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Probabilistic Design Concept
Concepts probabilistes de calcul

Probabilistische Konzepte der Berechnung
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SUMMARY

Two kinds of uncertainties are to be generally distinguished when analyzing structural service-
ability: randomness of basic variables and vagueness in definition of limit states. The second
kind of uncertainty may be handled by methods of fuzzy set theory. Derived unserviceability
measures enable one to formulate probabilistic design concepts including optimization.

RESUME

'analyse de I'aptitude au service des systémes porteurs des batiments implique de distinguer
en général deux sortes d’incertitudes: le caractére aléatoire des variables de base et de la défi-
nition imprécise des états limites. |l est possible d’appliquer la théorie des ensembles flous
au dernier type d'incertitude. Les critéres en découlant, et définissant une aptitude au service
défectueuse, permettent de formuler des concepts de dimensionnement probabilistes par
l'application d’une méthode d’optimisation.

ZUSAMMENFASSUNG

Bei der Beurteilung der Gebrauchstauglichkeit von Gebauden sind im allgemeinen zweierlei
Unsicherheiten zu unterscheiden: die Zufélligkeit der Basisvariablen und die Unscharfe in der
Definition der Grenzzustande. Letztere kann mit Methoden der Fuzzy-Set-Theorie behandelt
werden. Daraus abgeleitete Kriterien mangelnder Gebrauchstauglichkeit erlauben die Formu-
lierung wahrscheinlichkeitstheoretischer Bemessungskonzepte unter Einsatz von Optimie-
rungsverfahren.
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1. INTRODUCTION

Serviceability of building structures is their ability to perform
adequately in normal use [1,2]. It is well recognized that due to
several trends in modern design and construction, serviceability of
building structures is becoming more and more important economic as
well as technical issue [3,4,5,6]. Moreover, current procedure for
dealing with serviceability are from various reasons insufficient and
need to be improved.

One of the most important tasks is an identification of relevant
functional requirements and their specification in terms of suitable
set of serviceability parameters u;. General guidance is offered in
ancther contributions [7,8] at that colloquium. It appears that more
requirements are often to be considered simultaneously, and both
structural response tco actions and deviations due to production
procedures are to be considered. Nevertheless, in most cases only one
serviceability parameter u is considered at a time (for example
deflection at midspan, slope, amplitude, acceleration). In some
cases, however, two or more parameters are to be investigated
simultaneously (for example deflection and amplitude, amplitude and
acceleration).

The most frequently applied serviceability criteria limit the actual
values of serviceability parameter u;, denoted z;(t), t being time,
by time independent limiting values 1; [7]; in case of single
parameter u the following inequality is traditionally used

z(t) 5 1 (1)

This condition may be generalized for more complex guantities and/or
a set of parameters u;, actual values z;(t) and limiting values 1I;.
However, the fundamental question to be clarified first concerns
rational and rigorous definition of the quantities entering any
serviceability condition including the fundamental one, described by
Equation (1).

2. UNCERTAINTIES

It is well recognized [6,9,10] that structural response 2z(t) in
Equation (1) depends on a number of basic variables of random nature
such as actions, material properties and geometrical quantities.
Consequently z(t) is a random function of the time t, which may have
considerable variability. Generally the structural response may be
described by probability density function ¢.(u,t), the mean function
H:(t) and standard deviation function o;(t), which become constants
when structural response is described by time independent random
variable z. In some cases probability distribution of structural
response is not symmetrical and in that case skewness (likely to be
positive) could be used [10].

The limiting value 1 on the right hand side of Eguation (1)
generally follows from functional requirements, which are often
expressed in qualitative (verbal) way only and, consequently, are
very subjective. Thus, the limiting wvalues are alsoc affected by
considerable uncertainties, partly of a different nature than those
involved in structural response z(f). Evidently, in serviceability
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limit states in is rarely possible to distinguish unambiguously
between acceptable and unacceptable state. This imprecision or
vagueness in definition of limit states, appears to be the most
significant source of great differences in evaluation and practical
assessment of structural serviceability.

Evidently, there are two kinds of uncertainties to be considered
when analyzing structural serviceability: randomness of basic
variables or resulting variables and vagueness or imprecision in
definition of serviceability limit states. While more familiar
randomness of variables can be handled mathematically through the
well established theory of probability, less familiar imprecision and
vagueness in definition of serviceability limit states may be handled
by methods of newly developing theory of fuzzy sets [11,12,13]. The
following theoretical model for limiting values I; of serviceability
parameters is based on both concepts: randomness and fuzziness.

3. SERVICEABILITY LIMITS

Consider the fundamental case of a single serviceability parameter
u (for example de-
flection at midspan- Bo= 1.0
point or amplitude). ¥
It is assumed that Lo
with increasing para- p(w)
meter u, the ability f s F=nonS
0

of a structure to com-
ply with specified
functional requireme-
nts decreases and
level of serviceabil-
ity damage increases.
In some cases a single p3==0
distinct value 1I; could 0
be identify, which
separates unambigu- 0 ! ——
ously acceptable and 0

unacceptable state.
This, rather special
case, may be described Figure 1 Membership function u;(u).

by stepwise membership

function usy(u), shown in Figure 1. As a function of the ser-
viceability parameter u it indicates membership of a structure in a
set S of serviceable structures

BHg(u) =1, 1if u~<1,, (2)
pgl(u) =0, 1if wucl,,

.5

Generally, however , the membership function pg;(u) may be more
complicated [14]. A conceivable and more realistic form of the
function us;(u) could be

Hg(u) = 1, if u<1,,
(I -u)*® . (3)
(u) = —32_ * if 1, su~<1,,
M (1, -1,)°® £ =S

pg(u) - o0, if 1,su,
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which is shown in Figure 2. Transition reqgion, where the structure
is gradually becoming unserviceable is specified by the lower limit
I, and the upper limit Il;. Both these limits together with the
exponent n characterize vagueness or fuzziness of the limit state and
should be derived from its nature. Fuzzy set of unserviceable
(damaged or

failed) structures F
is the complement of p.=10
the set of serviceable §
structures S, thus F = 1.0
non 8. The membership p(w)
function of the set F 5 P
is given [11,13] as '

Bplu) =1 - pg(u). 05
(4) n=1

F=nons$S

Furthermore, for a
given serviceability pe=0
level u; (function sym- 0
bols without arguments
are used to denote a 0 I ] ~— u
variable or numerical 1 2
value), serviceability
parameter u (including
both limits I, and 1;), Figure 2 Membership function u,(u).

may have considerable :

scatter. Similarly for a given parameter u, serviceability level u;
may be a random variable. This randomness (not fuzziness) of
membership function 1is caused by natural variability of human
perceivability to various defects or due to randem deviation in
properties of installed machinery or secondary structures {[6].
Therefore, the
membership functions
ps(u) and up(u) are q,(l"/lj,)
generally random fun-
ctions of the service-
ability parameter u. Lo
Variability of the P,l“) pp= 1.0
membership function s /i)
pur(u) for n = 1, which auld
isa the case used in

the following analy- 0.5
ses, is indicated in
Figure 3 It is
assumed, that above e (u/) F=nonS$
defined membership
functions uy(u) repre- 0
sents the mean fun-
ction and, furthermo- 0 By~ 0.0 : i
re, that for any given I F]
damage level uy, the
probability density
function of the ser- Figure 3 Membership function pp(u).
viceability parameter

u may be described by

normal distribution ¢;(u’'/uy) having the mean equal to u”, for which
up(u") = pp, and approximately constant (at least in a relevant
interval of the parameter u) standard deviation of.
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The above theoretical model of serviceability limits is consequently
characterised by fuzziness characteristics 1,, l; and the exponent n,
and by the randomness characteristic represented by the standard
deviation o¢y. Four extreme combinations of both concepts may be
obviously recognised:

(a) deterministic case, when 1; = 1; = 1, and oy = 0,
(b) pure fuzziness, when I; # 1, and oy = 0,

(¢) pure randomness, when Il; = I; = 1, and oy # 0,

{8) fuzzy-random case, when Il; # I; and oy # 0,

From the most general combination of both concepts (d), which is
treated bellow, the other combinations may be obtained by appropriate
choice of the model characteristics. For example the case of pure
randomness (c), which is considered in [6], is obtained for I, = I;
= ly.

4. UNSERVICEABILITY MEASURES

Expected unserviceability at a given damage level ur is the cumula-
tive function &;(u/ur) of the serviceability parameter u,

P (u/p.) = f"p (u’/p ) du’. =2

The total expected unserviceability (damage) corresponding to the
serviceability parameter u is defined as weighted expected
unserviceability with respect to all possible damage levels u;

1
6
$p (u) '% f B (u/pp)du, ., (&)
[

where N = 1/(n+l) is the normalizing factor to limit the total
unserviceability into the interval <0,1>. The limiting value I can
be now defined as the parameter u for which the total expected
unserviceability it is equal to a required value &, thus

1
7,
6,1) -2 [u 0,1 /np) s - b, )
[

Taking into account random character of structural response z(t), the
probability of failure of a structure at a given damage level puy and
time ¢ is provided by the integral

Pe(Br.t) = [0, (u/t) b, (u/n,) du, (8

where ¢,(u/t) denotes the probability density function of structural
response z(t). The total instantaneous unserviceability with respect
to all possible damage levels uy at the time ¢ is

1
1
Py (t) --ﬁ’{ypp,(p,,t)dp,, (9)
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The total probability of failure p; within the whole intended life
time T is then

T
- 1
p: = = [pe(t) dt. (10)
. T{ |

The above unserviceability measures, given by Equations (7), (8), (9)
and (10), can be used to formulate various types of design criteria.

‘Moreover, if the actual malfunction cost of any structure is
proportlonal to the damage level p;, then the expected malfunction
cost C; can be expressed [16] as
, : , _
_ : T : . 11
c, = %,fc,,(t)pf(t)dt ~ D, C, (D
. £ o .

;where the malfunction cost Cr(t) due te the full unserviceability
(when yr = 1) is approximated by a time independent value C;. If the
total cost C could be expressed as the sum of the initial cost C; and

"expected cost Cs given by Equation (11), thus

- By c',,:+ ps C oo (12)

then optlmlzatlon procedure may . be ~applied [15,16]). Necessary
condltlons for . the minimum +total cost. . follows from partial
derivatives with respect to optimization variables.

5 EXAMPLE

The follow1ng example is based on: experlmental data [17], concerning
serviceability
Jlimit state of
visual disturban-
ce. Excessive sags
of 49 reinforced
concrete floors
and beams - were
recorded when an-
noying deforma-~
tions were percei-
ved. Observed dis-
turbing sags z/L,
where 'L denotes
span of horizontal
components 4],
are within a broad
range from 0.003
to 0.018. Using
this data the mean
membership func-
tion uy(u), may be : :
approximated = by | _,; 0.0 0.1 02 03 04
the tri-linear ' '
function. (n=1), , _
_;i,“:.“_’a3t_ed Flu“rtﬁgg, Figure 4 The function #;(u) for n = 1.

theefollowing-fuz—
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ziness and randomness characteristics were derived from these data

;é% -‘o,aoa,--éf - 0.014, 0,=0.05 (1, - 1,). (43

The,standard'EEViation oy was assessed from scatter of the data about
- the mean function as one twentieth of the transition length.

The total expected unserviceability ®#;(uv) for o = 1 is shown in
Figure 4. It follows from Equation (7) and Figure 1, that for #; =
0.05 the limiting deflection is I ~ 1, + 0.2 (1,- 1) = L/192, if &
= 0,01, then 1 =~ 1, + 0.05 (1; - 1) = L/282. It should be however
noted, that used experimental data do not include all the relevant
information, and some additional assumptions were required to define
the above model. More data, supplemented by information on level of
observed damage, are urgently needed. '

Let the cross section height h, be a single optimization variable.
The sag z may be expressed as z = K h™’, where K denotes a constant.
If the initial cost C;(h) is proportional to h, then the first
~ derivative of Equation (12) yield the condition [5]

c,(h) Ppg.0,) - dp(pg.o,)
—-—E"—-3ﬂ‘-———a-:‘-—.——— +.4 a‘.————a;-TL—- | (14)

The mean sag u,, detetminédffdr selected ratios C&/C,and coefficients
of variation o, /u; using Equation (14) and characteristics described

by Equations (13) are given in Table 1.

.Table‘l, Théloptimum mean sag u;/L

Ratio ___Ratio GG -

0,00 | ~1/159 | 1/251 | 17282 | 1/391 | 1/498
0.05 17181 | 17316 | 17376 1/571 1/781
0.10 1/220 | 1,431 | 1/532 1/855 | 1/1205

- 0.20 1/313 1/680 | 1,847 | 1/1351 | 1/2041

If the coefficient of variation o,/u, = 0.10, then the optimum mean
M; equals L/220 for Cp/Cy1, L/532 for Cy/Cr10. 1t appears, that com-
monly applied limiting values of the range from L/360 to L/200
correspond to relatively low cost of full malfunction C; (Cp/CO from
1 to 5) and high fuzzy probability of failure p; (from 0.01 to 0.05).
Consequently, commonly accepted serviceability -constrains may be
frequently uneconomical. _ e, :

5. CONCLUSIONS

(1) Two kinds of uncertainties are to be distinguished when
analyzing structural serviceability: randomness and vagueness.

(2) Imprecision and vagueness in definition of structural service-

4 ability may be handled by methods of fuzzy set theory.

(3) Proposed unserviceability measures enable to formulate
probabilistic concepts for design of structural serviceability
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including optimization.

(4) Optimization of serviceability 1limit state due to visual
disturbance indicates, that commonly used limiting values for
sag of horizontal components may be uneconomical.

(5) Further research is recommended to concentrate on

experimental data enabling more accurate theoretical models for
vagueness in definition of limit states,
fuzzy concept for multidimensional serviceability problems.
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