura, Yukio / Otsuki, Tamio
DOI:	https://doi.org/10.5169/seals-52543

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 05.09.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Habitability under Horizontal Vibration of Low Rise Buildings

Confort des immeubles bas soumis à des vibrations horizontales Bewohnbarkeit niedriger Gebäude unter horizontalen Schwingungen

Shinji NAKATA

Eng. Asahi Chemical Ind. Co. Ltd. Tokyo, Japan **Yukio TAMURA** Eng. Tokyo Inst. of Polytechnics Atsugi, Japan Tamio OTSUKI

Eng. Shimizu Corporation Tokyo, Japan

SUMMARY

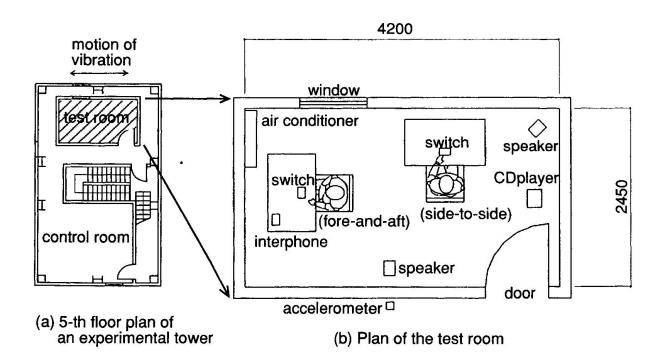
Horizontal vibration perception tests are conducted for high-frequency horizontal vibrations expected with mid- and low-rise steel-framed buildings due to road traffic. The test results are evaluated probabilistically.

RESUME

Des essais de perception de la vibration horizontale ont été effectuées, pour des vibrations à haute fréquence dues au trafic routier, sur des bâtiments à ossature métallique de basse et moyenne hauteur. Les résultats des essais sont traités de façon probabiliste.

ZUSAMMENFASSUNG

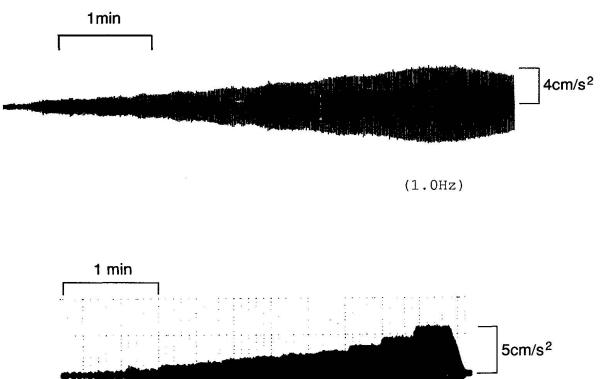
Es wurden Tests zur Wahrnehmung hochfrequenter horizontaler Schwingungen durchgeführt, wie sie in niedrigen und mittelhohen Stahlskelettbauten infolge von Strassenverkehrserschütterungen zu erwarten sind. Diese Tests werden mit Wahrscheinlichkeitsberechnungen ausgewertet.

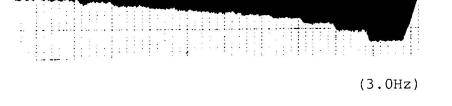

1. PURPOSE

Current research efforts and guidelines regarding the response of occupants exposed to horizontal motions and vibration in buildings deal only with low-frequency ranges (0.33-2.0 Hz) [1-5]. This is due to the practical requirements for the design of high-rise buildings. However, mid- and low-rise steel-framed buildings sometimes pose problems related to vibrations caused by road traffic. In this study, horizontal vibration perception tests at high frequencies around 3.0 Hz, which is the normal range for the natural frequencies of mid- and low-rise steel-framed residential buildings, were conducted. Results were evaluated probabilistically to propose guidelines for the evaluation of the habitability of mid- and low-rise steel-framed houses.

2. TEST METHOD

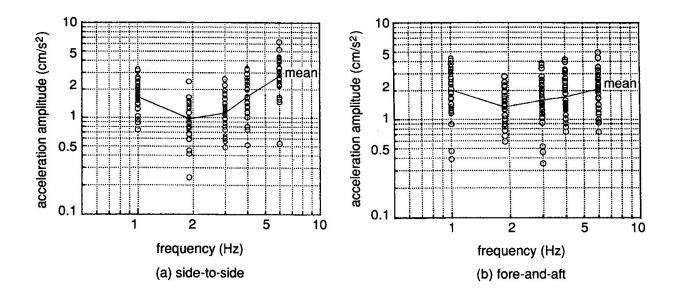
2.1 Test Facilities


The plan of the test room is shown in Fig. 1. The test room was set up on the fifth floor of a seven-story steel-framed experimental tower. Vibration generators were installed on the sixth floor of the tower to create the motion of vibration along one axis as shown in Fig. 1.



2.2 Test Procedures

The perception tests were conducted on a total of 40 subjects. Vibration was given to a seated subject in both fore-and-aft motion and side-to-side motion. Each subject's perception was detected by telling the subjects to press an "ON" button when he/she started perceiving a vibration. Sinusoidal vibrations of a certain frequency with an increasing amplitude were given. The frequency was set at 1.0, 1.9, 3.0, 4.0, and 6.0 Hz. Fig. 2 shows examples of the response acceleration of the test room at 1.0 and 3.0 Hz. The subjects were told to fill out a questionnaire, which was designed to check if they perceived any vibrations and evaluate how they were perceived, after the test.


Fig.2 Examples of test room acceleration

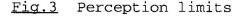

3. EXPERIMENTAL RESULTS

Fig. 3 shows the results of the perception threshold. The mean values are indicated by a solid line. The mean values show that the side-to-side perception thresholds are lower than the fore-and-aft perception thresholds at 1.0-3.0 Hz. However, at 4.0-6.0 Hz, the subjects are more sensitive to fore-and-aft motion than to side-to-side motion. Although horizontal vibrations were given in the test room, half of the subjects perceived a vertical vibration at 6.0 Hz fore-and-aft vibration. This result agrees with the guideline in ISO 2631 [6] where the equal sensitivity curve for whole-body vibration shows that at 1.0-3.15 Hz human sensitivity to horizontal vibration sensitivity to vertical vibration is higher.

Fig. 4 shows perception histograms at 4.0 Hz. These are illustrations of the determination of the probability distribution of perception limits, where the perception limits were standardized using the mean value at each frequency, and the log-normal distributions were compared.

Fig. 5 shows the probabilistic perception limits corresponding to 2, 10, 50, and 90% values. The figure also shows ISO 2631 base curve [6, 7] and the perception limits in the lower frequency range for the fore-and-aft motion by Kanda, Tamura et al. [2]. With respect to the side-to-side motion, the ISO base curve at 2.0-6.0 Hz roughly corresponds to the 10% values of our results. As for the fore-and-aft motion, the 50% values at 1.0-2.0 Hz coincide with the 50% values for the low-frequency tests [2].

42

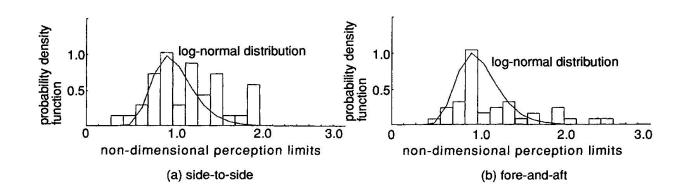


Fig.4 Examples of perception histograms (4.0Hz)

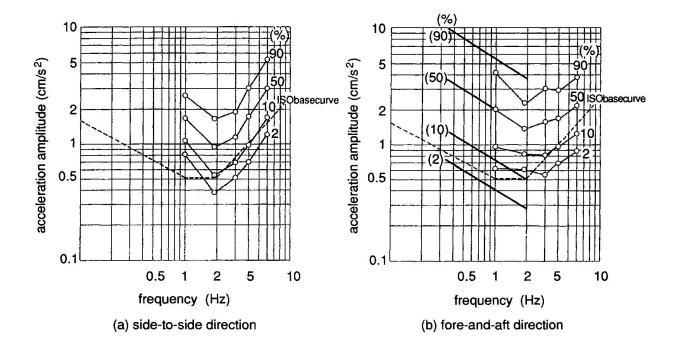


Fig. 5 Probabilistic perception limits and the comparison with other criteria and reports

4. CONCLUDING REMARKS

From the perception tests, the following conclusions were obtained:

- (1) Perception limits vary with the frequency of motion and their individual variations are significant.
- (2) The gradient of perception limits with the vibration frequency changes at around 2.0 Hz.
- (3) The gradients of the ISO base curve and our results are almost consistent with each other.

ACKNOWLEDGEMENT

We would like to express our heartful thanks to Mr. Kunio Fujii of Wind Engineering Institute Co., Ltd. and Mr. Shunichi Naito of TAKU Architecture and Structural Engineering Co., Ltd. for their invaluable advice in connection with this study. Additionally, we would like to express our gratitude to Prof. Kanda and his colleagues for their research in this area of study.

REFERENCES

- KANDA, J., TAMURA, Y., and FUJII, K., Probabilistic Criteria for Human Perception of Low-Frequency Horizontal Motions, Symposium/Workshop on Serviceability of Buildings (Movements, Deformations, Vibrations), 1988, Vol. 1, pp. 260-269.
- KANDA, J., TAMURA, Y., and FUJII, K., Probabilistic Perception Limits of Low-Frequency Horizontal Motions, Conference with International Participation Serviceability of Steel and Composite Structures, 1990.
- 3. Committee on Allowable Limits of Vibration in High-Rise Housing, Study on Perception of Low-Frequency Vibration in High-Rise Housing-Part 1, 1988.
- 4. Study on the Influence of Motions and Vibrations in High-Rise Buildings on Habitability, 1983.
- 5. Architectural Institute of Japan, Guidelines for the Evaluation of Habitability to Building Vibration, 1991.
- ISO, Evaluation of Human Exposure to Whole-Body Vibration-Part 2: Evaluation of Human Exposure to Vibration and Shock in Buildings (1 to 80 Hz), ISO/DIS 2631/2.
- ISO, Guidelines for the Evaluation of the Response of Occupants of Fixed Structures, Especially Buildings and Off-Shore Structures, to Low-Frequency Horizontal Motion (0.063 to 1 Hz), ISO 6897, 1984.