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Probabilistic Design Concept

Concepts probabilistes de calcul

Probabilistische Konzepte der Berechnung
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SUMMARY
Two kinds of uncertainties are to be generally distinguished when analyzing structural serviceability:

randomness of basic variables and vagueness in definition of limit states. The second
kind of uncertainty may be handled by methods of fuzzy set theory. Derived unserviceability
measures enable one to formulate probabilistic design concepts including optimization.

RESUME

L'analyse de l'aptitude au service des systèmes porteurs des bâtiments implique de distinguer
en général deux sortes d'incertitudes: le caractère aléatoire des variables de base et de la
définition imprécise des états limites. Il est possible d'appliquer la théorie des ensembles flous
au dernier type d'incertitude. Les critères en découlant, et définissant une aptitude au service
défectueuse, permettent de formuler des concepts de dimensionnement probabilistes par
l'application d'une méthode d'optimisation.

ZUSAMMENFASSUNG
Bei der Beurteilung der Gebrauchstauglichkeit von Gebäuden sind im allgemeinen zweierlei
Unsicherheiten zu unterscheiden: die Zufälligkeit der Basisvariablen und die Unschärfe in der
Definition der Grenzzustände. Letztere kann mit Methoden der Fuzzy-Set-Theorie behandelt
werden. Daraus abgeleitete Kriterien mangelnder Gebrauchstauglichkeit erlauben die Formulierung

wahrscheinlichkeitstheoretischer Bemessungskonzepte unter Einsatz von
Optimierungsverfahren.
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1. INTRODUCTION

Serviceability of building structures is their ability to perform
adequately in normal use [1,2]. It is well recognized that due to
several trends in modern design and construction, serviceability of
building structures is becoming more and more important economic as
well as technical issue [3,4,5,6]. Moreover, current procedure for
dealing with serviceability are from various reasons insufficient and
need to be improved.
One of the most important tasks is an identification of relevant
functional requirements and their specification in terms of suitable
set of serviceability parameters u,-. General guidance is offered in
another contributions [7,8] at that colloquium. It appears that more
requirements are often to be considered simultaneously, and both
structural response to actions and deviations due to production
procedures are to be considered. Nevertheless, in most cases only one
serviceability parameter u is considered at a time (for example
deflection at midspan, slope, amplitude, acceleration). In some
cases, however, two or more parameters are to be investigated
simultaneously (for example deflection and amplitude, amplitude and
acceleration).
The most frequently applied serviceability criteria limit the actual
values of serviceability parameter u,-, denoted z,(t), t being time,
by time independent limiting values I; [7]; in case of single
parameter u the following inequality is traditionally used

z(t) * 1 (1)

This condition may be generalized for more complex quantities and/or
a set of parameters u,-, actual values Zi(t) and limiting values I/.
However, the fundamental question to be clarified first concerns
rational and rigorous definition of the quantities entering any
serviceability condition including the fundamental one, described by
Equation (1).

2. UNCERTAINTIES

It is well recognized [6,9,10] that structural response z(t) in
Equation (1) depends on a number of basic variables of random nature
such as actions, material properties and geometrical quantities.
Consequently z(t) is a random function of the time t, which may have
considerable variability. Generally the structural response may be
described by probability density function fz(u,t), the mean function
Pi(t) and standard deviation function az(t), which become constants
when structural response is described by time independent random
variable z. In some cases probability distribution of structural
response is not symmetrical and in that case skewness (likely to be
positive) could be used [10]
The limiting value I on the right hand side of Equation (1)
generally follows from functional requirements, which are often
expressed in qualitative (verbal) way only and, consequently, are
very subjective. Thus, the limiting values are also affected by
considerable uncertainties, partly of a different nature than those
involved in structural response z(t). Evidently, in serviceability
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limit states in is rarely possible to distinguish unambiguously
between acceptable and unacceptable state. This imprecision or
vagueness in definition of limit states, appears to be the most
significant source of great differences in evaluation and practical
assessment of structural serviceability.
Evidently, there are two kinds of uncertainties to be considered
when analyzing structural serviceability: randomness of basic
variables or resulting variables and vagueness or imprecision in
definition of serviceability limit states. While more familiar
randomness of variables can be handled mathematically through the
well established theory of probability, less familiar imprecision and
vagueness in definition of serviceability limit states may be handled
by methods of newly developing theory of fuzzy sets [11,12,13]. The
following theoretical model for limiting values 1/ of serviceability
parameters is based on both concepts: randomness and fuzziness.

3. SERVICEABILITY LIMITS
Consider the fundamental case of a single serviceability parameter

1.0

0.5

(for example
deflection at midspan-
point or amplitude).It is assumed that
with increasing
parameter u, the ability
of a structure to comply

with specified
functional requirements

decreases and
level of serviceability

damage increases.
In some cases a single
distinct value Ij could
be identify, which
separates unambiguously

acceptable and
unacceptable state.
This, rather special
case, may be described
by stepwise membership
function ns(u), shown in Figure 1. As a function of the
serviceability parameter u it indicates membership of a structure in a
set S of serviceable structures

f*s " 10

s F - non S

f*S=0

Figure 1 Membership function ßs(u),

Hs(u) - 1
fig(u) - 0

ifif
u < 10
u t I„ (2)

Generally, however the membership function ßs(u) may be more
complicated [14]. A conceivable and more realistic form of the
function Hs(u) could be

fts(u) - 1

(12 ~u)D
f*s(u) -

(12 - 1x) n

lig(u) ~ 0

if u < lx

if lx * u < la

if 12 * u

(3)
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which is shown in Figure 2. Transition region, where the structure
is gradually becoming unserviceable is specified by the lower limit
1 j and the upper limit lj. Both these limits together with the
exponent n characterize vagueness or fuzziness of the limit state and
should be derived from its nature. Fuzzy set of unserviceable
(damaged or
failed) structures F
is the complement of
the set of serviceable
structures S, thus F
non S. The membership
function of the set F
is given [11,13] as

fF(u) - 1 - ps(u)
(4)

KS"10
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Figure 2 Membership function p,(u).

Furthermore, for a
given serviceability
level ßs (function
symbols without arguments
are used to denote a
variable or numerical
value), serviceability
parameter u (including
both limits lj and I/)
may have considerable
scatter. Similarly for a given parameter u, serviceability level F/
may be a random variable. This randomness (not fuzziness) of
membership function is caused by natural variability of human
perceivability to various defects or due to random deviation in
properties of installed machinery or secondary structures [6]
Therefore, the
membership functions
Ps(u) and nr(u) are
generally random
functions of the serviceability

parameter u.
Variability of the
membership function
Hf(u) for n 1, which
is the case used in
the following analyses,

is indicated in
3. It is
that above
membership

Hf(u) repre-
mean fun-
furthermo-
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functions
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ction and,
re, that for any given
damage level f/, the
probability density
function of the
serviceability parameter
u may be described by
normal distribution 9i(u'/m) having the mean equal to u
Hr(u") F/, and approximately constant (at least in
interval of the parameter u) standard deviation er/.

Figure 3 Membership function nr(u).
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a relevant
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The above theoretical model of serviceability limits is consequently
characterised by fuzziness characteristics 1j, J; and the exponent n,
and by the randomness characteristic represented by the standard
deviation Oj. Four extreme combinations of both concepts may be
obviously recognised:

(a) deterministic case, when !/=!;= It, and o> 0,
(b) pure fuzziness, when 1; # It and <7/ 0,
(c) pure randomness, when 1; 1/ It and * 0,
(d) fuzzy-random case, when 1; i* J; and af »» 0.

From the most general combination of both concepts (d) which is
treated bellow, the other combinations may be obtained by appropriate
choice of the model characteristics. For example the case of pure
randomness (c), which is considered in [6], is obtained for J; It

lc

4. UNSERVICEABILITY MEASURES

Expected unserviceability at a given damage level nr is the cumulative

function t[(u/ßr) of the serviceability parameter u.

<j>F (u/fip) - f (u'/tiF) du'. (5)

The total expected unserviceability (damage) corresponding to the
serviceability parameter u is defined as weighted expected
unserviceability with respect to all possible damage levels n?

$F(u)-± f 4>f (u/pF) dpF
(6)

where N l/(n+l) is the normalizing factor to limit the total
unserviceability into the interval <0,1>. The limiting value 1 can
be now defined as the parameter u for which the total expected
unserviceability it is equal to a required value tj, thus

(1) " -Jjj PF 4>f (l/l*F> dflp - 4>t
(7)

Taking into account random character of structural response z(t), the
probability of failure of a structure at a given damage level and
time t is provided by the integral

Pf(ßp, t) - jpz (u/t) 4p (u/fip) du. (8)

where fz(u/t) denotes the probability density function of structural
response z(t). The total instantaneous unserviceability with respect
to all possible damage levels ßr at the time t is

pf (t) - -jj f ßFPt (PF> t> dßF (9)
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The total probability of failure p/ within the whole intended life
time T is then

T

Pt " [pf(t)dt. (10)
o

The above unservioeability measures, given by Equations (7), (8), (9)
and (10), can be used to formulate various types of design criteria.
Moreover, if the actual malfunction cost of any structure is
proportional to the damage level p/, then the expected malfunction
cost C( can be expressed [16] as

r
Ce - / Cp (t) pf (t) dt - PtCF

(11)

where the malfunction cost Cf(t) due to the full unservioeability
(when 1) is approximated by a time independent value C/. If the
total cost C could be expressed as the sum of the initial cost Cj and
expected cost Ct given by Equation (11), thus

C ~ C0 + pt CF. (12)

then optimization procedure may be applied [15,16]. Necessary
conditions for the minimum total cost follows from partial
derivatives with respect to optimization variables.

5 EXAMPLE

The following example is based on experimental data [17] concerning
serviceabi1itylimit state of
visual disturbance.

Excessive sags
of 49 reinforced
concrete floors
and beams were
recorded when
annoying deformations

were perceived.
Observed

disturbing sags z/L,
where L denotes
span of horizontal
components [4],
are within a broad
range from 0.003
to 0.018. Using
this data the mean
membership function

m(u), may be
approximated by
the tri-linear
function (n=l),
indicated in Figure

3. Further,
the following fuz-

Figure 4 The function ti(u) for n 1.
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ziness and randomness characteristics were derived from these data
It I.
-jr - 0.003, - 0.014, or - 0.05 (1± - 12) (13)

The standard deviation C/ was assessed from scatter of the data about
the mean function as one twentieth of the transition length.
The total expected unserviceability #/(u) for a - 1 is shown in
Figure 4. It follows from Equation (7) and Figure 1, that for #/
0.05 the limiting deflection is I * lt + 0.2 (It - lù L/192, if #/

0.01, then I « It + 0.05 (It - 1 j) L/282. It should be however
noted, that used experimental data do not include all the relevant
information, and some additional assumptions were required to define
the above model. More data, supplemented by information on level of
observed damage, are urgently needed.
Let the cross section height A, be a single optimization variable.
The sag z may be expressed as z K h'3, where K denotes a constant.If the initial cost Ci(h) is proportional to A, then the firstderivative pf Equation (12) yield the condition [5]

*4.<14,
The mean sag p,, determined for selected ratios Cr/Ctand coefficientsof variation ot/nt using Equation (14) and characteristics described
by Equations (13) are given in Table 1.

Table 1. The optimum mean sag p,/L
Ratio Ratio Cf/Cf

1 5 10 100 1000

0.00 1/159 1/251 1/282 1/391 1/498
0.05 1/181 1/316 1/376 1/571 1/781
0.10 1/220 1/431 1/532 1/855 1/1205
0.20 1/313 1/680 1/847 1/1351 1/2041

If the coefficient of variation ot/pt 0.10, then the optimum mean
Hi equals L/220 for Ci/Cf=l, L/532 for Cj/Cg=l0. It appears, that
commonly applied limiting values of the range from L/360 to L/200
correspond to relatively low cost of full malfunction Cr (Ct/CO from
1 to 5) and high fuzzy probability of failure pt (from 0.01 to 0.05).
Consequently, commonly accepted serviceability constrains may be
frequently uneconomical.

5. CONCLUSIONS

(1) Two kinds of uncertainties are to be distinguished when
analyzing structural serviceability: randomness and vagueness.

(2) Imprecision and vagueness in definition of structural service¬
ability may be handled by methods of fuzzy set theory.

(3) Proposed unserviceability measures enable to formulate
probabilistic concepts for design of structural serviceability
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including optimization.
(4) Optimization of serviceability limit state due to visual

disturbance indicates, that commonly used limiting values for
sag of horizontal components may be uneconomical.

(5) Further research is recommended to concentrate on
- experimental data enabling more accurate theoretical models for

vagueness in definition of limit states,
- fuzzy concept for multidimensional serviceability problems.
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